d444e55969
Reviewed-by: sjohanss, stefank
311 lines
12 KiB
C++
311 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/g1/g1AllocRegion.inline.hpp"
|
|
#include "gc/g1/g1EvacStats.inline.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/orderAccess.inline.hpp"
|
|
|
|
G1CollectedHeap* G1AllocRegion::_g1h = NULL;
|
|
HeapRegion* G1AllocRegion::_dummy_region = NULL;
|
|
|
|
void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
|
|
assert(_dummy_region == NULL, "should be set once");
|
|
assert(dummy_region != NULL, "pre-condition");
|
|
assert(dummy_region->free() == 0, "pre-condition");
|
|
|
|
// Make sure that any allocation attempt on this region will fail
|
|
// and will not trigger any asserts.
|
|
assert(allocate(dummy_region, 1, false) == NULL, "should fail");
|
|
assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
|
|
assert(allocate(dummy_region, 1, true) == NULL, "should fail");
|
|
assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");
|
|
|
|
_g1h = g1h;
|
|
_dummy_region = dummy_region;
|
|
}
|
|
|
|
size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
|
|
bool bot_updates) {
|
|
assert(alloc_region != NULL && alloc_region != _dummy_region,
|
|
"pre-condition");
|
|
size_t result = 0;
|
|
|
|
// Other threads might still be trying to allocate using a CAS out
|
|
// of the region we are trying to retire, as they can do so without
|
|
// holding the lock. So, we first have to make sure that noone else
|
|
// can allocate out of it by doing a maximal allocation. Even if our
|
|
// CAS attempt fails a few times, we'll succeed sooner or later
|
|
// given that failed CAS attempts mean that the region is getting
|
|
// closed to being full.
|
|
size_t free_word_size = alloc_region->free() / HeapWordSize;
|
|
|
|
// This is the minimum free chunk we can turn into a dummy
|
|
// object. If the free space falls below this, then noone can
|
|
// allocate in this region anyway (all allocation requests will be
|
|
// of a size larger than this) so we won't have to perform the dummy
|
|
// allocation.
|
|
size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
|
|
|
|
while (free_word_size >= min_word_size_to_fill) {
|
|
HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
|
|
if (dummy != NULL) {
|
|
// If the allocation was successful we should fill in the space.
|
|
CollectedHeap::fill_with_object(dummy, free_word_size);
|
|
alloc_region->set_pre_dummy_top(dummy);
|
|
result += free_word_size * HeapWordSize;
|
|
break;
|
|
}
|
|
|
|
free_word_size = alloc_region->free() / HeapWordSize;
|
|
// It's also possible that someone else beats us to the
|
|
// allocation and they fill up the region. In that case, we can
|
|
// just get out of the loop.
|
|
}
|
|
result += alloc_region->free();
|
|
|
|
assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
|
|
"post-condition");
|
|
return result;
|
|
}
|
|
|
|
size_t G1AllocRegion::retire(bool fill_up) {
|
|
assert_alloc_region(_alloc_region != NULL, "not initialized properly");
|
|
|
|
size_t result = 0;
|
|
|
|
trace("retiring");
|
|
HeapRegion* alloc_region = _alloc_region;
|
|
if (alloc_region != _dummy_region) {
|
|
// We never have to check whether the active region is empty or not,
|
|
// and potentially free it if it is, given that it's guaranteed that
|
|
// it will never be empty.
|
|
assert_alloc_region(!alloc_region->is_empty(),
|
|
"the alloc region should never be empty");
|
|
|
|
if (fill_up) {
|
|
result = fill_up_remaining_space(alloc_region, _bot_updates);
|
|
}
|
|
|
|
assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant");
|
|
size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
|
|
retire_region(alloc_region, allocated_bytes);
|
|
_used_bytes_before = 0;
|
|
_alloc_region = _dummy_region;
|
|
}
|
|
trace("retired");
|
|
|
|
return result;
|
|
}
|
|
|
|
HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
|
|
bool force) {
|
|
assert_alloc_region(_alloc_region == _dummy_region, "pre-condition");
|
|
assert_alloc_region(_used_bytes_before == 0, "pre-condition");
|
|
|
|
trace("attempting region allocation");
|
|
HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
|
|
if (new_alloc_region != NULL) {
|
|
new_alloc_region->reset_pre_dummy_top();
|
|
// Need to do this before the allocation
|
|
_used_bytes_before = new_alloc_region->used();
|
|
HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
|
|
assert_alloc_region(result != NULL, "the allocation should succeeded");
|
|
|
|
OrderAccess::storestore();
|
|
// Note that we first perform the allocation and then we store the
|
|
// region in _alloc_region. This is the reason why an active region
|
|
// can never be empty.
|
|
update_alloc_region(new_alloc_region);
|
|
trace("region allocation successful");
|
|
return result;
|
|
} else {
|
|
trace("region allocation failed");
|
|
return NULL;
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
void G1AllocRegion::init() {
|
|
trace("initializing");
|
|
assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition");
|
|
assert_alloc_region(_dummy_region != NULL, "should have been set");
|
|
_alloc_region = _dummy_region;
|
|
_count = 0;
|
|
trace("initialized");
|
|
}
|
|
|
|
void G1AllocRegion::set(HeapRegion* alloc_region) {
|
|
trace("setting");
|
|
// We explicitly check that the region is not empty to make sure we
|
|
// maintain the "the alloc region cannot be empty" invariant.
