jdk-24/hotspot/src/share/vm/opto/cfgnode.hpp
Roland Westrelin 73d6d417be 8005071: Incremental inlining for JSR 292
Post parse inlining driven by number of live nodes.

Reviewed-by: twisti, kvn, jrose
2012-12-23 17:08:22 +01:00

531 lines
20 KiB
C++

/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_CFGNODE_HPP
#define SHARE_VM_OPTO_CFGNODE_HPP
#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
class Matcher;
class Node;
class RegionNode;
class TypeNode;
class PhiNode;
class GotoNode;
class MultiNode;
class MultiBranchNode;
class IfNode;
class PCTableNode;
class JumpNode;
class CatchNode;
class NeverBranchNode;
class ProjNode;
class CProjNode;
class IfTrueNode;
class IfFalseNode;
class CatchProjNode;
class JProjNode;
class JumpProjNode;
class SCMemProjNode;
class PhaseIdealLoop;
//------------------------------RegionNode-------------------------------------
// The class of RegionNodes, which can be mapped to basic blocks in the
// program. Their inputs point to Control sources. PhiNodes (described
// below) have an input point to a RegionNode. Merged data inputs to PhiNodes
// correspond 1-to-1 with RegionNode inputs. The zero input of a PhiNode is
// the RegionNode, and the zero input of the RegionNode is itself.
class RegionNode : public Node {
public:
// Node layout (parallels PhiNode):
enum { Region, // Generally points to self.
Control // Control arcs are [1..len)
};
RegionNode( uint required ) : Node(required) {
init_class_id(Class_Region);
init_req(0,this);
}
Node* is_copy() const {
const Node* r = _in[Region];
if (r == NULL)
return nonnull_req();
return NULL; // not a copy!
}
PhiNode* has_phi() const; // returns an arbitrary phi user, or NULL
PhiNode* has_unique_phi() const; // returns the unique phi user, or NULL
// Is this region node unreachable from root?
bool is_unreachable_region(PhaseGVN *phase) const;
virtual int Opcode() const;
virtual bool pinned() const { return (const Node *)in(0) == this; }
virtual bool is_CFG () const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual bool depends_only_on_test() const { return false; }
virtual const Type *bottom_type() const { return Type::CONTROL; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const RegMask &out_RegMask() const;
bool try_clean_mem_phi(PhaseGVN *phase);
};
//------------------------------JProjNode--------------------------------------
// jump projection for node that produces multiple control-flow paths
class JProjNode : public ProjNode {
public:
JProjNode( Node* ctrl, uint idx ) : ProjNode(ctrl,idx) {}
virtual int Opcode() const;
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node* is_block_proj() const { return in(0); }
virtual const RegMask& out_RegMask() const;
virtual uint ideal_reg() const { return 0; }
};
//------------------------------PhiNode----------------------------------------
// PhiNodes merge values from different Control paths. Slot 0 points to the
// controlling RegionNode. Other slots map 1-for-1 with incoming control flow
// paths to the RegionNode. For speed reasons (to avoid another pass) we
// can turn PhiNodes into copys in-place by NULL'ing out their RegionNode
// input in slot 0.
class PhiNode : public TypeNode {
const TypePtr* const _adr_type; // non-null only for Type::MEMORY nodes.
const int _inst_id; // Instance id of the memory slice.
const int _inst_index; // Alias index of the instance memory slice.
// Array elements references have the same alias_idx but different offset.
const int _inst_offset; // Offset of the instance memory slice.
// Size is bigger to hold the _adr_type field.
virtual uint hash() const; // Check the type
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
// Determine if CMoveNode::is_cmove_id can be used at this join point.
Node* is_cmove_id(PhaseTransform* phase, int true_path);
public:
// Node layout (parallels RegionNode):
enum { Region, // Control input is the Phi's region.
