3523 lines
133 KiB
C++
3523 lines
133 KiB
C++
/*
|
|
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "ci/bcEscapeAnalyzer.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/c2compiler.hpp"
|
|
#include "opto/arraycopynode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/escape.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/movenode.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
|
|
ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
|
|
_nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
|
|
_in_worklist(C->comp_arena()),
|
|
_next_pidx(0),
|
|
_collecting(true),
|
|
_verify(false),
|
|
_compile(C),
|
|
_igvn(igvn),
|
|
_node_map(C->comp_arena()) {
|
|
// Add unknown java object.
|
|
add_java_object(C->top(), PointsToNode::GlobalEscape);
|
|
phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
|
|
// Add ConP(#NULL) and ConN(#NULL) nodes.
|
|
Node* oop_null = igvn->zerocon(T_OBJECT);
|
|
assert(oop_null->_idx < nodes_size(), "should be created already");
|
|
add_java_object(oop_null, PointsToNode::NoEscape);
|
|
null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
|
|
if (UseCompressedOops) {
|
|
Node* noop_null = igvn->zerocon(T_NARROWOOP);
|
|
assert(noop_null->_idx < nodes_size(), "should be created already");
|
|
map_ideal_node(noop_null, null_obj);
|
|
}
|
|
_pcmp_neq = NULL; // Should be initialized
|
|
_pcmp_eq = NULL;
|
|
}
|
|
|
|
bool ConnectionGraph::has_candidates(Compile *C) {
|
|
// EA brings benefits only when the code has allocations and/or locks which
|
|
// are represented by ideal Macro nodes.
|
|
int cnt = C->macro_count();
|
|
for (int i = 0; i < cnt; i++) {
|
|
Node *n = C->macro_node(i);
|
|
if (n->is_Allocate())
|
|
return true;
|
|
if (n->is_Lock()) {
|
|
Node* obj = n->as_Lock()->obj_node()->uncast();
|
|
if (!(obj->is_Parm() || obj->is_Con()))
|
|
return true;
|
|
}
|
|
if (n->is_CallStaticJava() &&
|
|
n->as_CallStaticJava()->is_boxing_method()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
|
|
Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
|
|
ResourceMark rm;
|
|
|
|
// Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
|
|
// to create space for them in ConnectionGraph::_nodes[].
|
|
Node* oop_null = igvn->zerocon(T_OBJECT);
|
|
Node* noop_null = igvn->zerocon(T_NARROWOOP);
|
|
ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
|
|
// Perform escape analysis
|
|
if (congraph->compute_escape()) {
|
|
// There are non escaping objects.
|
|
C->set_congraph(congraph);
|
|
}
|
|
// Cleanup.
|
|
if (oop_null->outcnt() == 0)
|
|
igvn->hash_delete(oop_null);
|
|
if (noop_null->outcnt() == 0)
|
|
igvn->hash_delete(noop_null);
|
|
}
|
|
|
|
bool ConnectionGraph::compute_escape() {
|
|
Compile* C = _compile;
|
|
PhaseGVN* igvn = _igvn;
|
|
|
|
// Worklists used by EA.
|
|
Unique_Node_List delayed_worklist;
|
|
GrowableArray<Node*> alloc_worklist;
|
|
GrowableArray<Node*> ptr_cmp_worklist;
|
|
GrowableArray<Node*> storestore_worklist;
|
|
GrowableArray<ArrayCopyNode*> arraycopy_worklist;
|
|
GrowableArray<PointsToNode*> ptnodes_worklist;
|
|
GrowableArray<JavaObjectNode*> java_objects_worklist;
|
|
GrowableArray<JavaObjectNode*> non_escaped_worklist;
|
|
GrowableArray<FieldNode*> oop_fields_worklist;
|
|
DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
|
|
|
|
{ Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
|
|
|
|
// 1. Populate Connection Graph (CG) with PointsTo nodes.
|
|
ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
|
|
// Initialize worklist
|
|
if (C->root() != NULL) {
|
|
ideal_nodes.push(C->root());
|
|
}
|
|
// Processed ideal nodes are unique on ideal_nodes list
|
|
// but several ideal nodes are mapped to the phantom_obj.
|
|
// To avoid duplicated entries on the following worklists
|
|
// add the phantom_obj only once to them.
|
|
ptnodes_worklist.append(phantom_obj);
|
|
java_objects_worklist.append(phantom_obj);
|
|
for( uint next = 0; next < ideal_nodes.size(); ++next ) {
|
|
Node* n = ideal_nodes.at(next);
|
|
// Create PointsTo nodes and add them to Connection Graph. Called
|
|
// only once per ideal node since ideal_nodes is Unique_Node list.
|
|
add_node_to_connection_graph(n, &delayed_worklist);
|
|
PointsToNode* ptn = ptnode_adr(n->_idx);
|
|
if (ptn != NULL && ptn != phantom_obj) {
|
|
ptnodes_worklist.append(ptn);
|
|
if (ptn->is_JavaObject()) {
|
|
java_objects_worklist.append(ptn->as_JavaObject());
|
|
if ((n->is_Allocate() || n->is_CallStaticJava()) &&
|
|
(ptn->escape_state() < PointsToNode::GlobalEscape)) {
|
|
// Only allocations and java static calls results are interesting.
|
|
non_escaped_worklist.append(ptn->as_JavaObject());
|
|
}
|
|
} else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
|
|
oop_fields_worklist.append(ptn->as_Field());
|
|
}
|
|
}
|
|
if (n->is_MergeMem()) {
|
|
// Collect all MergeMem nodes to add memory slices for
|
|
// scalar replaceable objects in split_unique_types().
|
|
_mergemem_worklist.append(n->as_MergeMem());
|
|
} else if (OptimizePtrCompare && n->is_Cmp() &&
|
|
(n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
|
|
// Collect compare pointers nodes.
|
|
ptr_cmp_worklist.append(n);
|
|
} else if (n->is_MemBarStoreStore()) {
|
|
// Collect all MemBarStoreStore nodes so that depending on the
|
|
// escape status of the associated Allocate node some of them
|
|
// may be eliminated.
|
|
storestore_worklist.append(n);
|
|
} else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
|
|
(n->req() > MemBarNode::Precedent)) {
|
|
record_for_optimizer(n);
|
|
#ifdef ASSERT
|
|
} else if (n->is_AddP()) {
|
|
// Collect address nodes for graph verification.
|
|
addp_worklist.append(n);
|
|
#endif
|
|
} else if (n->is_ArrayCopy()) {
|
|
// Keep a list of ArrayCopy nodes so if one of its input is non
|
|
// escaping, we can record a unique type
|
|
arraycopy_worklist.append(n->as_ArrayCopy());
|
|
}
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* m = n->fast_out(i); // Get user
|
|
ideal_nodes.push(m);
|
|
}
|
|
}
|
|
if (non_escaped_worklist.length() == 0) {
|
|
_collecting = false;
|
|
return false; // Nothing to do.
|
|
}
|
|
// Add final simple edges to graph.
|
|
while(delayed_worklist.size() > 0) {
|
|
Node* n = delayed_worklist.pop();
|
|
add_final_edges(n);
|
|
}
|
|
int ptnodes_length = ptnodes_worklist.length();
|
|
|
|
#ifdef ASSERT
|
|
if (VerifyConnectionGraph) {
|
|
// Verify that no new simple edges could be created and all
|
|
// local vars has edges.
