jdk-24/test/jdk/sun/security/ssl/ClientHandshaker/LengthCheckTest.java
2018-08-21 11:30:48 -07:00

819 lines
32 KiB
Java

/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8044860
* @summary Vectors and fixed length fields should be verified
* for allowed sizes.
* @modules java.base/sun.security.ssl
* @run main/othervm LengthCheckTest
* @key randomness
*/
/**
* A SSLEngine usage example which simplifies the presentation
* by removing the I/O and multi-threading concerns.
*
* The test creates two SSLEngines, simulating a client and server.
* The "transport" layer consists two byte buffers: think of them
* as directly connected pipes.
*
* Note, this is a *very* simple example: real code will be much more
* involved. For example, different threading and I/O models could be
* used, transport mechanisms could close unexpectedly, and so on.
*
* When this application runs, notice that several messages
* (wrap/unwrap) pass before any application data is consumed or
* produced. (For more information, please see the SSL/TLS
* specifications.) There may several steps for a successful handshake,
* so it's typical to see the following series of operations:
*
* client server message
* ====== ====== =======
* wrap() ... ClientHello
* ... unwrap() ClientHello
* ... wrap() ServerHello/Certificate
* unwrap() ... ServerHello/Certificate
* wrap() ... ClientKeyExchange
* wrap() ... ChangeCipherSpec
* wrap() ... Finished
* ... unwrap() ClientKeyExchange
* ... unwrap() ChangeCipherSpec
* ... unwrap() Finished
* ... wrap() ChangeCipherSpec
* ... wrap() Finished
* unwrap() ... ChangeCipherSpec
* unwrap() ... Finished
*/
import javax.net.ssl.*;
import javax.net.ssl.SSLEngineResult.*;
import java.io.*;
import java.security.*;
import java.nio.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
public class LengthCheckTest {
/*
* Enables logging of the SSLEngine operations.
*/
private static final boolean logging = true;
/*
* Enables the JSSE system debugging system property:
*
* -Djavax.net.debug=all
*
* This gives a lot of low-level information about operations underway,
* including specific handshake messages, and might be best examined
* after gaining some familiarity with this application.
*/
private static final boolean debug = false;
private static final boolean dumpBufs = true;
private final SSLContext sslc;
private SSLEngine clientEngine; // client Engine
private ByteBuffer clientOut; // write side of clientEngine
private ByteBuffer clientIn; // read side of clientEngine
private SSLEngine serverEngine; // server Engine
private ByteBuffer serverOut; // write side of serverEngine
private ByteBuffer serverIn; // read side of serverEngine
private HandshakeTest handshakeTest;
/*
* For data transport, this example uses local ByteBuffers. This
* isn't really useful, but the purpose of this example is to show
* SSLEngine concepts, not how to do network transport.
*/
private ByteBuffer cTOs; // "reliable" transport client->server
private ByteBuffer sTOc; // "reliable" transport server->client
/*
* The following is to set up the keystores.
*/
private static final String pathToStores = "../../../../javax/net/ssl/etc";
private static final String keyStoreFile = "keystore";
private static final String trustStoreFile = "truststore";
private static final String passwd = "passphrase";
private static final String keyFilename =
System.getProperty("test.src", ".") + "/" + pathToStores +
"/" + keyStoreFile;
private static final String trustFilename =
System.getProperty("test.src", ".") + "/" + pathToStores +
"/" + trustStoreFile;
// Define a few basic TLS record and message types we might need
private static final int TLS_RECTYPE_CCS = 0x14;
private static final int TLS_RECTYPE_ALERT = 0x15;
private static final int TLS_RECTYPE_HANDSHAKE = 0x16;
private static final int TLS_RECTYPE_APPDATA = 0x17;
private static final int TLS_HS_HELLO_REQUEST = 0x00;
private static final int TLS_HS_CLIENT_HELLO = 0x01;
private static final int TLS_HS_SERVER_HELLO = 0x02;
private static final int TLS_HS_CERTIFICATE = 0x0B;
private static final int TLS_HS_SERVER_KEY_EXCHG = 0x0C;
private static final int TLS_HS_CERT_REQUEST = 0x0D;
private static final int TLS_HS_SERVER_HELLO_DONE = 0x0E;
private static final int TLS_HS_CERT_VERIFY = 0x0F;
private static final int TLS_HS_CLIENT_KEY_EXCHG = 0x10;
private static final int TLS_HS_FINISHED = 0x14;
// We're not going to define all the alert types in TLS, just
// the ones we think we'll need to reference by name.