Input // Input values are [1..len)
};
PhiNode( Node *r, const Type *t, const TypePtr* at = NULL,
const int iid = TypeOopPtr::InstanceTop,
const int iidx = Compile::AliasIdxTop,
const int ioffs = Type::OffsetTop )
: TypeNode(t,r->req()),
_adr_type(at),
_inst_id(iid),
_inst_index(iidx),
_inst_offset(ioffs)
{
init_class_id(Class_Phi);
init_req(0, r);
verify_adr_type();
}
// create a new phi with in edges matching r and set (initially) to x
static PhiNode* make( Node* r, Node* x );
// extra type arguments override the new phi's bottom_type and adr_type
static PhiNode* make( Node* r, Node* x, const Type *t, const TypePtr* at = NULL );
// create a new phi with narrowed memory type
PhiNode* slice_memory(const TypePtr* adr_type) const;
PhiNode* split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const;
// like make(r, x), but does not initialize the in edges to x
static PhiNode* make_blank( Node* r, Node* x );
// Accessors
RegionNode* region() const { Node* r = in(Region); assert(!r || r->is_Region(), ""); return (RegionNode*)r; }
Node* is_copy() const {
// The node is a real phi if _in[0] is a Region node.
DEBUG_ONLY(const Node* r = _in[Region];)
assert(r != NULL && r->is_Region(), "Not valid control");
return NULL; // not a copy!
}
bool is_tripcount() const;
// Determine a unique non-trivial input, if any.
// Ignore casts if it helps. Return NULL on failure.
Node* unique_input(PhaseTransform *phase);
// Check for a simple dead loop.
enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
LoopSafety simple_data_loop_check(Node *in) const;
// Is it unsafe data loop? It becomes a dead loop if this phi node removed.
bool is_unsafe_data_reference(Node *in) const;
int is_diamond_phi(bool check_control_only = false) const;
virtual int Opcode() const;
virtual bool pinned() const { return in(0) != 0; }
virtual const TypePtr *adr_type() const { verify_adr_type(true); return _adr_type; }
const int inst_id() const { return _inst_id; }
const int inst_index() const { return _inst_index; }
const int inst_offset() const { return _inst_offset; }
bool is_same_inst_field(const Type* tp, int id, int index, int offset) {
return type()->basic_type() == tp->basic_type() &&
inst_id() == id &&
inst_index() == index &&
inst_offset() == offset &&
type()->higher_equal(tp);
}
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const RegMask &out_RegMask() const;
virtual const RegMask &in_RegMask(uint) const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
#ifdef ASSERT
void verify_adr_type(VectorSet& visited, const TypePtr* at) const;
void verify_adr_type(bool recursive = false) const;
#else //ASSERT
void verify_adr_type(bool recursive = false) const {}
#endif //ASSERT
};
//------------------------------GotoNode---------------------------------------
// GotoNodes perform direct branches.
class GotoNode : public Node {
public:
GotoNode( Node *control ) : Node(control) {}
virtual int Opcode() const;
virtual bool pinned() const { return true; }
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node *is_block_proj() const { return this; }
virtual bool depends_only_on_test() const { return false; }
virtual const Type *bottom_type() const { return Type::CONTROL; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual const RegMask &out_RegMask() const;
};
//------------------------------CProjNode--------------------------------------
// control projection for node that produces multiple control-flow paths
class CProjNode : public ProjNode {
public:
CProjNode( Node *ctrl, uint idx ) : ProjNode(ctrl,idx) {}
virtual int Opcode() const;
virtual bool is_CFG() const { return true; }
virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
virtual const Node *is_block_proj() const { return in(0); }
virtual const RegMask &out_RegMask() const;
virtual uint ideal_reg() const { return 0; }
};
//---------------------------MultiBranchNode-----------------------------------
// This class defines a MultiBranchNode, a MultiNode which yields multiple
// control values. These are distinguished from other types of MultiNodes
// which yield multiple values, but control is always and only projection #0.
class MultiBranchNode : public MultiNode {
public:
MultiBranchNode( uint required ) : MultiNode(required) {
init_class_id(Class_MultiBranch);
}
// returns required number of users to be well formed.
virtual int required_outcnt() const = 0;
};
//------------------------------IfNode-----------------------------------------
// Output selected Control, based on a boolean test
class IfNode : public MultiBranchNode {
// Size is bigger to hold the probability field. However, _prob does not
// change the semantics so it does not appear in the hash & cmp functions.
virtual uint size_of() const { return sizeof(*this); }
public:
// Degrees of branch prediction probability by order of magnitude:
// PROB_UNLIKELY_1e(N) is a 1 in 1eN chance.