|
|
_verify = true;
|
|
for (int next = 0; next < ptnodes_length; ++next) {
|
|
PointsToNode* ptn = ptnodes_worklist.at(next);
|
|
add_final_edges(ptn->ideal_node());
|
|
if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
|
|
ptn->dump();
|
|
assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
|
|
}
|
|
}
|
|
_verify = false;
|
|
}
|
|
#endif
|
|
// Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
|
|
// processing, calls to CI to resolve symbols (types, fields, methods)
|
|
// referenced in bytecode. During symbol resolution VM may throw
|
|
// an exception which CI cleans and converts to compilation failure.
|
|
if (C->failing()) return false;
|
|
|
|
// 2. Finish Graph construction by propagating references to all
|
|
// java objects through graph.
|
|
if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
|
|
java_objects_worklist, oop_fields_worklist)) {
|
|
// All objects escaped or hit time or iterations limits.
|
|
_collecting = false;
|
|
return false;
|
|
}
|
|
|
|
// 3. Adjust scalar_replaceable state of nonescaping objects and push
|
|
// scalar replaceable allocations on alloc_worklist for processing
|
|
// in split_unique_types().
|
|
int non_escaped_length = non_escaped_worklist.length();
|
|
for (int next = 0; next < non_escaped_length; next++) {
|
|
JavaObjectNode* ptn = non_escaped_worklist.at(next);
|
|
bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
|
|
Node* n = ptn->ideal_node();
|
|
if (n->is_Allocate()) {
|
|
n->as_Allocate()->_is_non_escaping = noescape;
|
|
}
|
|
if (n->is_CallStaticJava()) {
|
|
n->as_CallStaticJava()->_is_non_escaping = noescape;
|
|
}
|
|
if (noescape && ptn->scalar_replaceable()) {
|
|
adjust_scalar_replaceable_state(ptn);
|
|
if (ptn->scalar_replaceable()) {
|
|
alloc_worklist.append(ptn->ideal_node());
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (VerifyConnectionGraph) {
|
|
// Verify that graph is complete - no new edges could be added or needed.
|
|
verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
|
|
java_objects_worklist, addp_worklist);
|
|
}
|
|
assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
|
|
assert(null_obj->escape_state() == PointsToNode::NoEscape &&
|
|
null_obj->edge_count() == 0 &&
|
|
!null_obj->arraycopy_src() &&
|
|
!null_obj->arraycopy_dst(), "sanity");
|
|
#endif
|
|
|
|
_collecting = false;
|
|
|
|
} // TracePhase t3("connectionGraph")
|
|
|
|
// 4. Optimize ideal graph based on EA information.
|
|
bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
|
|
if (has_non_escaping_obj) {
|
|
optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEscapeAnalysis) {
|
|
dump(ptnodes_worklist); // Dump ConnectionGraph
|
|
}
|
|
#endif
|
|
|
|
bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
|
|
#ifdef ASSERT
|
|
if (VerifyConnectionGraph) {
|
|
int alloc_length = alloc_worklist.length();
|
|
for (int next = 0; next < alloc_length; ++next) {
|
|
Node* n = alloc_worklist.at(next);
|
|
PointsToNode* ptn = ptnode_adr(n->_idx);
|
|
assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// 5. Separate memory graph for scalar replaceable allcations.
|
|
if (has_scalar_replaceable_candidates &&
|
|
C->AliasLevel() >= 3 && EliminateAllocations) {
|
|
// Now use the escape information to create unique types for
|
|
// scalar replaceable objects.
|
|
split_unique_types(alloc_worklist, arraycopy_worklist);
|
|
if (C->failing()) return false;
|
|
C->print_method(PHASE_AFTER_EA, 2);
|
|
|
|
#ifdef ASSERT
|
|
} else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
|
|
tty->print("=== No allocations eliminated for ");
|
|
C->method()->print_short_name();
|
|
if(!EliminateAllocations) {
|
|
tty->print(" since EliminateAllocations is off ===");
|
|
} else if(!has_scalar_replaceable_candidates) {
|
|
tty->print(" since there are no scalar replaceable candidates ===");
|
|
} else if(C->AliasLevel() < 3) {
|
|
tty->print(" since AliasLevel < 3 ===");
|
|
}
|
|
tty->cr();
|
|
#endif
|
|
}
|
|
return has_non_escaping_obj;
|
|
}
|
|
|
|
// Utility function for nodes that load an object
|
|
void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
|
|
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
|
|
// ThreadLocal has RawPtr type.
|
|
const Type* t = _igvn->type(n);
|
|
if (t->make_ptr() != NULL) {
|
|
Node* adr = n->in(MemNode::Address);
|
|
#ifdef ASSERT
|
|
if (!adr->is_AddP()) {
|
|
assert(_igvn->type(adr)->isa_rawptr(), "sanity");
|
|
} else {
|
|
assert((ptnode_adr(adr->_idx) == NULL ||
|
|
ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
|
|
}
|
|
#endif
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape,
|
|
adr, delayed_worklist);
|
|
}
|
|
}
|
|
|
|
// Populate Connection Graph with PointsTo nodes and create simple
|
|
// connection graph edges.
|
|
void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
|
|
assert(!_verify, "this method should not be called for verification");
|
|
PhaseGVN* igvn = _igvn;
|
|
uint n_idx = n->_idx;
|
|
PointsToNode* n_ptn = ptnode_adr(n_idx);
|
|
if (n_ptn != NULL)
|
|
return; // No need to redefine PointsTo node during first iteration.
|
|
|
|
if (n->is_Call()) {
|
|
// Arguments to allocation and locking don't escape.
|
|
if (n->is_AbstractLock()) {
|
|
// Put Lock and Unlock nodes on IGVN worklist to process them during
|
|
// first IGVN optimization when escape information is still available.
|
|
record_for_optimizer(n);
|
|
} else if (n->is_Allocate()) {
|
|
add_call_node(n->as_Call());
|
|
record_for_optimizer(n);
|
|
} else {
|
|
if (n->is_CallStaticJava()) {
|
|
const char* name = n->as_CallStaticJava()->_name;
|
|
if (name != NULL && strcmp(name, "uncommon_trap") == 0)
|
|
return; // Skip uncommon traps
|
|
}
|
|
// Don't mark as processed since call's arguments have to be processed.
|
|
delayed_worklist->push(n);
|
|
// Check if a call returns an object.
|
|
if ((n->as_Call()->returns_pointer() &&
|
|
n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
|
|
(n->is_CallStaticJava() &&
|
|
n->as_CallStaticJava()->is_boxing_method())) {
|
|
add_call_node(n->as_Call());
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// Put this check here to process call arguments since some call nodes
|
|
// point to phantom_obj.
|
|
if (n_ptn == phantom_obj || n_ptn == null_obj)
|
|
return; // Skip predefined nodes.
|
|
|
|
int opcode = n->Opcode();
|
|
switch (opcode) {
|
|
case Op_AddP: {
|
|
Node* base = get_addp_base(n);
|
|
PointsToNode* ptn_base = ptnode_adr(base->_idx);
|
|
// Field nodes are created for all field types. They are used in
|
|
// adjust_scalar_replaceable_state() and split_unique_types().
