594 lines
22 KiB
C++
594 lines
22 KiB
C++
/*
|
|
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
# include "incls/_precompiled.incl"
|
|
# include "incls/_vframeArray.cpp.incl"
|
|
|
|
|
|
int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
|
|
|
|
void vframeArrayElement::free_monitors(JavaThread* jt) {
|
|
if (_monitors != NULL) {
|
|
MonitorChunk* chunk = _monitors;
|
|
_monitors = NULL;
|
|
jt->remove_monitor_chunk(chunk);
|
|
delete chunk;
|
|
}
|
|
}
|
|
|
|
void vframeArrayElement::fill_in(compiledVFrame* vf) {
|
|
|
|
// Copy the information from the compiled vframe to the
|
|
// interpreter frame we will be creating to replace vf
|
|
|
|
_method = vf->method();
|
|
_bci = vf->raw_bci();
|
|
_reexecute = vf->should_reexecute();
|
|
|
|
int index;
|
|
|
|
// Get the monitors off-stack
|
|
|
|
GrowableArray<MonitorInfo*>* list = vf->monitors();
|
|
if (list->is_empty()) {
|
|
_monitors = NULL;
|
|
} else {
|
|
|
|
// Allocate monitor chunk
|
|
_monitors = new MonitorChunk(list->length());
|
|
vf->thread()->add_monitor_chunk(_monitors);
|
|
|
|
// Migrate the BasicLocks from the stack to the monitor chunk
|
|
for (index = 0; index < list->length(); index++) {
|
|
MonitorInfo* monitor = list->at(index);
|
|
assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
|
|
assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
|
|
BasicObjectLock* dest = _monitors->at(index);
|
|
dest->set_obj(monitor->owner());
|
|
monitor->lock()->move_to(monitor->owner(), dest->lock());
|
|
}
|
|
}
|
|
|
|
// Convert the vframe locals and expressions to off stack
|
|
// values. Because we will not gc all oops can be converted to
|
|
// intptr_t (i.e. a stack slot) and we are fine. This is
|
|
// good since we are inside a HandleMark and the oops in our
|
|
// collection would go away between packing them here and
|
|
// unpacking them in unpack_on_stack.
|
|
|
|
// First the locals go off-stack
|
|
|
|
// FIXME this seems silly it creates a StackValueCollection
|
|
// in order to get the size to then copy them and
|
|
// convert the types to intptr_t size slots. Seems like it
|
|
// could do it in place... Still uses less memory than the
|
|
// old way though
|
|
|
|
StackValueCollection *locs = vf->locals();
|
|
_locals = new StackValueCollection(locs->size());
|
|
for(index = 0; index < locs->size(); index++) {
|
|
StackValue* value = locs->at(index);
|
|
switch(value->type()) {
|
|
case T_OBJECT:
|
|
assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
|
|
// preserve object type
|
|
_locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
|
|
break;
|
|
case T_CONFLICT:
|
|
// A dead local. Will be initialized to null/zero.
|
|
_locals->add( new StackValue());
|
|
break;
|
|
case T_INT:
|
|
_locals->add( new StackValue(value->get_int()));
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Now the expressions off-stack
|
|
// Same silliness as above
|
|
|
|
StackValueCollection *exprs = vf->expressions();
|
|
_expressions = new StackValueCollection(exprs->size());
|
|
for(index = 0; index < exprs->size(); index++) {
|
|
StackValue* value = exprs->at(index);
|
|
switch(value->type()) {
|
|
case T_OBJECT:
|
|
assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
|
|
// preserve object type
|
|
_expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
|
|
break;
|
|
case T_CONFLICT:
|
|
// A dead stack element. Will be initialized to null/zero.
|
|
// This can occur when the compiler emits a state in which stack
|
|
// elements are known to be dead (because of an imminent exception).
