61f89b0025
6601458: Move java.math tests from closed to open 6740185: Move java/lang/annotations tests to open 6759433: Move Math and StrictMath regression tests from closed to open Move some more regression tests to the open Reviewed-by: jjg
341 lines
14 KiB
Java
341 lines
14 KiB
Java
/*
|
|
* Copyright 2003-2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4851776 4907265 6177836
|
|
* @summary Some tests for the divide methods.
|
|
* @author Joseph D. Darcy
|
|
* @compile -source 1.5 DivideTests.java
|
|
* @run main DivideTests
|
|
*/
|
|
|
|
import java.math.*;
|
|
import static java.math.BigDecimal.*;
|
|
|
|
public class DivideTests {
|
|
|
|
// Preliminary exact divide method; could be used for comparison
|
|
// purposes.
|
|
BigDecimal anotherDivide(BigDecimal dividend, BigDecimal divisor) {
|
|
/*
|
|
* Handle zero cases first.
|
|
*/
|
|
if (divisor.signum() == 0) { // x/0
|
|
if (dividend.signum() == 0) // 0/0
|
|
throw new ArithmeticException("Division undefined"); // NaN
|
|
throw new ArithmeticException("Division by zero");
|
|
}
|
|
if (dividend.signum() == 0) // 0/y
|
|
return BigDecimal.ZERO;
|
|
else {
|
|
/*
|
|
* Determine if there is a result with a terminating
|
|
* decimal expansion. Putting aside overflow and
|
|
* underflow considerations, the existance of an exact
|
|
* result only depends on the ratio of the intVal's of the
|
|
* dividend (i.e. this) and and divisor since the scales
|
|
* of the argument just affect where the decimal point
|
|
* lies.
|
|
*
|
|
* For the ratio of (a = this.intVal) and (b =
|
|
* divisor.intVal) to have a finite decimal expansion,
|
|
* once a/b is put in lowest terms, b must be equal to
|
|
* (2^i)*(5^j) for some integer i,j >= 0. Therefore, we
|
|
* first compute to see if b_prime =(b/gcd(a,b)) is equal
|
|
* to (2^i)*(5^j).
|
|
*/
|
|
BigInteger TWO = BigInteger.valueOf(2);
|
|
BigInteger FIVE = BigInteger.valueOf(5);
|
|
BigInteger TEN = BigInteger.valueOf(10);
|
|
|
|
BigInteger divisorIntvalue = divisor.scaleByPowerOfTen(divisor.scale()).toBigInteger().abs();
|
|
BigInteger dividendIntvalue = dividend.scaleByPowerOfTen(dividend.scale()).toBigInteger().abs();
|
|
|
|
BigInteger b_prime = divisorIntvalue.divide(dividendIntvalue.gcd(divisorIntvalue));
|
|
|
|
boolean goodDivisor = false;
|
|
int i=0, j=0;
|
|
|
|
badDivisor: {
|
|
while(! b_prime.equals(BigInteger.ONE) ) {
|
|
int b_primeModTen = b_prime.mod(TEN).intValue() ;
|
|
|
|
switch(b_primeModTen) {
|
|
case 0:
|
|
// b_prime divisible by 10=2*5, increment i and j
|
|
i++;
|
|
j++;
|
|
b_prime = b_prime.divide(TEN);
|
|
break;
|
|
|
|
case 5:
|
|
// b_prime divisible by 5, increment j
|
|
j++;
|
|
b_prime = b_prime.divide(FIVE);
|
|
break;
|
|
|
|
case 2:
|
|
case 4:
|
|
case 6:
|
|
case 8:
|
|
// b_prime divisible by 2, increment i
|
|
i++;
|
|
b_prime = b_prime.divide(TWO);
|
|
break;
|
|
|
|
default: // hit something we shouldn't have
|
|
b_prime = BigInteger.ONE; // terminate loop
|
|
break badDivisor;
|
|
}
|
|
}
|
|
|
|
goodDivisor = true;
|
|
}
|
|
|
|
if( ! goodDivisor ) {
|
|
throw new ArithmeticException("Non terminating decimal expansion");
|
|
}
|
|
else {
|
|
// What is a rule for determining how many digits are
|
|
// needed? Once that is determined, cons up a new
|
|
// MathContext object and pass it on to the divide(bd,
|
|
// mc) method; precision == ?, roundingMode is unnecessary.