|
|
// Note, non-oop fields will have only base edges in Connection
|
|
// Graph because such fields are not used for oop loads and stores.
|
|
int offset = address_offset(n, igvn);
|
|
add_field(n, PointsToNode::NoEscape, offset);
|
|
if (ptn_base == NULL) {
|
|
delayed_worklist->push(n); // Process it later.
|
|
} else {
|
|
n_ptn = ptnode_adr(n_idx);
|
|
add_base(n_ptn->as_Field(), ptn_base);
|
|
}
|
|
break;
|
|
}
|
|
case Op_CastX2P: {
|
|
map_ideal_node(n, phantom_obj);
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
case Op_CheckCastPP:
|
|
case Op_EncodeP:
|
|
case Op_DecodeN:
|
|
case Op_EncodePKlass:
|
|
case Op_DecodeNKlass: {
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape,
|
|
n->in(1), delayed_worklist);
|
|
break;
|
|
}
|
|
case Op_CMoveP: {
|
|
add_local_var(n, PointsToNode::NoEscape);
|
|
// Do not add edges during first iteration because some could be
|
|
// not defined yet.
|
|
delayed_worklist->push(n);
|
|
break;
|
|
}
|
|
case Op_ConP:
|
|
case Op_ConN:
|
|
case Op_ConNKlass: {
|
|
// assume all oop constants globally escape except for null
|
|
PointsToNode::EscapeState es;
|
|
const Type* t = igvn->type(n);
|
|
if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
|
|
es = PointsToNode::NoEscape;
|
|
} else {
|
|
es = PointsToNode::GlobalEscape;
|
|
}
|
|
add_java_object(n, es);
|
|
break;
|
|
}
|
|
case Op_CreateEx: {
|
|
// assume that all exception objects globally escape
|
|
map_ideal_node(n, phantom_obj);
|
|
break;
|
|
}
|
|
case Op_LoadKlass:
|
|
case Op_LoadNKlass: {
|
|
// Unknown class is loaded
|
|
map_ideal_node(n, phantom_obj);
|
|
break;
|
|
}
|
|
case Op_LoadP:
|
|
case Op_LoadN:
|
|
case Op_LoadPLocked: {
|
|
add_objload_to_connection_graph(n, delayed_worklist);
|
|
break;
|
|
}
|
|
case Op_Parm: {
|
|
map_ideal_node(n, phantom_obj);
|
|
break;
|
|
}
|
|
case Op_PartialSubtypeCheck: {
|
|
// Produces Null or notNull and is used in only in CmpP so
|
|
// phantom_obj could be used.
|
|
map_ideal_node(n, phantom_obj); // Result is unknown
|
|
break;
|
|
}
|
|
case Op_Phi: {
|
|
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
|
|
// ThreadLocal has RawPtr type.
|
|
const Type* t = n->as_Phi()->type();
|
|
if (t->make_ptr() != NULL) {
|
|
add_local_var(n, PointsToNode::NoEscape);
|
|
// Do not add edges during first iteration because some could be
|
|
// not defined yet.
|
|
delayed_worklist->push(n);
|
|
}
|
|
break;
|
|
}
|
|
case Op_Proj: {
|
|
// we are only interested in the oop result projection from a call
|
|
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
|
|
n->in(0)->as_Call()->returns_pointer()) {
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape,
|
|
n->in(0), delayed_worklist);
|
|
}
|
|
break;
|
|
}
|
|
case Op_Rethrow: // Exception object escapes
|
|
case Op_Return: {
|
|
if (n->req() > TypeFunc::Parms &&
|
|
igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
|
|
// Treat Return value as LocalVar with GlobalEscape escape state.
|
|
add_local_var_and_edge(n, PointsToNode::GlobalEscape,
|
|
n->in(TypeFunc::Parms), delayed_worklist);
|
|
}
|
|
break;
|
|
}
|
|
case Op_CompareAndExchangeP:
|
|
case Op_CompareAndExchangeN:
|
|
case Op_GetAndSetP:
|
|
case Op_GetAndSetN: {
|
|
add_objload_to_connection_graph(n, delayed_worklist);
|
|
// fallthrough
|
|
}
|
|
case Op_StoreP:
|
|
case Op_StoreN:
|
|
case Op_StoreNKlass:
|
|
case Op_StorePConditional:
|
|
case Op_WeakCompareAndSwapP:
|
|
case Op_WeakCompareAndSwapN:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN: {
|
|
Node* adr = n->in(MemNode::Address);
|
|
const Type *adr_type = igvn->type(adr);
|
|
adr_type = adr_type->make_ptr();
|
|
if (adr_type == NULL) {
|
|
break; // skip dead nodes
|
|
}
|
|
if (adr_type->isa_oopptr() ||
|
|
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
|
|
(adr_type == TypeRawPtr::NOTNULL &&
|
|
adr->in(AddPNode::Address)->is_Proj() &&
|
|
adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
|
|
delayed_worklist->push(n); // Process it later.
|
|
#ifdef ASSERT
|
|
assert(adr->is_AddP(), "expecting an AddP");
|
|
if (adr_type == TypeRawPtr::NOTNULL) {
|
|
// Verify a raw address for a store captured by Initialize node.
|
|
int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot, "offset must be a constant");
|
|
}
|
|
#endif
|
|
} else {
|
|
// Ignore copy the displaced header to the BoxNode (OSR compilation).
|
|
if (adr->is_BoxLock())
|
|
break;
|
|
// Stored value escapes in unsafe access.
|
|
if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
|
|
// Pointer stores in G1 barriers looks like unsafe access.
|
|
// Ignore such stores to be able scalar replace non-escaping
|
|
// allocations.
|
|
if (UseG1GC && adr->is_AddP()) {
|
|
Node* base = get_addp_base(adr);
|
|
if (base->Opcode() == Op_LoadP &&
|
|
base->in(MemNode::Address)->is_AddP()) {
|
|
adr = base->in(MemNode::Address);
|
|
Node* tls = get_addp_base(adr);
|
|
if (tls->Opcode() == Op_ThreadLocal) {
|
|
int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
|
|
SATBMarkQueue::byte_offset_of_buf())) {
|
|
break; // G1 pre barrier previous oop value store.
|
|
}
|
|
if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
|
|
DirtyCardQueue::byte_offset_of_buf())) {
|
|
break; // G1 post barrier card address store.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
delayed_worklist->push(n); // Process unsafe access later.
|
|
break;
|
|
}
|
|
#ifdef ASSERT
|
|
n->dump(1);
|
|
assert(false, "not unsafe or G1 barrier raw StoreP");
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
case Op_AryEq:
|
|
case Op_HasNegatives:
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_StrIndexOfChar:
|
|
case Op_StrInflatedCopy:
|
|
case Op_StrCompressedCopy:
|
|
case Op_EncodeISOArray: {
|
|
add_local_var(n, PointsToNode::ArgEscape);
|
|
delayed_worklist->push(n); // Process it later.
|
|
break;
|
|
}
|
|
case Op_ThreadLocal: {
|
|
add_java_object(n, PointsToNode::ArgEscape);
|
|
break;
|
|
}
|
|
default:
|
|
; // Do nothing for nodes not related to EA.