|
|
_expressions->add( new StackValue());
|
|
break;
|
|
case T_INT:
|
|
_expressions->add( new StackValue(value->get_int()));
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
|
|
int unpack_counter = 0;
|
|
|
|
void vframeArrayElement::unpack_on_stack(int callee_parameters,
|
|
int callee_locals,
|
|
frame* caller,
|
|
bool is_top_frame,
|
|
int exec_mode) {
|
|
JavaThread* thread = (JavaThread*) Thread::current();
|
|
|
|
// Look at bci and decide on bcp and continuation pc
|
|
address bcp;
|
|
// C++ interpreter doesn't need a pc since it will figure out what to do when it
|
|
// begins execution
|
|
address pc;
|
|
bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
|
|
// rather than the one associated with bcp
|
|
if (raw_bci() == SynchronizationEntryBCI) {
|
|
// We are deoptimizing while hanging in prologue code for synchronized method
|
|
bcp = method()->bcp_from(0); // first byte code
|
|
pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
|
|
} else if (should_reexecute()) { //reexecute this bytecode
|
|
assert(is_top_frame, "reexecute allowed only for the top frame");
|
|
bcp = method()->bcp_from(bci());
|
|
pc = Interpreter::deopt_reexecute_entry(method(), bcp);
|
|
} else {
|
|
bcp = method()->bcp_from(bci());
|
|
pc = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
|
|
use_next_mdp = true;
|
|
}
|
|
assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
|
|
|
|
// Monitorenter and pending exceptions:
|
|
//
|
|
// For Compiler2, there should be no pending exception when deoptimizing at monitorenter
|
|
// because there is no safepoint at the null pointer check (it is either handled explicitly
|
|
// or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
|
|
// runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous
|
|
// exception was processed, the bytecode pointer would have to be extended one bytecode beyond
|
|
// the monitorenter to place it in the proper exception range.
|
|
//
|
|
// For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
|
|
// in which case bcp should point to the monitorenter since it is within the exception's range.
|
|
|
|
assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
|
|
// TIERED Must know the compiler of the deoptee QQQ
|
|
COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
|
|
"shouldn't get exception during monitorenter");)
|
|
|
|
int popframe_preserved_args_size_in_bytes = 0;
|
|
int popframe_preserved_args_size_in_words = 0;
|
|
if (is_top_frame) {
|
|
JvmtiThreadState *state = thread->jvmti_thread_state();
|
|
if (JvmtiExport::can_pop_frame() &&
|
|
(thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
|
|
if (thread->has_pending_popframe()) {
|
|
// Pop top frame after deoptimization
|
|
#ifndef CC_INTERP
|
|
pc = Interpreter::remove_activation_preserving_args_entry();
|
|
#else
|
|
// Do an uncommon trap type entry. c++ interpreter will know
|
|
// to pop frame and preserve the args
|
|
pc = Interpreter::deopt_entry(vtos, 0);
|
|
use_next_mdp = false;
|
|
#endif
|
|
} else {
|
|
// Reexecute invoke in top frame
|
|
pc = Interpreter::deopt_entry(vtos, 0);
|
|
use_next_mdp = false;
|
|
popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
|
|
// Note: the PopFrame-related extension of the expression stack size is done in
|
|
// Deoptimization::fetch_unroll_info_helper
|
|
popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
|
|
}
|
|
} else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
|
|
// Force early return from top frame after deoptimization
|
|
#ifndef CC_INTERP
|
|
pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
|
|
#else
|
|
// TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
|
|
#endif
|
|
} else {
|
|
// Possibly override the previous pc computation of the top (youngest) frame
|
|
switch (exec_mode) {
|
|
case Deoptimization::Unpack_deopt:
|
|
// use what we've got
|
|
break;
|
|
case Deoptimization::Unpack_exception:
|
|
// exception is pending
|
|
pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
|
|
// [phh] We're going to end up in some handler or other, so it doesn't
|
|
// matter what mdp we point to. See exception_handler_for_exception()
|
|
// in interpreterRuntime.cpp.