private static final int TLS_ALERT_LVL_WARNING = 0x01;
private static final int TLS_ALERT_LVL_FATAL = 0x02;
private static final int TLS_ALERT_UNEXPECTED_MSG = 0x0A;
private static final int TLS_ALERT_HANDSHAKE_FAILURE = 0x28;
private static final int TLS_ALERT_INTERNAL_ERROR = 0x50;
private static final int TLS_ALERT_ILLEGAL_PARAMETER = 0x2F;
public interface HandshakeTest {
void execTest() throws Exception;
}
public final HandshakeTest servSendLongID = new HandshakeTest() {
@Override
public void execTest() throws Exception {
boolean gotException = false;
SSLEngineResult clientResult; // results from client's last op
SSLEngineResult serverResult; // results from server's last op
log("\n==== Test: Client receives 64-byte session ID ====");
// Send Client Hello
clientResult = clientEngine.wrap(clientOut, cTOs);
log("client wrap: ", clientResult);
runDelegatedTasks(clientResult, clientEngine);
cTOs.flip();
dumpByteBuffer("CLIENT-TO-SERVER", cTOs);
// Server consumes Client Hello
serverResult = serverEngine.unwrap(cTOs, serverIn);
log("server unwrap: ", serverResult);
runDelegatedTasks(serverResult, serverEngine);
cTOs.compact();
// Server generates ServerHello/Cert/Done record
serverResult = serverEngine.wrap(serverOut, sTOc);
log("server wrap: ", serverResult);
runDelegatedTasks(serverResult, serverEngine);
sTOc.flip();
// Intercept the ServerHello messages and instead send
// one that has a 64-byte session ID.
if (isTlsMessage(sTOc, TLS_RECTYPE_HANDSHAKE,
TLS_HS_SERVER_HELLO)) {
ArrayList<ByteBuffer> recList = splitRecord(sTOc);
// Use the original ServerHello as a template to craft one
// with a longer-than-allowed session ID.
ByteBuffer servHelloBuf =
createEvilServerHello(recList.get(0), 64);
recList.set(0, servHelloBuf);
// Now send each ByteBuffer (each being a complete
// TLS record) into the client-side unwrap.
// for (ByteBuffer bBuf : recList) {
Iterator<ByteBuffer> iter = recList.iterator();
while (!gotException && (iter.hasNext())) {
ByteBuffer bBuf = iter.next();
dumpByteBuffer("SERVER-TO-CLIENT", bBuf);
try {
clientResult = clientEngine.unwrap(bBuf, clientIn);
} catch (SSLProtocolException e) {
log("Received expected SSLProtocolException: " + e);
gotException = true;
}
log("client unwrap: ", clientResult);
runDelegatedTasks(clientResult, clientEngine);
}
} else {
dumpByteBuffer("SERVER-TO-CLIENT", sTOc);
log("client unwrap: ", clientResult);
runDelegatedTasks(clientResult, clientEngine);
}
sTOc.compact();
// The Client should now send a TLS Alert
clientResult = clientEngine.wrap(clientOut, cTOs);
log("client wrap: ", clientResult);
runDelegatedTasks(clientResult, clientEngine);
cTOs.flip();
dumpByteBuffer("CLIENT-TO-SERVER", cTOs);
// At this point we can verify that both an exception
// was thrown and the proper action (a TLS alert) was
// sent back to the server.
if (gotException == false ||
!isTlsMessage(cTOs, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL,
TLS_ALERT_ILLEGAL_PARAMETER)) {
throw new SSLException(
"Client failed to throw Alert:fatal:internal_error");
}
}
};
public final HandshakeTest clientSendLongID = new HandshakeTest() {
@Override
public void execTest() throws Exception {
boolean gotException = false;
SSLEngineResult clientResult; // results from client's last op
SSLEngineResult serverResult; // results from server's last op
log("\n==== Test: Server receives 64-byte session ID ====");
// Send Client Hello
ByteBuffer evilClientHello = createEvilClientHello(64);
dumpByteBuffer("CLIENT-TO-SERVER", evilClientHello);
// Server consumes Client Hello
serverResult = serverEngine.unwrap(evilClientHello, serverIn);
log("server unwrap: ", serverResult);
runDelegatedTasks(serverResult, serverEngine);
evilClientHello.compact();
// Under normal circumstances this should be a ServerHello
// But should throw an exception instead due to the invalid
// session ID.