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
#define ELSE_FAIL(name) \
|
|
/* Should not be called for not pointer type. */ \
|
|
n->dump(1); \
|
|
assert(false, name); \
|
|
break;
|
|
#else
|
|
#define ELSE_FAIL(name) \
|
|
break;
|
|
#endif
|
|
|
|
// Add final simple edges to graph.
|
|
void ConnectionGraph::add_final_edges(Node *n) {
|
|
PointsToNode* n_ptn = ptnode_adr(n->_idx);
|
|
#ifdef ASSERT
|
|
if (_verify && n_ptn->is_JavaObject())
|
|
return; // This method does not change graph for JavaObject.
|
|
#endif
|
|
|
|
if (n->is_Call()) {
|
|
process_call_arguments(n->as_Call());
|
|
return;
|
|
}
|
|
assert(n->is_Store() || n->is_LoadStore() ||
|
|
(n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
|
|
"node should be registered already");
|
|
int opcode = n->Opcode();
|
|
switch (opcode) {
|
|
case Op_AddP: {
|
|
Node* base = get_addp_base(n);
|
|
PointsToNode* ptn_base = ptnode_adr(base->_idx);
|
|
assert(ptn_base != NULL, "field's base should be registered");
|
|
add_base(n_ptn->as_Field(), ptn_base);
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
case Op_CheckCastPP:
|
|
case Op_EncodeP:
|
|
case Op_DecodeN:
|
|
case Op_EncodePKlass:
|
|
case Op_DecodeNKlass: {
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape,
|
|
n->in(1), NULL);
|
|
break;
|
|
}
|
|
case Op_CMoveP: {
|
|
for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL)
|
|
continue; // ignore NULL
|
|
Node* uncast_in = in->uncast();
|
|
if (uncast_in->is_top() || uncast_in == n)
|
|
continue; // ignore top or inputs which go back this node
|
|
PointsToNode* ptn = ptnode_adr(in->_idx);
|
|
assert(ptn != NULL, "node should be registered");
|
|
add_edge(n_ptn, ptn);
|
|
}
|
|
break;
|
|
}
|
|
case Op_LoadP:
|
|
case Op_LoadN:
|
|
case Op_LoadPLocked: {
|
|
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
|
|
// ThreadLocal has RawPtr type.
|
|
const Type* t = _igvn->type(n);
|
|
if (t->make_ptr() != NULL) {
|
|
Node* adr = n->in(MemNode::Address);
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
|
|
break;
|
|
}
|
|
ELSE_FAIL("Op_LoadP");
|
|
}
|
|
case Op_Phi: {
|
|
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
|
|
// ThreadLocal has RawPtr type.
|
|
const Type* t = n->as_Phi()->type();
|
|
if (t->make_ptr() != NULL) {
|
|
for (uint i = 1; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL)
|
|
continue; // ignore NULL
|
|
Node* uncast_in = in->uncast();
|
|
if (uncast_in->is_top() || uncast_in == n)
|
|
continue; // ignore top or inputs which go back this node
|
|
PointsToNode* ptn = ptnode_adr(in->_idx);
|
|
assert(ptn != NULL, "node should be registered");
|
|
add_edge(n_ptn, ptn);
|
|
}
|
|
break;
|
|
}
|
|
ELSE_FAIL("Op_Phi");
|
|
}
|
|
case Op_Proj: {
|
|
// we are only interested in the oop result projection from a call
|
|
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
|
|
n->in(0)->as_Call()->returns_pointer()) {
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
|
|
break;
|
|
}
|
|
ELSE_FAIL("Op_Proj");
|
|
}
|
|
case Op_Rethrow: // Exception object escapes
|
|
case Op_Return: {
|
|
if (n->req() > TypeFunc::Parms &&
|
|
_igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
|
|
// Treat Return value as LocalVar with GlobalEscape escape state.
|
|
add_local_var_and_edge(n, PointsToNode::GlobalEscape,
|
|
n->in(TypeFunc::Parms), NULL);
|
|
break;
|
|
}
|
|
ELSE_FAIL("Op_Return");
|
|
}
|
|
case Op_StoreP:
|
|
case Op_StoreN:
|
|
case Op_StoreNKlass:
|
|
case Op_StorePConditional:
|
|
case Op_CompareAndExchangeP:
|
|
case Op_CompareAndExchangeN:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN:
|
|
case Op_WeakCompareAndSwapP:
|
|
case Op_WeakCompareAndSwapN:
|
|
case Op_GetAndSetP:
|
|
case Op_GetAndSetN: {
|
|
Node* adr = n->in(MemNode::Address);
|
|
const Type *adr_type = _igvn->type(adr);
|
|
adr_type = adr_type->make_ptr();
|
|
#ifdef ASSERT
|
|
if (adr_type == NULL) {
|
|
n->dump(1);
|
|
assert(adr_type != NULL, "dead node should not be on list");
|
|
break;
|
|
}
|
|
#endif
|
|
if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
|
|
opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
|
|
add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
|
|
}
|
|
if (adr_type->isa_oopptr() ||
|
|
(opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
|
|
(adr_type == TypeRawPtr::NOTNULL &&
|
|
adr->in(AddPNode::Address)->is_Proj() &&
|
|
adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
|
|
// Point Address to Value
|
|
PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
|
|
assert(adr_ptn != NULL &&
|
|
adr_ptn->as_Field()->is_oop(), "node should be registered");
|
|
Node *val = n->in(MemNode::ValueIn);
|
|
PointsToNode* ptn = ptnode_adr(val->_idx);
|
|
assert(ptn != NULL, "node should be registered");
|
|
add_edge(adr_ptn, ptn);
|
|
break;
|
|
} else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
|
|
// Stored value escapes in unsafe access.
|
|
Node *val = n->in(MemNode::ValueIn);
|
|
PointsToNode* ptn = ptnode_adr(val->_idx);
|
|
assert(ptn != NULL, "node should be registered");
|
|
set_escape_state(ptn, PointsToNode::GlobalEscape);
|
|
// Add edge to object for unsafe access with offset.
|
|
PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
|
|
assert(adr_ptn != NULL, "node should be registered");
|
|
if (adr_ptn->is_Field()) {
|
|
assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
|
|
add_edge(adr_ptn, ptn);
|
|
}
|
|
break;
|
|
}
|
|
ELSE_FAIL("Op_StoreP");
|
|
}
|
|
case Op_AryEq:
|
|
case Op_HasNegatives:
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_StrIndexOfChar:
|
|
case Op_StrInflatedCopy:
|
|
case Op_StrCompressedCopy:
|
|
case Op_EncodeISOArray: {
|
|
// char[]/byte[] arrays passed to string intrinsic do not escape but
|
|
// they are not scalar replaceable. Adjust escape state for them.
|
|
// Start from in(2) edge since in(1) is memory edge.
|
|
for (uint i = 2; i < n->req(); i++) {
|
|
Node* adr = n->in(i);
|
|
const Type* at = _igvn->type(adr);
|
|
if (!adr->is_top() && at->isa_ptr()) {
|
|
assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
|
|
at->isa_ptr() != NULL, "expecting a pointer");
|
|
if (adr->is_AddP()) {
|
|
adr = get_addp_base(adr);
|
|
}
|
|
PointsToNode* ptn = ptnode_adr(adr->_idx);
|
|
assert(ptn != NULL, "node should be registered");
|
|
add_edge(n_ptn, ptn);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
// This method should be called only for EA specific nodes which may
|
|
// miss some edges when they were created.