// PROB_LIKELY_1e(N) is a 1 - PROB_UNLIKELY_1e(N)
#define PROB_UNLIKELY_MAG(N) (1e- ## N ## f)
#define PROB_LIKELY_MAG(N) (1.0f-PROB_UNLIKELY_MAG(N))
// Maximum and minimum branch prediction probabilties
// 1 in 1,000,000 (magnitude 6)
//
// Although PROB_NEVER == PROB_MIN and PROB_ALWAYS == PROB_MAX
// they are used to distinguish different situations:
//
// The name PROB_MAX (PROB_MIN) is for probabilities which correspond to
// very likely (unlikely) but with a concrete possibility of a rare
// contrary case. These constants would be used for pinning
// measurements, and as measures for assertions that have high
// confidence, but some evidence of occasional failure.
//
// The name PROB_ALWAYS (PROB_NEVER) is to stand for situations for which
// there is no evidence at all that the contrary case has ever occurred.
#define PROB_NEVER PROB_UNLIKELY_MAG(6)
#define PROB_ALWAYS PROB_LIKELY_MAG(6)
#define PROB_MIN PROB_UNLIKELY_MAG(6)
#define PROB_MAX PROB_LIKELY_MAG(6)
// Static branch prediction probabilities
// 1 in 10 (magnitude 1)
#define PROB_STATIC_INFREQUENT PROB_UNLIKELY_MAG(1)
#define PROB_STATIC_FREQUENT PROB_LIKELY_MAG(1)
// Fair probability 50/50
#define PROB_FAIR (0.5f)
// Unknown probability sentinel
#define PROB_UNKNOWN (-1.0f)
// Probability "constructors", to distinguish as a probability any manifest
// constant without a names
#define PROB_LIKELY(x) ((float) (x))
#define PROB_UNLIKELY(x) (1.0f - (float)(x))
// Other probabilities in use, but without a unique name, are documented
// here for lack of a better place:
//
// 1 in 1000 probabilities (magnitude 3):
// threshold for converting to conditional move
// likelihood of null check failure if a null HAS been seen before
// likelihood of slow path taken in library calls
//
// 1 in 10,000 probabilities (magnitude 4):
// threshold for making an uncommon trap probability more extreme
// threshold for for making a null check implicit
// likelihood of needing a gc if eden top moves during an allocation
// likelihood of a predicted call failure
//
// 1 in 100,000 probabilities (magnitude 5):
// threshold for ignoring counts when estimating path frequency
// likelihood of FP clipping failure
// likelihood of catching an exception from a try block
// likelihood of null check failure if a null has NOT been seen before
//
// Magic manifest probabilities such as 0.83, 0.7, ... can be found in
// gen_subtype_check() and catch_inline_exceptions().
float _prob; // Probability of true path being taken.
float _fcnt; // Frequency counter
IfNode( Node *control, Node *b, float p, float fcnt )
: MultiBranchNode(2), _prob(p), _fcnt(fcnt) {
init_class_id(Class_If);
init_req(0,control);
init_req(1,b);
}
virtual int Opcode() const;
virtual bool pinned() const { return true; }
virtual const Type *bottom_type() const { return TypeTuple::IFBOTH; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
virtual int required_outcnt() const { return 2; }
virtual const RegMask &out_RegMask() const;
void dominated_by(Node* prev_dom, PhaseIterGVN* igvn);
int is_range_check(Node* &range, Node* &index, jint &offset);
Node* fold_compares(PhaseGVN* phase);
static Node* up_one_dom(Node* curr, bool linear_only = false);
// Takes the type of val and filters it through the test represented
// by if_proj and returns a more refined type if one is produced.
// Returns NULL is it couldn't improve the type.
static const TypeInt* filtered_int_type(PhaseGVN* phase, Node* val, Node* if_proj);
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
class IfTrueNode : public CProjNode {
public:
IfTrueNode( IfNode *ifnode ) : CProjNode(ifnode,1) {
init_class_id(Class_IfTrue);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
};
class IfFalseNode : public CProjNode {
public:
IfFalseNode( IfNode *ifnode ) : CProjNode(ifnode,0) {
init_class_id(Class_IfFalse);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
};
//------------------------------PCTableNode------------------------------------
// Build an indirect branch table. Given a control and a table index,
// control is passed to the Projection matching the table index. Used to
// implement switch statements and exception-handling capabilities.