try {
serverResult = serverEngine.wrap(serverOut, sTOc);
log("server wrap: ", serverResult);
runDelegatedTasks(serverResult, serverEngine);
} catch (SSLProtocolException ssle) {
log("Received expected SSLProtocolException: " + ssle);
gotException = true;
}
// We expect to see the server generate an alert here
serverResult = serverEngine.wrap(serverOut, sTOc);
log("server wrap: ", serverResult);
runDelegatedTasks(serverResult, serverEngine);
sTOc.flip();
dumpByteBuffer("SERVER-TO-CLIENT", sTOc);
// At this point we can verify that both an exception
// was thrown and the proper action (a TLS alert) was
// sent back to the client.
if (gotException == false ||
!isTlsMessage(sTOc, TLS_RECTYPE_ALERT, TLS_ALERT_LVL_FATAL,
TLS_ALERT_ILLEGAL_PARAMETER)) {
throw new SSLException(
"Server failed to throw Alert:fatal:internal_error");
}
}
};
/*
* Main entry point for this test.
*/
public static void main(String args[]) throws Exception {
List<LengthCheckTest> ccsTests = new ArrayList<>();
if (debug) {
System.setProperty("javax.net.debug", "ssl");
}
ccsTests.add(new LengthCheckTest("ServSendLongID"));
ccsTests.add(new LengthCheckTest("ClientSendLongID"));
for (LengthCheckTest test : ccsTests) {
test.runTest();
}
System.out.println("Test Passed.");
}
/*
* Create an initialized SSLContext to use for these tests.
*/
public LengthCheckTest(String testName) throws Exception {
KeyStore ks = KeyStore.getInstance("JKS");
KeyStore ts = KeyStore.getInstance("JKS");
char[] passphrase = "passphrase".toCharArray();
ks.load(new FileInputStream(keyFilename), passphrase);
ts.load(new FileInputStream(trustFilename), passphrase);
KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
kmf.init(ks, passphrase);
TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
tmf.init(ts);
SSLContext sslCtx = SSLContext.getInstance("TLS");
sslCtx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);
sslc = sslCtx;
switch (testName) {
case "ServSendLongID":
handshakeTest = servSendLongID;
break;
case "ClientSendLongID":
handshakeTest = clientSendLongID;
break;
default:
throw new IllegalArgumentException("Unknown test name: " +
testName);
}
}
/*
* Run the test.
*
* Sit in a tight loop, both engines calling wrap/unwrap regardless
* of whether data is available or not. We do this until both engines
* report back they are closed.
*
* The main loop handles all of the I/O phases of the SSLEngine's
* lifetime:
*
* initial handshaking
* application data transfer
* engine closing
*
* One could easily separate these phases into separate
* sections of code.
*/
private void runTest() throws Exception {
boolean dataDone = false;
createSSLEngines();
createBuffers();
handshakeTest.execTest();
}
/*
* Using the SSLContext created during object creation,
* create/configure the SSLEngines we'll use for this test.
*/
private void createSSLEngines() throws Exception {
/*
* Configure the serverEngine to act as a server in the SSL/TLS
* handshake. Also, require SSL client authentication.
*/
serverEngine = sslc.createSSLEngine();
serverEngine.setUseClientMode(false);
serverEngine.setNeedClientAuth(false);
/*
* Similar to above, but using client mode instead.
*/
clientEngine = sslc.createSSLEngine("client", 80);
clientEngine.setUseClientMode(true);
// In order to make a test that will be backwards compatible
// going back to JDK 5, force the handshake to be TLS 1.0 and
// use one of the older cipher suites.
clientEngine.setEnabledProtocols(new String[]{"TLSv1"});
clientEngine.setEnabledCipherSuites(
new String[]{"TLS_RSA_WITH_AES_128_CBC_SHA"});
}
/*
* Create and size the buffers appropriately.
*/
private void createBuffers() {
/*
* We'll assume the buffer sizes are the same
* between client and server.