|
|
#ifdef ASSERT
|
|
n->dump(1);
|
|
#endif
|
|
guarantee(false, "unknown node");
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void ConnectionGraph::add_call_node(CallNode* call) {
|
|
assert(call->returns_pointer(), "only for call which returns pointer");
|
|
uint call_idx = call->_idx;
|
|
if (call->is_Allocate()) {
|
|
Node* k = call->in(AllocateNode::KlassNode);
|
|
const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
|
|
assert(kt != NULL, "TypeKlassPtr required.");
|
|
ciKlass* cik = kt->klass();
|
|
PointsToNode::EscapeState es = PointsToNode::NoEscape;
|
|
bool scalar_replaceable = true;
|
|
if (call->is_AllocateArray()) {
|
|
if (!cik->is_array_klass()) { // StressReflectiveCode
|
|
es = PointsToNode::GlobalEscape;
|
|
} else {
|
|
int length = call->in(AllocateNode::ALength)->find_int_con(-1);
|
|
if (length < 0 || length > EliminateAllocationArraySizeLimit) {
|
|
// Not scalar replaceable if the length is not constant or too big.
|
|
scalar_replaceable = false;
|
|
}
|
|
}
|
|
} else { // Allocate instance
|
|
if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
|
|
cik->is_subclass_of(_compile->env()->Reference_klass()) ||
|
|
!cik->is_instance_klass() || // StressReflectiveCode
|
|
!cik->as_instance_klass()->can_be_instantiated() ||
|
|
cik->as_instance_klass()->has_finalizer()) {
|
|
es = PointsToNode::GlobalEscape;
|
|
}
|
|
}
|
|
add_java_object(call, es);
|
|
PointsToNode* ptn = ptnode_adr(call_idx);
|
|
if (!scalar_replaceable && ptn->scalar_replaceable()) {
|
|
ptn->set_scalar_replaceable(false);
|
|
}
|
|
} else if (call->is_CallStaticJava()) {
|
|
// Call nodes could be different types:
|
|
//
|
|
// 1. CallDynamicJavaNode (what happened during call is unknown):
|
|
//
|
|
// - mapped to GlobalEscape JavaObject node if oop is returned;
|
|
//
|
|
// - all oop arguments are escaping globally;
|
|
//
|
|
// 2. CallStaticJavaNode (execute bytecode analysis if possible):
|
|
//
|
|
// - the same as CallDynamicJavaNode if can't do bytecode analysis;
|
|
//
|
|
// - mapped to GlobalEscape JavaObject node if unknown oop is returned;
|
|
// - mapped to NoEscape JavaObject node if non-escaping object allocated
|
|
// during call is returned;
|
|
// - mapped to ArgEscape LocalVar node pointed to object arguments
|
|
// which are returned and does not escape during call;
|
|
//
|
|
// - oop arguments escaping status is defined by bytecode analysis;
|
|
//
|
|
// For a static call, we know exactly what method is being called.
|
|
// Use bytecode estimator to record whether the call's return value escapes.
|
|
ciMethod* meth = call->as_CallJava()->method();
|
|
if (meth == NULL) {
|
|
const char* name = call->as_CallStaticJava()->_name;
|
|
assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
|
|
// Returns a newly allocated unescaped object.
|
|
add_java_object(call, PointsToNode::NoEscape);
|
|
ptnode_adr(call_idx)->set_scalar_replaceable(false);
|
|
} else if (meth->is_boxing_method()) {
|
|
// Returns boxing object
|
|
PointsToNode::EscapeState es;
|
|
vmIntrinsics::ID intr = meth->intrinsic_id();
|
|
if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
|
|
// It does not escape if object is always allocated.
|
|
es = PointsToNode::NoEscape;
|
|
} else {
|
|
// It escapes globally if object could be loaded from cache.
|
|
es = PointsToNode::GlobalEscape;
|
|
}
|
|
add_java_object(call, es);
|
|
} else {
|
|
BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
|
|
call_analyzer->copy_dependencies(_compile->dependencies());
|
|
if (call_analyzer->is_return_allocated()) {
|
|
// Returns a newly allocated unescaped object, simply
|
|
// update dependency information.
|
|
// Mark it as NoEscape so that objects referenced by
|
|
// it's fields will be marked as NoEscape at least.
|
|
add_java_object(call, PointsToNode::NoEscape);
|
|
ptnode_adr(call_idx)->set_scalar_replaceable(false);
|
|
} else {
|
|
// Determine whether any arguments are returned.
|
|
const TypeTuple* d = call->tf()->domain();
|
|
bool ret_arg = false;
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
if (d->field_at(i)->isa_ptr() != NULL &&
|
|
call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
|
|
ret_arg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (ret_arg) {
|
|
add_local_var(call, PointsToNode::ArgEscape);
|
|
} else {
|
|
// Returns unknown object.
|
|
map_ideal_node(call, phantom_obj);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// An other type of call, assume the worst case:
|
|
// returned value is unknown and globally escapes.
|
|
assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
|
|
map_ideal_node(call, phantom_obj);
|
|
}
|
|
}
|
|
|
|
void ConnectionGraph::process_call_arguments(CallNode *call) {
|
|
bool is_arraycopy = false;
|
|
switch (call->Opcode()) {
|
|
#ifdef ASSERT
|
|
case Op_Allocate:
|
|
case Op_AllocateArray:
|
|
case Op_Lock:
|
|
case Op_Unlock:
|
|
assert(false, "should be done already");
|
|
break;
|
|
#endif
|
|
case Op_ArrayCopy:
|
|
case Op_CallLeafNoFP:
|
|
// Most array copies are ArrayCopy nodes at this point but there
|
|
// are still a few direct calls to the copy subroutines (See
|
|
// PhaseStringOpts::copy_string())
|
|
is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
|
|
call->as_CallLeaf()->is_call_to_arraycopystub();
|
|
// fall through
|
|
case Op_CallLeaf: {
|
|
// Stub calls, objects do not escape but they are not scale replaceable.
|
|
// Adjust escape state for outgoing arguments.
|
|
const TypeTuple * d = call->tf()->domain();
|
|
bool src_has_oops = false;
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
Node *arg = call->in(i);
|
|
if (arg == NULL) {
|
|
continue;
|
|
}
|
|
const Type *aat = _igvn->type(arg);
|
|
if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
|
|
continue;
|
|
if (arg->is_AddP()) {
|
|
//
|
|
// The inline_native_clone() case when the arraycopy stub is called
|
|
// after the allocation before Initialize and CheckCastPP nodes.
|
|
// Or normal arraycopy for object arrays case.
|
|
//
|
|
// Set AddP's base (Allocate) as not scalar replaceable since
|
|
// pointer to the base (with offset) is passed as argument.
|
|
//
|
|
arg = get_addp_base(arg);
|
|
}
|
|
PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
|
|
assert(arg_ptn != NULL, "should be registered");
|
|
PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
|
|
if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
|
|
assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
|
|
aat->isa_ptr() != NULL, "expecting an Ptr");
|
|
bool arg_has_oops = aat->isa_oopptr() &&
|
|
(aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
|
|
(aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
|
|
if (i == TypeFunc::Parms) {
|
|
src_has_oops = arg_has_oops;
|
|
}
|
|
//
|
|
// src or dst could be j.l.Object when other is basic type array:
|
|
//
|
|
// arraycopy(char[],0,Object*,0,size);
|
|
// arraycopy(Object*,0,char[],0,size);
|
|
//
|
|
// Don't add edges in such cases.