|
|
break;
|
|
case Deoptimization::Unpack_uncommon_trap:
|
|
case Deoptimization::Unpack_reexecute:
|
|
// redo last byte code
|
|
pc = Interpreter::deopt_entry(vtos, 0);
|
|
use_next_mdp = false;
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Setup the interpreter frame
|
|
|
|
assert(method() != NULL, "method must exist");
|
|
int temps = expressions()->size();
|
|
|
|
int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
|
|
|
|
Interpreter::layout_activation(method(),
|
|
temps + callee_parameters,
|
|
popframe_preserved_args_size_in_words,
|
|
locks,
|
|
callee_parameters,
|
|
callee_locals,
|
|
caller,
|
|
iframe(),
|
|
is_top_frame);
|
|
|
|
// Update the pc in the frame object and overwrite the temporary pc
|
|
// we placed in the skeletal frame now that we finally know the
|
|
// exact interpreter address we should use.
|
|
|
|
_frame.patch_pc(thread, pc);
|
|
|
|
assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
|
|
|
|
BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
|
|
for (int index = 0; index < locks; index++) {
|
|
top = iframe()->previous_monitor_in_interpreter_frame(top);
|
|
BasicObjectLock* src = _monitors->at(index);
|
|
top->set_obj(src->obj());
|
|
src->lock()->move_to(src->obj(), top->lock());
|
|
}
|
|
if (ProfileInterpreter) {
|
|
iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
|
|
}
|
|
iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
|
|
if (ProfileInterpreter) {
|
|
methodDataOop mdo = method()->method_data();
|
|
if (mdo != NULL) {
|
|
int bci = iframe()->interpreter_frame_bci();
|
|
if (use_next_mdp) ++bci;
|
|
address mdp = mdo->bci_to_dp(bci);
|
|
iframe()->interpreter_frame_set_mdp(mdp);
|
|
}
|
|
}
|
|
|
|
// Unpack expression stack
|
|
// If this is an intermediate frame (i.e. not top frame) then this
|
|
// only unpacks the part of the expression stack not used by callee
|
|
// as parameters. The callee parameters are unpacked as part of the
|
|
// callee locals.
|
|
int i;
|
|
for(i = 0; i < expressions()->size(); i++) {
|
|
StackValue *value = expressions()->at(i);
|
|
intptr_t* addr = iframe()->interpreter_frame_expression_stack_at(i);
|
|
switch(value->type()) {
|
|
case T_INT:
|
|
*addr = value->get_int();
|
|
break;
|
|
case T_OBJECT:
|
|
*addr = value->get_int(T_OBJECT);
|
|
break;
|
|
case T_CONFLICT:
|
|
// A dead stack slot. Initialize to null in case it is an oop.
|
|
*addr = NULL_WORD;
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
if (TaggedStackInterpreter) {
|
|
// Write tag to the stack
|
|
iframe()->interpreter_frame_set_expression_stack_tag(i,
|
|
frame::tag_for_basic_type(value->type()));
|
|
}
|
|
}
|
|
|
|
|
|
// Unpack the locals
|
|
for(i = 0; i < locals()->size(); i++) {
|
|
StackValue *value = locals()->at(i);
|
|
intptr_t* addr = iframe()->interpreter_frame_local_at(i);
|
|
switch(value->type()) {
|
|
case T_INT:
|
|
*addr = value->get_int();
|
|
break;
|
|
case T_OBJECT:
|
|
*addr = value->get_int(T_OBJECT);
|
|
break;
|
|
case T_CONFLICT:
|
|
// A dead location. If it is an oop then we need a NULL to prevent GC from following it
|
|
*addr = NULL_WORD;
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
if (TaggedStackInterpreter) {
|
|
// Write tag to stack
|
|
iframe()->interpreter_frame_set_local_tag(i,
|
|
frame::tag_for_basic_type(value->type()));
|
|
}
|
|
}
|
|
|
|
if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
|
|
// An interpreted frame was popped but it returns to a deoptimized
|
|
// frame. The incoming arguments to the interpreted activation
|
|
// were preserved in thread-local storage by the
|
|
// remove_activation_preserving_args_entry in the interpreter; now
|
|
// we put them back into the just-unpacked interpreter frame.
|
|
// Note that this assumes that the locals arena grows toward lower
|
|
// addresses.