*/
SSLSession session = clientEngine.getSession();
int appBufferMax = session.getApplicationBufferSize();
int netBufferMax = session.getPacketBufferSize();
/*
* We'll make the input buffers a bit bigger than the max needed
* size, so that unwrap()s following a successful data transfer
* won't generate BUFFER_OVERFLOWS.
*
* We'll use a mix of direct and indirect ByteBuffers for
* tutorial purposes only. In reality, only use direct
* ByteBuffers when they give a clear performance enhancement.
*/
clientIn = ByteBuffer.allocate(appBufferMax + 50);
serverIn = ByteBuffer.allocate(appBufferMax + 50);
cTOs = ByteBuffer.allocateDirect(netBufferMax);
sTOc = ByteBuffer.allocateDirect(netBufferMax);
clientOut = ByteBuffer.wrap("Hi Server, I'm Client".getBytes());
serverOut = ByteBuffer.wrap("Hello Client, I'm Server".getBytes());
}
/*
* If the result indicates that we have outstanding tasks to do,
* go ahead and run them in this thread.
*/
private static void runDelegatedTasks(SSLEngineResult result,
SSLEngine engine) throws Exception {
if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) {
Runnable runnable;
while ((runnable = engine.getDelegatedTask()) != null) {
log("\trunning delegated task...");
runnable.run();
}
HandshakeStatus hsStatus = engine.getHandshakeStatus();
if (hsStatus == HandshakeStatus.NEED_TASK) {
throw new Exception(
"handshake shouldn't need additional tasks");
}
log("\tnew HandshakeStatus: " + hsStatus);
}
}
private static boolean isEngineClosed(SSLEngine engine) {
return (engine.isOutboundDone() && engine.isInboundDone());
}
/*
* Simple check to make sure everything came across as expected.
*/
private static void checkTransfer(ByteBuffer a, ByteBuffer b)
throws Exception {
a.flip();
b.flip();
if (!a.equals(b)) {
throw new Exception("Data didn't transfer cleanly");
} else {
log("\tData transferred cleanly");
}
a.position(a.limit());
b.position(b.limit());
a.limit(a.capacity());
b.limit(b.capacity());
}
/*
* Logging code
*/
private static boolean resultOnce = true;
private static void log(String str, SSLEngineResult result) {
if (!logging) {
return;
}
if (resultOnce) {
resultOnce = false;
System.out.println("The format of the SSLEngineResult is: \n" +
"\t\"getStatus() / getHandshakeStatus()\" +\n" +
"\t\"bytesConsumed() / bytesProduced()\"\n");
}
HandshakeStatus hsStatus = result.getHandshakeStatus();
log(str +
result.getStatus() + "/" + hsStatus + ", " +
result.bytesConsumed() + "/" + result.bytesProduced() +
" bytes");
if (hsStatus == HandshakeStatus.FINISHED) {
log("\t...ready for application data");
}
}
private static void log(String str) {
if (logging) {
System.out.println(str);
}
}
/**
* Split a record consisting of multiple TLS handshake messages
* into individual TLS records, each one in a ByteBuffer of its own.
*
* @param tlsRecord A ByteBuffer containing the tls record data.
* The position of the buffer should be at the first byte
* in the TLS record data.
*
* @return An ArrayList consisting of one or more ByteBuffers. Each
* ByteBuffer will contain a single TLS record with one message.
* That message will be taken from the input record. The order
* of the messages in the ArrayList will be the same as they
* were in the input record.
*/
private ArrayList<ByteBuffer> splitRecord(ByteBuffer tlsRecord) {
SSLSession session = clientEngine.getSession();
int netBufferMax = session.getPacketBufferSize();
ArrayList<ByteBuffer> recordList = new ArrayList<>();
if (tlsRecord.hasRemaining()) {
int type = Byte.toUnsignedInt(tlsRecord.get());
byte ver_major = tlsRecord.get();
byte ver_minor = tlsRecord.get();
int recLen = Short.toUnsignedInt(tlsRecord.getShort());
byte[] newMsgData = null;
while (tlsRecord.hasRemaining()) {
ByteBuffer newRecord = ByteBuffer.allocateDirect(netBufferMax);
switch (type) {
case TLS_RECTYPE_CCS:
case TLS_RECTYPE_ALERT:
case TLS_RECTYPE_APPDATA:
// None of our tests have multiple non-handshake
// messages coalesced into a single record.