|
|
//
|
|
bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
|
|
arg_has_oops && (i > TypeFunc::Parms);
|
|
#ifdef ASSERT
|
|
if (!(is_arraycopy ||
|
|
(call->as_CallLeaf()->_name != NULL &&
|
|
(strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
|
|
))) {
|
|
call->dump();
|
|
fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
|
|
}
|
|
#endif
|
|
// Always process arraycopy's destination object since
|
|
// we need to add all possible edges to references in
|
|
// source object.
|
|
if (arg_esc >= PointsToNode::ArgEscape &&
|
|
!arg_is_arraycopy_dest) {
|
|
continue;
|
|
}
|
|
PointsToNode::EscapeState es = PointsToNode::ArgEscape;
|
|
if (call->is_ArrayCopy()) {
|
|
ArrayCopyNode* ac = call->as_ArrayCopy();
|
|
if (ac->is_clonebasic() ||
|
|
ac->is_arraycopy_validated() ||
|
|
ac->is_copyof_validated() ||
|
|
ac->is_copyofrange_validated()) {
|
|
es = PointsToNode::NoEscape;
|
|
}
|
|
}
|
|
set_escape_state(arg_ptn, es);
|
|
if (arg_is_arraycopy_dest) {
|
|
Node* src = call->in(TypeFunc::Parms);
|
|
if (src->is_AddP()) {
|
|
src = get_addp_base(src);
|
|
}
|
|
PointsToNode* src_ptn = ptnode_adr(src->_idx);
|
|
assert(src_ptn != NULL, "should be registered");
|
|
if (arg_ptn != src_ptn) {
|
|
// Special arraycopy edge:
|
|
// A destination object's field can't have the source object
|
|
// as base since objects escape states are not related.
|
|
// Only escape state of destination object's fields affects
|
|
// escape state of fields in source object.
|
|
add_arraycopy(call, es, src_ptn, arg_ptn);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Op_CallStaticJava: {
|
|
// For a static call, we know exactly what method is being called.
|
|
// Use bytecode estimator to record the call's escape affects
|
|
#ifdef ASSERT
|
|
const char* name = call->as_CallStaticJava()->_name;
|
|
assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
|
|
#endif
|
|
ciMethod* meth = call->as_CallJava()->method();
|
|
if ((meth != NULL) && meth->is_boxing_method()) {
|
|
break; // Boxing methods do not modify any oops.
|
|
}
|
|
BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
|
|
// fall-through if not a Java method or no analyzer information
|
|
if (call_analyzer != NULL) {
|
|
PointsToNode* call_ptn = ptnode_adr(call->_idx);
|
|
const TypeTuple* d = call->tf()->domain();
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
int k = i - TypeFunc::Parms;
|
|
Node* arg = call->in(i);
|
|
PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
|
|
if (at->isa_ptr() != NULL &&
|
|
call_analyzer->is_arg_returned(k)) {
|
|
// The call returns arguments.
|
|
if (call_ptn != NULL) { // Is call's result used?
|
|
assert(call_ptn->is_LocalVar(), "node should be registered");
|
|
assert(arg_ptn != NULL, "node should be registered");
|
|
add_edge(call_ptn, arg_ptn);
|
|
}
|
|
}
|
|
if (at->isa_oopptr() != NULL &&
|
|
arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
|
|
if (!call_analyzer->is_arg_stack(k)) {
|
|
// The argument global escapes
|
|
set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
|
|
} else {
|
|
set_escape_state(arg_ptn, PointsToNode::ArgEscape);
|
|
if (!call_analyzer->is_arg_local(k)) {
|
|
// The argument itself doesn't escape, but any fields might
|
|
set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (call_ptn != NULL && call_ptn->is_LocalVar()) {
|
|
// The call returns arguments.
|
|
assert(call_ptn->edge_count() > 0, "sanity");
|
|
if (!call_analyzer->is_return_local()) {
|
|
// Returns also unknown object.
|
|
add_edge(call_ptn, phantom_obj);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
default: {
|
|
// Fall-through here if not a Java method or no analyzer information
|
|
// or some other type of call, assume the worst case: all arguments
|
|
// globally escape.
|
|
const TypeTuple* d = call->tf()->domain();
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
if (at->isa_oopptr() != NULL) {
|
|
Node* arg = call->in(i);
|
|
if (arg->is_AddP()) {
|
|
arg = get_addp_base(arg);
|
|
}
|
|
assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
|
|
set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Finish Graph construction.
|
|
bool ConnectionGraph::complete_connection_graph(
|
|
GrowableArray<PointsToNode*>& ptnodes_worklist,
|
|
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
|
|
GrowableArray<JavaObjectNode*>& java_objects_worklist,
|
|
GrowableArray<FieldNode*>& oop_fields_worklist) {
|
|
// Normally only 1-3 passes needed to build Connection Graph depending
|
|
// on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
|
|
// Set limit to 20 to catch situation when something did go wrong and
|
|
// bailout Escape Analysis.
|
|
// Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
|
|
#define CG_BUILD_ITER_LIMIT 20
|
|
|
|
// Propagate GlobalEscape and ArgEscape escape states and check that
|
|
// we still have non-escaping objects. The method pushs on _worklist
|
|
// Field nodes which reference phantom_object.
|
|
if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
|
|
return false; // Nothing to do.
|
|
}
|
|
// Now propagate references to all JavaObject nodes.
|
|
int java_objects_length = java_objects_worklist.length();
|
|
elapsedTimer time;
|
|
bool timeout = false;
|
|
int new_edges = 1;
|
|
int iterations = 0;
|
|
do {
|
|
while ((new_edges > 0) &&
|
|
(iterations++ < CG_BUILD_ITER_LIMIT)) {
|
|
double start_time = time.seconds();
|
|
time.start();
|
|
new_edges = 0;
|
|
// Propagate references to phantom_object for nodes pushed on _worklist
|
|
// by find_non_escaped_objects() and find_field_value().
|
|
new_edges += add_java_object_edges(phantom_obj, false);
|
|
for (int next = 0; next < java_objects_length; ++next) {
|
|
JavaObjectNode* ptn = java_objects_worklist.at(next);
|
|
new_edges += add_java_object_edges(ptn, true);
|
|
|
|
#define SAMPLE_SIZE 4
|
|
if ((next % SAMPLE_SIZE) == 0) {
|
|
// Each 4 iterations calculate how much time it will take
|
|
// to complete graph construction.
|
|
time.stop();
|
|
// Poll for requests from shutdown mechanism to quiesce compiler
|
|
// because Connection graph construction may take long time.
|
|
CompileBroker::maybe_block();
|
|
double stop_time = time.seconds();
|
|
double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
|
|
double time_until_end = time_per_iter * (double)(java_objects_length - next);
|
|
if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
|
|
timeout = true;
|
|
break; // Timeout
|
|
}
|
|
start_time = stop_time;
|
|
time.start();
|
|
}
|
|
#undef SAMPLE_SIZE
|
|
|
|
}
|
|
if (timeout) break;
|
|
if (new_edges > 0) {
|
|
// Update escape states on each iteration if graph was updated.