// Undefined behavior if passed-in index is not inside the table.
class PCTableNode : public MultiBranchNode {
virtual uint hash() const; // Target count; table size
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
public:
const uint _size; // Number of targets
PCTableNode( Node *ctrl, Node *idx, uint size ) : MultiBranchNode(2), _size(size) {
init_class_id(Class_PCTable);
init_req(0, ctrl);
init_req(1, idx);
}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *bottom_type() const;
virtual bool pinned() const { return true; }
virtual int required_outcnt() const { return _size; }
};
//------------------------------JumpNode---------------------------------------
// Indirect branch. Uses PCTable above to implement a switch statement.
// It emits as a table load and local branch.
class JumpNode : public PCTableNode {
public:
JumpNode( Node* control, Node* switch_val, uint size) : PCTableNode(control, switch_val, size) {
init_class_id(Class_Jump);
}
virtual int Opcode() const;
virtual const RegMask& out_RegMask() const;
virtual const Node* is_block_proj() const { return this; }
};
class JumpProjNode : public JProjNode {
virtual uint hash() const;
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
private:
const int _dest_bci;
const uint _proj_no;
const int _switch_val;
public:
JumpProjNode(Node* jumpnode, uint proj_no, int dest_bci, int switch_val)
: JProjNode(jumpnode, proj_no), _dest_bci(dest_bci), _proj_no(proj_no), _switch_val(switch_val) {
init_class_id(Class_JumpProj);
}
virtual int Opcode() const;
virtual const Type* bottom_type() const { return Type::CONTROL; }
int dest_bci() const { return _dest_bci; }
int switch_val() const { return _switch_val; }
uint proj_no() const { return _proj_no; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------CatchNode--------------------------------------
// Helper node to fork exceptions. "Catch" catches any exceptions thrown by
// a just-prior call. Looks like a PCTableNode but emits no code - just the
// table. The table lookup and branch is implemented by RethrowNode.
class CatchNode : public PCTableNode {
public:
CatchNode( Node *ctrl, Node *idx, uint size ) : PCTableNode(ctrl,idx,size){
init_class_id(Class_Catch);
}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
};
// CatchProjNode controls which exception handler is targetted after a call.
// It is passed in the bci of the target handler, or no_handler_bci in case
// the projection doesn't lead to an exception handler.
class CatchProjNode : public CProjNode {
virtual uint hash() const;
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const { return sizeof(*this); }
private:
const int _handler_bci;
public:
enum {
fall_through_index = 0, // the fall through projection index
catch_all_index = 1, // the projection index for catch-alls
no_handler_bci = -1 // the bci for fall through or catch-all projs
};
CatchProjNode(Node* catchnode, uint proj_no, int handler_bci)
: CProjNode(catchnode, proj_no), _handler_bci(handler_bci) {
init_class_id(Class_CatchProj);
assert(proj_no != fall_through_index || handler_bci < 0, "fall through case must have bci < 0");
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *bottom_type() const { return Type::CONTROL; }
int handler_bci() const { return _handler_bci; }
bool is_handler_proj() const { return _handler_bci >= 0; }
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//---------------------------------CreateExNode--------------------------------
// Helper node to create the exception coming back from a call
class CreateExNode : public TypeNode {
public:
CreateExNode(const Type* t, Node* control, Node* i_o) : TypeNode(t, 2) {
init_req(0, control);
init_req(1, i_o);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual bool pinned() const { return true; }
uint match_edge(uint idx) const { return 0; }
virtual uint ideal_reg() const { return Op_RegP; }
};
//------------------------------NeverBranchNode-------------------------------
// The never-taken branch. Used to give the appearance of exiting infinite
// loops to those algorithms that like all paths to be reachable. Encodes
// empty.
class NeverBranchNode : public MultiBranchNode {
public:
NeverBranchNode( Node *ctrl ) : MultiBranchNode(1) { init_req(0,ctrl); }
virtual int Opcode() const;
virtual bool pinned() const { return true; };
virtual const Type *bottom_type() const { return TypeTuple::IFBOTH; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual int required_outcnt() const { return 2; }
virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { }
virtual uint size(PhaseRegAlloc *ra_) const { return 0; }
#ifndef PRODUCT
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
#endif
};
#endif // SHARE_VM_OPTO_CFGNODE_HPP