break;
case TLS_RECTYPE_HANDSHAKE:
newMsgData = getHandshakeMessage(tlsRecord);
break;
}
// Put a new TLS record on the destination ByteBuffer
newRecord.put((byte)type);
newRecord.put(ver_major);
newRecord.put(ver_minor);
newRecord.putShort((short)newMsgData.length);
// Now add the message content itself and attach to the
// returned ArrayList
newRecord.put(newMsgData);
newRecord.flip();
recordList.add(newRecord);
}
}
return recordList;
}
private static ByteBuffer createEvilClientHello(int sessIdLen) {
ByteBuffer newRecord = ByteBuffer.allocateDirect(4096);
// Lengths will initially be place holders until we determine the
// finished length of the ByteBuffer. Then we'll go back and scribble
// in the correct lengths.
newRecord.put((byte)TLS_RECTYPE_HANDSHAKE); // Record type
newRecord.putShort((short)0x0301); // Protocol (TLS 1.0)
newRecord.putShort((short)0); // Length place holder
newRecord.putInt(TLS_HS_CLIENT_HELLO << 24); // HS type and length
newRecord.putShort((short)0x0301);
newRecord.putInt((int)(System.currentTimeMillis() / 1000));
SecureRandom sr = new SecureRandom();
byte[] randBuf = new byte[28];
sr.nextBytes(randBuf);
newRecord.put(randBuf); // Client Random
newRecord.put((byte)sessIdLen); // Session ID length
if (sessIdLen > 0) {
byte[] sessId = new byte[sessIdLen];
sr.nextBytes(sessId);
newRecord.put(sessId); // Session ID
}
newRecord.putShort((short)2); // 2 bytes of ciphers
newRecord.putShort((short)0x002F); // TLS_RSA_AES_CBC_SHA
newRecord.putShort((short)0x0100); // only null compression
newRecord.putShort((short)5); // 5 bytes of extensions
newRecord.putShort((short)0xFF01); // Renegotiation info
newRecord.putShort((short)1);
newRecord.put((byte)0); // No reneg info exts
// Go back and fill in the correct length values for the record
// and handshake message headers.
int recordLength = newRecord.position();
newRecord.putShort(3, (short)(recordLength - 5));
int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) |
((recordLength - 9) & 0x00FFFFFF);
newRecord.putInt(5, newTypeAndLen);
newRecord.flip();
return newRecord;
}
private static ByteBuffer createEvilServerHello(ByteBuffer origHello,
int newSessIdLen) {
if (newSessIdLen < 0 || newSessIdLen > Byte.MAX_VALUE) {
throw new RuntimeException("Length must be 0 <= X <= 127");
}
ByteBuffer newRecord = ByteBuffer.allocateDirect(4096);
// Copy the bytes from the old hello to the new up to the session ID
// field. We will go back later and fill in a new length field in
// the record header. This includes the record header (5 bytes), the
// Handshake message header (4 bytes), protocol version (2 bytes),
// and the random (32 bytes).
ByteBuffer scratchBuffer = origHello.slice();
scratchBuffer.limit(43);
newRecord.put(scratchBuffer);
// Advance the position in the originial hello buffer past the
// session ID.
origHello.position(43);
int origIDLen = Byte.toUnsignedInt(origHello.get());
if (origIDLen > 0) {
// Skip over the session ID
origHello.position(origHello.position() + origIDLen);
}
// Now add our own sessionID to the new record
SecureRandom sr = new SecureRandom();
byte[] sessId = new byte[newSessIdLen];
sr.nextBytes(sessId);
newRecord.put((byte)newSessIdLen);
newRecord.put(sessId);
// Create another slice in the original buffer, based on the position
// past the session ID. Copy the remaining bytes into the new
// hello buffer. Then go back and fix up the length
newRecord.put(origHello.slice());
// Go back and fill in the correct length values for the record
// and handshake message headers.
int recordLength = newRecord.position();
newRecord.putShort(3, (short)(recordLength - 5));
int newTypeAndLen = (newRecord.getInt(5) & 0xFF000000) |
((recordLength - 9) & 0x00FFFFFF);
newRecord.putInt(5, newTypeAndLen);
newRecord.flip();
return newRecord;
}
/**
* Look at an incoming TLS record and see if it is the desired
* record type, and where appropriate the correct subtype.