|
|
if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
|
|
return false; // Nothing to do.
|
|
}
|
|
}
|
|
time.stop();
|
|
if (time.seconds() >= EscapeAnalysisTimeout) {
|
|
timeout = true;
|
|
break;
|
|
}
|
|
}
|
|
if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
|
|
time.start();
|
|
// Find fields which have unknown value.
|
|
int fields_length = oop_fields_worklist.length();
|
|
for (int next = 0; next < fields_length; next++) {
|
|
FieldNode* field = oop_fields_worklist.at(next);
|
|
if (field->edge_count() == 0) {
|
|
new_edges += find_field_value(field);
|
|
// This code may added new edges to phantom_object.
|
|
// Need an other cycle to propagate references to phantom_object.
|
|
}
|
|
}
|
|
time.stop();
|
|
if (time.seconds() >= EscapeAnalysisTimeout) {
|
|
timeout = true;
|
|
break;
|
|
}
|
|
} else {
|
|
new_edges = 0; // Bailout
|
|
}
|
|
} while (new_edges > 0);
|
|
|
|
// Bailout if passed limits.
|
|
if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
|
|
Compile* C = _compile;
|
|
if (C->log() != NULL) {
|
|
C->log()->begin_elem("connectionGraph_bailout reason='reached ");
|
|
C->log()->text("%s", timeout ? "time" : "iterations");
|
|
C->log()->end_elem(" limit'");
|
|
}
|
|
assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
|
|
time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
|
|
// Possible infinite build_connection_graph loop,
|
|
// bailout (no changes to ideal graph were made).
|
|
return false;
|
|
}
|
|
#ifdef ASSERT
|
|
if (Verbose && PrintEscapeAnalysis) {
|
|
tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
|
|
iterations, nodes_size(), ptnodes_worklist.length());
|
|
}
|
|
#endif
|
|
|
|
#undef CG_BUILD_ITER_LIMIT
|
|
|
|
// Find fields initialized by NULL for non-escaping Allocations.
|
|
int non_escaped_length = non_escaped_worklist.length();
|
|
for (int next = 0; next < non_escaped_length; next++) {
|
|
JavaObjectNode* ptn = non_escaped_worklist.at(next);
|
|
PointsToNode::EscapeState es = ptn->escape_state();
|
|
assert(es <= PointsToNode::ArgEscape, "sanity");
|
|
if (es == PointsToNode::NoEscape) {
|
|
if (find_init_values(ptn, null_obj, _igvn) > 0) {
|
|
// Adding references to NULL object does not change escape states
|
|
// since it does not escape. Also no fields are added to NULL object.
|
|
add_java_object_edges(null_obj, false);
|
|
}
|
|
}
|
|
Node* n = ptn->ideal_node();
|
|
if (n->is_Allocate()) {
|
|
// The object allocated by this Allocate node will never be
|
|
// seen by an other thread. Mark it so that when it is
|
|
// expanded no MemBarStoreStore is added.
|
|
InitializeNode* ini = n->as_Allocate()->initialization();
|
|
if (ini != NULL)
|
|
ini->set_does_not_escape();
|
|
}
|
|
}
|
|
return true; // Finished graph construction.
|
|
}
|
|
|
|
// Propagate GlobalEscape and ArgEscape escape states to all nodes
|
|
// and check that we still have non-escaping java objects.
|
|
bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
|
|
GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
|
|
GrowableArray<PointsToNode*> escape_worklist;
|
|
// First, put all nodes with GlobalEscape and ArgEscape states on worklist.
|
|
int ptnodes_length = ptnodes_worklist.length();
|
|
for (int next = 0; next < ptnodes_length; ++next) {
|
|
PointsToNode* ptn = ptnodes_worklist.at(next);
|
|
if (ptn->escape_state() >= PointsToNode::ArgEscape ||
|
|
ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
|
|
escape_worklist.push(ptn);
|
|
}
|
|
}
|
|
// Set escape states to referenced nodes (edges list).
|
|
while (escape_worklist.length() > 0) {
|
|
PointsToNode* ptn = escape_worklist.pop();
|
|
PointsToNode::EscapeState es = ptn->escape_state();
|
|
PointsToNode::EscapeState field_es = ptn->fields_escape_state();
|
|
if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
|
|
es >= PointsToNode::ArgEscape) {
|
|
// GlobalEscape or ArgEscape state of field means it has unknown value.
|
|
if (add_edge(ptn, phantom_obj)) {
|
|
// New edge was added
|
|
add_field_uses_to_worklist(ptn->as_Field());
|
|
}
|
|
}
|
|
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
if (e->is_Arraycopy()) {
|
|
assert(ptn->arraycopy_dst(), "sanity");
|
|
// Propagate only fields escape state through arraycopy edge.
|
|
if (e->fields_escape_state() < field_es) {
|
|
set_fields_escape_state(e, field_es);
|
|
escape_worklist.push(e);
|
|
}
|
|
} else if (es >= field_es) {
|
|
// fields_escape_state is also set to 'es' if it is less than 'es'.
|
|
if (e->escape_state() < es) {
|
|
set_escape_state(e, es);
|
|
escape_worklist.push(e);
|
|
}
|
|
} else {
|
|
// Propagate field escape state.
|
|
bool es_changed = false;
|
|
if (e->fields_escape_state() < field_es) {
|
|
set_fields_escape_state(e, field_es);
|
|
es_changed = true;
|
|
}
|
|
if ((e->escape_state() < field_es) &&
|
|
e->is_Field() && ptn->is_JavaObject() &&
|
|
e->as_Field()->is_oop()) {
|
|
// Change escape state of referenced fields.
|
|
set_escape_state(e, field_es);
|
|
es_changed = true;
|
|
} else if (e->escape_state() < es) {
|
|
set_escape_state(e, es);
|
|
es_changed = true;
|
|
}
|
|
if (es_changed) {
|
|
escape_worklist.push(e);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Remove escaped objects from non_escaped list.
|
|
for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
|
|
JavaObjectNode* ptn = non_escaped_worklist.at(next);
|
|
if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
|
|
non_escaped_worklist.delete_at(next);
|
|
}
|
|
if (ptn->escape_state() == PointsToNode::NoEscape) {
|
|
// Find fields in non-escaped allocations which have unknown value.
|
|
find_init_values(ptn, phantom_obj, NULL);
|
|
}
|
|
}
|
|
return (non_escaped_worklist.length() > 0);
|
|
}
|
|
|
|
// Add all references to JavaObject node by walking over all uses.
|
|
int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
|
|
int new_edges = 0;
|
|
if (populate_worklist) {
|
|
// Populate _worklist by uses of jobj's uses.
|
|
for (UseIterator i(jobj); i.has_next(); i.next()) {
|
|
PointsToNode* use = i.get();
|
|
if (use->is_Arraycopy())
|
|
continue;
|
|
add_uses_to_worklist(use);
|
|
if (use->is_Field() && use->as_Field()->is_oop()) {
|
|
// Put on worklist all field's uses (loads) and
|
|
// related field nodes (same base and offset).