|
|
if (popframe_preserved_args_size_in_words != 0) {
|
|
void* saved_args = thread->popframe_preserved_args();
|
|
assert(saved_args != NULL, "must have been saved by interpreter");
|
|
#ifdef ASSERT
|
|
int stack_words = Interpreter::stackElementWords();
|
|
assert(popframe_preserved_args_size_in_words <=
|
|
iframe()->interpreter_frame_expression_stack_size()*stack_words,
|
|
"expression stack size should have been extended");
|
|
#endif // ASSERT
|
|
int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
|
|
intptr_t* base;
|
|
if (frame::interpreter_frame_expression_stack_direction() < 0) {
|
|
base = iframe()->interpreter_frame_expression_stack_at(top_element);
|
|
} else {
|
|
base = iframe()->interpreter_frame_expression_stack();
|
|
}
|
|
Copy::conjoint_bytes(saved_args,
|
|
base,
|
|
popframe_preserved_args_size_in_bytes);
|
|
thread->popframe_free_preserved_args();
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (TraceDeoptimization && Verbose) {
|
|
ttyLocker ttyl;
|
|
tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
|
|
iframe()->print_on(tty);
|
|
RegisterMap map(thread);
|
|
vframe* f = vframe::new_vframe(iframe(), &map, thread);
|
|
f->print();
|
|
iframe()->interpreter_frame_print_on(tty);
|
|
|
|
tty->print_cr("locals size %d", locals()->size());
|
|
tty->print_cr("expression size %d", expressions()->size());
|
|
|
|
method()->print_value();
|
|
tty->cr();
|
|
// method()->print_codes();
|
|
} else if (TraceDeoptimization) {
|
|
tty->print(" ");
|
|
method()->print_value();
|
|
Bytecodes::Code code = Bytecodes::java_code_at(bcp);
|
|
int bci = method()->bci_from(bcp);
|
|
tty->print(" - %s", Bytecodes::name(code));
|
|
tty->print(" @ bci %d ", bci);
|
|
tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
// The expression stack and locals are in the resource area don't leave
|
|
// a dangling pointer in the vframeArray we leave around for debug
|
|
// purposes
|
|
|
|
_locals = _expressions = NULL;
|
|
|
|
}
|
|
|
|
int vframeArrayElement::on_stack_size(int callee_parameters,
|
|
int callee_locals,
|
|
bool is_top_frame,
|
|
int popframe_extra_stack_expression_els) const {
|
|
assert(method()->max_locals() == locals()->size(), "just checking");
|
|
int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
|
|
int temps = expressions()->size();
|
|
return Interpreter::size_activation(method(),
|
|
temps + callee_parameters,
|
|
popframe_extra_stack_expression_els,
|
|
locks,
|
|
callee_parameters,
|
|
callee_locals,
|
|
is_top_frame);
|
|
}
|
|
|
|
|
|
|
|
vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
|
|
RegisterMap *reg_map, frame sender, frame caller, frame self) {
|
|
|
|
// Allocate the vframeArray
|
|
vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
|
|
sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
|
|
"vframeArray::allocate");
|
|
result->_frames = chunk->length();
|
|
result->_owner_thread = thread;
|
|
result->_sender = sender;
|
|
result->_caller = caller;
|
|
result->_original = self;
|
|
result->set_unroll_block(NULL); // initialize it
|
|
result->fill_in(thread, frame_size, chunk, reg_map);
|
|
return result;
|
|
}
|
|
|
|
void vframeArray::fill_in(JavaThread* thread,
|
|
int frame_size,
|
|
GrowableArray<compiledVFrame*>* chunk,
|
|
const RegisterMap *reg_map) {
|
|
// Set owner first, it is used when adding monitor chunks
|
|
|
|
_frame_size = frame_size;
|
|
for(int i = 0; i < chunk->length(); i++) {
|
|
element(i)->fill_in(chunk->at(i));
|
|
}
|
|
|
|
// Copy registers for callee-saved registers
|
|
if (reg_map != NULL) {
|
|
for(int i = 0; i < RegisterMap::reg_count; i++) {
|
|
#ifdef AMD64
|
|
// The register map has one entry for every int (32-bit value), so
|
|
// 64-bit physical registers have two entries in the map, one for
|
|
// each half. Ignore the high halves of 64-bit registers, just like
|
|
// frame::oopmapreg_to_location does.