|
|
|
|
// Are we sure this is the right scale to use? Should
|
|
// also determine a precision-based method.
|
|
MathContext mc = new MathContext(dividend.precision() +
|
|
(int)Math.ceil(
|
|
10.0*divisor.precision()/3.0),
|
|
RoundingMode.UNNECESSARY);
|
|
// Should do some more work here to rescale, etc.
|
|
return dividend.divide(divisor, mc);
|
|
}
|
|
}
|
|
}
|
|
|
|
public static int powersOf2and5() {
|
|
int failures = 0;
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
int powerOf2 = (int)StrictMath.pow(2.0, i);
|
|
|
|
for(int j = 0; j < 6; j++) {
|
|
int powerOf5 = (int)StrictMath.pow(5.0, j);
|
|
int product;
|
|
|
|
BigDecimal bd;
|
|
|
|
try {
|
|
bd = BigDecimal.ONE.divide(new BigDecimal(product=powerOf2*powerOf5));
|
|
} catch (ArithmeticException e) {
|
|
failures++;
|
|
System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
|
|
(new BigDecimal(powerOf5)).toString() + " threw an exception.");
|
|
e.printStackTrace();
|
|
}
|
|
|
|
try {
|
|
bd = new BigDecimal(powerOf2).divide(new BigDecimal(powerOf5));
|
|
} catch (ArithmeticException e) {
|
|
failures++;
|
|
System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
|
|
(new BigDecimal(powerOf5)).toString() + " threw an exception.");
|
|
e.printStackTrace();
|
|
}
|
|
|
|
try {
|
|
bd = new BigDecimal(powerOf5).divide(new BigDecimal(powerOf2));
|
|
} catch (ArithmeticException e) {
|
|
failures++;
|
|
System.err.println((new BigDecimal(powerOf5)).toString() + " / " +
|
|
(new BigDecimal(powerOf2)).toString() + " threw an exception.");
|
|
|
|
e.printStackTrace();
|
|
}
|
|
|
|
}
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
public static int nonTerminating() {
|
|
int failures = 0;
|
|
int[] primes = {1, 3, 7, 13, 17};
|
|
|
|
// For each pair of prime products, verify the ratio of
|
|
// non-equal products has a non-terminating expansion.
|
|
|
|
for(int i = 0; i < primes.length; i++) {
|
|
for(int j = i+1; j < primes.length; j++) {
|
|
|
|
for(int m = 0; m < primes.length; m++) {
|
|
for(int n = m+1; n < primes.length; n++) {
|
|
int dividend = primes[i] * primes[j];
|
|
int divisor = primes[m] * primes[n];
|
|
|
|
if ( ((dividend/divisor) * divisor) != dividend ) {
|
|
try {
|
|
BigDecimal quotient = (new BigDecimal(dividend).