|
|
assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
|
|
assert_alloc_region(_alloc_region == _dummy_region &&
|
|
_used_bytes_before == 0 && _count == 0,
|
|
"pre-condition");
|
|
|
|
_used_bytes_before = alloc_region->used();
|
|
_alloc_region = alloc_region;
|
|
_count += 1;
|
|
trace("set");
|
|
}
|
|
|
|
void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
|
|
trace("update");
|
|
// We explicitly check that the region is not empty to make sure we
|
|
// maintain the "the alloc region cannot be empty" invariant.
|
|
assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
|
|
|
|
_alloc_region = alloc_region;
|
|
_alloc_region->set_allocation_context(allocation_context());
|
|
_count += 1;
|
|
trace("updated");
|
|
}
|
|
|
|
HeapRegion* G1AllocRegion::release() {
|
|
trace("releasing");
|
|
HeapRegion* alloc_region = _alloc_region;
|
|
retire(false /* fill_up */);
|
|
assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()");
|
|
_alloc_region = NULL;
|
|
trace("released");
|
|
return (alloc_region == _dummy_region) ? NULL : alloc_region;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) {
|
|
// All the calls to trace that set either just the size or the size
|
|
// and the result are considered part of detailed tracing and are
|
|
// skipped during other tracing.
|
|
|
|
LogHandle(gc, alloc, region) log;
|
|
|
|
if (!log.is_debug()) {
|
|
return;
|
|
}
|
|
|
|
bool detailed_info = log.is_trace();
|
|
|
|
if ((actual_word_size == 0 && result == NULL) || detailed_info) {
|
|
ResourceMark rm;
|
|
outputStream* out;
|
|
if (detailed_info) {
|
|
out = log.trace_stream();
|
|
} else {
|
|
out = log.debug_stream();
|
|
}
|
|
|
|
out->print("%s: %u ", _name, _count);
|
|
|
|
if (_alloc_region == NULL) {
|
|
out->print("NULL");
|
|
} else if (_alloc_region == _dummy_region) {
|
|
out->print("DUMMY");
|
|
} else {
|
|
out->print(HR_FORMAT, HR_FORMAT_PARAMS(_alloc_region));
|
|
}
|
|
|
|
out->print(" : %s", str);
|
|
|
|
if (detailed_info) {
|
|
if (result != NULL) {
|
|
out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT,
|
|
min_word_size, desired_word_size, actual_word_size, p2i(result));
|
|
} else if (min_word_size != 0) {
|
|
out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size);
|
|
}
|
|
}
|
|
out->cr();
|
|
}
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
G1AllocRegion::G1AllocRegion(const char* name,
|
|
bool bot_updates)
|
|
: _name(name), _bot_updates(bot_updates),
|
|
_alloc_region(NULL), _count(0), _used_bytes_before(0),
|
|
_allocation_context(AllocationContext::system()) { }
|
|
|
|
|
|
HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
|
|
bool force) {
|
|
return _g1h->new_mutator_alloc_region(word_size, force);
|
|
}
|
|
|
|
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes) {
|
|
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
|
|
}
|
|
|
|
HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size,
|
|
bool force) {
|
|
assert(!force, "not supported for GC alloc regions");
|
|
return _g1h->new_gc_alloc_region(word_size, _purpose);
|
|
}
|
|
|
|
void G1GCAllocRegion::retire_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes) {
|
|
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose);
|
|
}
|
|
|
|
size_t G1GCAllocRegion::retire(bool fill_up) {
|
|
HeapRegion* retired = get();
|
|
size_t end_waste = G1AllocRegion::retire(fill_up);
|
|
// Do not count retirement of the dummy allocation region.
|
|
if (retired != NULL) {
|
|
_stats->add_region_end_waste(end_waste / HeapWordSize);
|
|
}
|
|
return end_waste;
|
|
}
|
|
|
|
HeapRegion* OldGCAllocRegion::release() {
|
|
HeapRegion* cur = get();
|
|
if (cur != NULL) {
|
|
// Determine how far we are from the next card boundary. If it is smaller than
|
|
// the minimum object size we can allocate into, expand into the next card.
|
|
HeapWord* top = cur->top();
|
|
HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, BOTConstants::N_bytes);
|
|
|
|
size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
|
|
|
|
if (to_allocate_words != 0) {
|
|
// We are not at a card boundary. Fill up, possibly into the next, taking the
|
|
// end of the region and the minimum object size into account.
|
|
to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
|
|
MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
|
|
|
|
// Skip allocation if there is not enough space to allocate even the smallest
|
|
// possible object. In this case this region will not be retained, so the
|
|
// original problem cannot occur.
|
|
if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
|
|
HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
|
|
CollectedHeap::fill_with_object(dummy, to_allocate_words);
|
|
}
|
|
}
|
|
}
|
|
return G1AllocRegion::release();
|
|
}
|