*
* @param srcRecord The input TLS record to be evaluated. This
* method will only look at the leading message if multiple
* TLS handshake messages are coalesced into a single record.
* @param reqRecType The requested TLS record type
* @param recParams Zero or more integer sub type fields. For CCS
* and ApplicationData, no params are used. For handshake records,
* one value corresponding to the HandshakeType is required.
* For Alerts, two values corresponding to AlertLevel and
* AlertDescription are necessary.
*
* @return true if the proper handshake message is the first one
* in the input record, false otherwise.
*/
private boolean isTlsMessage(ByteBuffer srcRecord, int reqRecType,
int... recParams) {
boolean foundMsg = false;
if (srcRecord.hasRemaining()) {
srcRecord.mark();
// Grab the fields from the TLS Record
int recordType = Byte.toUnsignedInt(srcRecord.get());
byte ver_major = srcRecord.get();
byte ver_minor = srcRecord.get();
int recLen = Short.toUnsignedInt(srcRecord.getShort());
if (recordType == reqRecType) {
// For any zero-length recParams, making sure the requested
// type is sufficient.
if (recParams.length == 0) {
foundMsg = true;
} else {
switch (recordType) {
case TLS_RECTYPE_CCS:
case TLS_RECTYPE_APPDATA:
// We really shouldn't find ourselves here, but
// if someone asked for these types and had more
// recParams we can ignore them.
foundMsg = true;
break;
case TLS_RECTYPE_ALERT:
// Needs two params, AlertLevel and AlertDescription
if (recParams.length != 2) {
throw new RuntimeException(
"Test for Alert requires level and desc.");
} else {
int level = Byte.toUnsignedInt(srcRecord.get());
int desc = Byte.toUnsignedInt(srcRecord.get());
if (level == recParams[0] &&
desc == recParams[1]) {
foundMsg = true;
}
}
break;
case TLS_RECTYPE_HANDSHAKE:
// Needs one parameter, HandshakeType
if (recParams.length != 1) {
throw new RuntimeException(
"Test for Handshake requires only HS type");
} else {
// Go into the first handhshake message in the
// record and grab the handshake message header.
// All we need to do is parse out the leading
// byte.
int msgHdr = srcRecord.getInt();
int msgType = (msgHdr >> 24) & 0x000000FF;
if (msgType == recParams[0]) {
foundMsg = true;
}
}
break;
}
}
}
srcRecord.reset();
}
return foundMsg;
}
private byte[] getHandshakeMessage(ByteBuffer srcRecord) {
// At the start of this routine, the position should be lined up
// at the first byte of a handshake message. Mark this location
// so we can return to it after reading the type and length.
srcRecord.mark();
int msgHdr = srcRecord.getInt();
int type = (msgHdr >> 24) & 0x000000FF;
int length = msgHdr & 0x00FFFFFF;
// Create a byte array that has enough space for the handshake
// message header and body.
byte[] data = new byte[length + 4];
srcRecord.reset();
srcRecord.get(data, 0, length + 4);
return (data);
}
/**
* Hex-dumps a ByteBuffer to stdout.
*/
private static void dumpByteBuffer(String header, ByteBuffer bBuf) {
if (dumpBufs == false) {
return;
}
int bufLen = bBuf.remaining();
if (bufLen > 0) {
bBuf.mark();
// We expect the position of the buffer to be at the
// beginning of a TLS record. Get the type, version and length.
int type = Byte.toUnsignedInt(bBuf.get());
int ver_major = Byte.toUnsignedInt(bBuf.get());
int ver_minor = Byte.toUnsignedInt(bBuf.get());
int recLen = Short.toUnsignedInt(bBuf.getShort());
log("===== " + header + " (" + tlsRecType(type) + " / " +
ver_major + "." + ver_minor + " / " + bufLen + " bytes) =====");
bBuf.reset();
for (int i = 0; i < bufLen; i++) {
if (i != 0 && i % 16 == 0) {
System.out.print("\n");
}
System.out.format("%02X ", bBuf.get(i));
}
log("\n===============================================");
bBuf.reset();
}
}
private static String tlsRecType(int type) {
switch (type) {
case 20:
return "Change Cipher Spec";
case 21:
return "Alert";
case 22:
return "Handshake";
case 23:
return "Application Data";
default:
return ("Unknown (" + type + ")");
}
}
}