|
|
divide(new BigDecimal(divisor)));
|
|
failures++;
|
|
System.err.println("Exact quotient " + quotient.toString() +
|
|
" returned for non-terminating fraction " +
|
|
dividend + " / " + divisor + ".");
|
|
}
|
|
catch (ArithmeticException e) {
|
|
; // Correct result
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static int properScaleTests(){
|
|
int failures = 0;
|
|
|
|
BigDecimal[][] testCases = {
|
|
{new BigDecimal("1"), new BigDecimal("5"), new BigDecimal("2e-1")},
|
|
{new BigDecimal("1"), new BigDecimal("50e-1"), new BigDecimal("2e-1")},
|
|
{new BigDecimal("10e-1"), new BigDecimal("5"), new BigDecimal("2e-1")},
|
|
{new BigDecimal("1"), new BigDecimal("500e-2"), new BigDecimal("2e-1")},
|
|
{new BigDecimal("100e-2"), new BigDecimal("5"), new BigDecimal("20e-2")},
|
|
{new BigDecimal("1"), new BigDecimal("32"), new BigDecimal("3125e-5")},
|
|
{new BigDecimal("1"), new BigDecimal("64"), new BigDecimal("15625e-6")},
|
|
{new BigDecimal("1.0000000"), new BigDecimal("64"), new BigDecimal("156250e-7")},
|
|
};
|
|
|
|
|
|
for(BigDecimal[] tc : testCases) {
|
|
BigDecimal quotient;
|
|
if (! (quotient = tc[0].divide(tc[1])).equals(tc[2]) ) {
|
|
failures++;
|
|
System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
|
|
"; expected " + tc[2] + " got " + quotient);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static int trailingZeroTests() {
|
|
int failures = 0;
|
|
|
|
MathContext mc = new MathContext(3, RoundingMode.FLOOR);
|
|
BigDecimal[][] testCases = {
|
|
{new BigDecimal("19"), new BigDecimal("100"), new BigDecimal("0.19")},
|
|
{new BigDecimal("21"), new BigDecimal("110"), new BigDecimal("0.190")},
|
|
};
|
|
|
|
for(BigDecimal[] tc : testCases) {
|
|
BigDecimal quotient;
|
|
if (! (quotient = tc[0].divide(tc[1], mc)).equals(tc[2]) ) {
|
|
failures++;
|
|
System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
|
|
"; expected " + tc[2] + " got " + quotient);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static int scaledRoundedDivideTests() {
|
|
int failures = 0;
|
|
// Tests of the traditional scaled divide under different
|
|
// rounding modes.
|
|
|
|
// Encode rounding mode and scale for the divide in a
|
|
// BigDecimal with the significand equal to the rounding mode
|
|
// and the scale equal to the number's scale.
|
|
|
|
// {dividend, dividisor, rounding, quotient}
|
|
BigDecimal a = new BigDecimal("31415");
|
|
BigDecimal a_minus = a.negate();
|
|
BigDecimal b = new BigDecimal("10000");
|
|
|
|
BigDecimal c = new BigDecimal("31425");
|
|
BigDecimal c_minus = c.negate();
|
|
|
|
BigDecimal[][] testCases = {
|
|
{a, b, BigDecimal.valueOf(ROUND_UP, 3), new BigDecimal("3.142")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_UP, 3), new BigDecimal("-3.142")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("3.141")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("-3.141")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_CEILING, 3), new BigDecimal("3.142")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_CEILING, 3), new BigDecimal("-3.141")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_FLOOR, 3), new BigDecimal("3.141")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_FLOOR, 3), new BigDecimal("-3.142")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_HALF_UP, 3), new BigDecimal("3.142")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_HALF_UP, 3), new BigDecimal("-3.142")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("3.141")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("-3.141")},
|
|
|
|
{a, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
|
|
{a_minus, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},
|
|
|
|
{c, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
|
|
{c_minus, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},
|
|
};
|
|
|
|
for(BigDecimal tc[] : testCases) {
|
|
int scale = tc[2].scale();
|
|
int rm = tc[2].unscaledValue().intValue();
|
|
|
|
BigDecimal quotient = tc[0].divide(tc[1], scale, rm);
|
|
if (!quotient.equals(tc[3])) {
|
|
failures++;
|
|
System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
|
|
" scale " + scale + " rounding mode " + RoundingMode.valueOf(rm) +
|
|
"; expected " + tc[3] + " got " + quotient);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
public static void main(String argv[]) {
|
|
int failures = 0;
|
|
|
|
failures += powersOf2and5();
|
|
failures += nonTerminating();
|
|
failures += properScaleTests();
|
|
failures += trailingZeroTests();
|
|
failures += scaledRoundedDivideTests();
|
|
|
|
if (failures > 0) {
|
|
throw new RuntimeException("Incurred " + failures +
|
|
" failures while testing exact divide.");
|
|
}
|
|
}
|
|
}
|