|
|
//
|
|
// [phh] FIXME: this is a temporary hack! This code *should* work
|
|
// correctly w/o this hack, possibly by changing RegisterMap::pd_location
|
|
// in frame_amd64.cpp and the values of the phantom high half registers
|
|
// in amd64.ad.
|
|
// if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
|
|
intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
|
|
_callee_registers[i] = src != NULL ? *src : NULL_WORD;
|
|
// } else {
|
|
// jint* src = (jint*) reg_map->location(VMReg::Name(i));
|
|
// _callee_registers[i] = src != NULL ? *src : NULL_WORD;
|
|
// }
|
|
#else
|
|
jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
|
|
_callee_registers[i] = src != NULL ? *src : NULL_WORD;
|
|
#endif
|
|
if (src == NULL) {
|
|
set_location_valid(i, false);
|
|
} else {
|
|
set_location_valid(i, true);
|
|
jint* dst = (jint*) register_location(i);
|
|
*dst = *src;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
|
|
// stack picture
|
|
// unpack_frame
|
|
// [new interpreter frames ] (frames are skeletal but walkable)
|
|
// caller_frame
|
|
//
|
|
// This routine fills in the missing data for the skeletal interpreter frames
|
|
// in the above picture.
|
|
|
|
// Find the skeletal interpreter frames to unpack into
|
|
RegisterMap map(JavaThread::current(), false);
|
|
// Get the youngest frame we will unpack (last to be unpacked)
|
|
frame me = unpack_frame.sender(&map);
|
|
int index;
|
|
for (index = 0; index < frames(); index++ ) {
|
|
*element(index)->iframe() = me;
|
|
// Get the caller frame (possibly skeletal)
|
|
me = me.sender(&map);
|
|
}
|
|
|
|
frame caller_frame = me;
|
|
|
|
// Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
|
|
|
|
// Unpack the frames from the oldest (frames() -1) to the youngest (0)
|
|
|
|
for (index = frames() - 1; index >= 0 ; index--) {
|
|
int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
|
|
int callee_locals = index == 0 ? 0 : element(index-1)->method()->max_locals();
|
|
element(index)->unpack_on_stack(callee_parameters,
|
|
callee_locals,
|
|
&caller_frame,
|
|
index == 0,
|
|
exec_mode);
|
|
if (index == frames() - 1) {
|
|
Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
|
|
}
|
|
caller_frame = *element(index)->iframe();
|
|
}
|
|
|
|
|
|
deallocate_monitor_chunks();
|
|
}
|
|
|
|
void vframeArray::deallocate_monitor_chunks() {
|
|
JavaThread* jt = JavaThread::current();
|
|
for (int index = 0; index < frames(); index++ ) {
|
|
element(index)->free_monitors(jt);
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
|
|
if (owner_thread() != thread) return false;
|
|
int index = 0;
|
|
#if 0 // FIXME can't do this comparison
|
|
|
|
// Compare only within vframe array.
|
|
for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
|
|
if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
|
|
index++;
|
|
}
|
|
if (index != chunk->length()) return false;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
address vframeArray::register_location(int i) const {
|
|
assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
|
|
return (address) & _callee_registers[i];
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Printing
|
|
|
|
// Note: we cannot have print_on as const, as we allocate inside the method
|
|
void vframeArray::print_on_2(outputStream* st) {
|
|
st->print_cr(" - sp: " INTPTR_FORMAT, sp());
|
|
st->print(" - thread: ");
|
|
Thread::current()->print();
|
|
st->print_cr(" - frame size: %d", frame_size());
|
|
for (int index = 0; index < frames() ; index++ ) {
|
|
element(index)->print(st);
|
|
}
|
|
}
|
|
|
|
void vframeArrayElement::print(outputStream* st) {
|
|
st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
|
|
}
|
|
|
|
void vframeArray::print_value_on(outputStream* st) const {
|
|
st->print_cr("vframeArray [%d] ", frames());
|
|
}
|
|
|
|
|
|
#endif
|