|
|
add_field_uses_to_worklist(use->as_Field());
|
|
}
|
|
}
|
|
}
|
|
for (int l = 0; l < _worklist.length(); l++) {
|
|
PointsToNode* use = _worklist.at(l);
|
|
if (PointsToNode::is_base_use(use)) {
|
|
// Add reference from jobj to field and from field to jobj (field's base).
|
|
use = PointsToNode::get_use_node(use)->as_Field();
|
|
if (add_base(use->as_Field(), jobj)) {
|
|
new_edges++;
|
|
}
|
|
continue;
|
|
}
|
|
assert(!use->is_JavaObject(), "sanity");
|
|
if (use->is_Arraycopy()) {
|
|
if (jobj == null_obj) // NULL object does not have field edges
|
|
continue;
|
|
// Added edge from Arraycopy node to arraycopy's source java object
|
|
if (add_edge(use, jobj)) {
|
|
jobj->set_arraycopy_src();
|
|
new_edges++;
|
|
}
|
|
// and stop here.
|
|
continue;
|
|
}
|
|
if (!add_edge(use, jobj))
|
|
continue; // No new edge added, there was such edge already.
|
|
new_edges++;
|
|
if (use->is_LocalVar()) {
|
|
add_uses_to_worklist(use);
|
|
if (use->arraycopy_dst()) {
|
|
for (EdgeIterator i(use); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
if (e->is_Arraycopy()) {
|
|
if (jobj == null_obj) // NULL object does not have field edges
|
|
continue;
|
|
// Add edge from arraycopy's destination java object to Arraycopy node.
|
|
if (add_edge(jobj, e)) {
|
|
new_edges++;
|
|
jobj->set_arraycopy_dst();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Added new edge to stored in field values.
|
|
// Put on worklist all field's uses (loads) and
|
|
// related field nodes (same base and offset).
|
|
add_field_uses_to_worklist(use->as_Field());
|
|
}
|
|
}
|
|
_worklist.clear();
|
|
_in_worklist.Reset();
|
|
return new_edges;
|
|
}
|
|
|
|
// Put on worklist all related field nodes.
|
|
void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
|
|
assert(field->is_oop(), "sanity");
|
|
int offset = field->offset();
|
|
add_uses_to_worklist(field);
|
|
// Loop over all bases of this field and push on worklist Field nodes
|
|
// with the same offset and base (since they may reference the same field).
|
|
for (BaseIterator i(field); i.has_next(); i.next()) {
|
|
PointsToNode* base = i.get();
|
|
add_fields_to_worklist(field, base);
|
|
// Check if the base was source object of arraycopy and go over arraycopy's
|
|
// destination objects since values stored to a field of source object are
|
|
// accessable by uses (loads) of fields of destination objects.
|
|
if (base->arraycopy_src()) {
|
|
for (UseIterator j(base); j.has_next(); j.next()) {
|
|
PointsToNode* arycp = j.get();
|
|
if (arycp->is_Arraycopy()) {
|
|
for (UseIterator k(arycp); k.has_next(); k.next()) {
|
|
PointsToNode* abase = k.get();
|
|
if (abase->arraycopy_dst() && abase != base) {
|
|
// Look for the same arraycopy reference.
|
|
add_fields_to_worklist(field, abase);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Put on worklist all related field nodes.
|
|
void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
|
|
int offset = field->offset();
|
|
if (base->is_LocalVar()) {
|
|
for (UseIterator j(base); j.has_next(); j.next()) {
|
|
PointsToNode* f = j.get();
|
|
if (PointsToNode::is_base_use(f)) { // Field
|
|
f = PointsToNode::get_use_node(f);
|
|
if (f == field || !f->as_Field()->is_oop())
|
|
continue;
|
|
int offs = f->as_Field()->offset();
|
|
if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
|
|
add_to_worklist(f);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
assert(base->is_JavaObject(), "sanity");
|
|
if (// Skip phantom_object since it is only used to indicate that
|
|
// this field's content globally escapes.
|
|
(base != phantom_obj) &&
|
|
// NULL object node does not have fields.
|
|
(base != null_obj)) {
|
|
for (EdgeIterator i(base); i.has_next(); i.next()) {
|
|
PointsToNode* f = i.get();
|
|
// Skip arraycopy edge since store to destination object field
|
|
// does not update value in source object field.
|
|
if (f->is_Arraycopy()) {
|
|
assert(base->arraycopy_dst(), "sanity");
|
|
continue;
|
|
}
|
|
if (f == field || !f->as_Field()->is_oop())
|
|
continue;
|
|
int offs = f->as_Field()->offset();
|
|
if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
|
|
add_to_worklist(f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find fields which have unknown value.
|
|
int ConnectionGraph::find_field_value(FieldNode* field) {
|
|
// Escaped fields should have init value already.
|
|
assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
|
|
int new_edges = 0;
|
|
for (BaseIterator i(field); i.has_next(); i.next()) {
|
|
PointsToNode* base = i.get();
|
|
if (base->is_JavaObject()) {
|
|
// Skip Allocate's fields which will be processed later.
|
|
if (base->ideal_node()->is_Allocate())
|
|
return 0;
|
|
assert(base == null_obj, "only NULL ptr base expected here");
|
|
}
|
|
}
|
|
if (add_edge(field, phantom_obj)) {
|
|
// New edge was added
|
|
new_edges++;
|
|
add_field_uses_to_worklist(field);
|
|
}
|
|
return new_edges;
|
|
}
|
|
|
|
// Find fields initializing values for allocations.
|
|
int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
|
|
assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
|
|
int new_edges = 0;
|
|
Node* alloc = pta->ideal_node();
|
|
if (init_val == phantom_obj) {
|
|
// Do nothing for Allocate nodes since its fields values are
|
|
// "known" unless they are initialized by arraycopy/clone.
|
|
if (alloc->is_Allocate() && !pta->arraycopy_dst())
|
|
return 0;
|
|
assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
|
|
#ifdef ASSERT
|
|
if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
|
|
const char* name = alloc->as_CallStaticJava()->_name;
|
|
assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
|
|
}
|
|
#endif
|
|
// Non-escaped allocation returned from Java or runtime call have
|
|
// unknown values in fields.
|
|
for (EdgeIterator i(pta); i.has_next(); i.next()) {
|
|
PointsToNode* field = i.get();
|
|
if (field->is_Field() && field->as_Field()->is_oop()) {
|
|
if (add_edge(field, phantom_obj)) {
|
|
// New edge was added
|
|
new_edges++;
|
|
add_field_uses_to_worklist(field->as_Field());
|
|
}
|
|
}
|
|
}
|
|
return new_edges;
|
|
}
|
|
assert(init_val == null_obj, "sanity");
|
|
// Do nothing for Call nodes since its fields values are unknown.
|
|
if (!alloc->is_Allocate())
|
|
return 0;
|
|
|
|
InitializeNode* ini = alloc->as_Allocate()->initialization();
|
|
bool visited_bottom_offset = false;
|
|
GrowableArray<int> offsets_worklist;
|
|
|
|
// Check if an oop field's initializing value is recorded and add
|
|
// a corresponding NULL if field's value if it is not recorded.
|
|
// Connection Graph does not record a default initialization by NULL
|
|
// captured by Initialize node.
|
|
//
|
|
for (EdgeIterator i(pta); i.has_next(); i.next()) {
|
|
PointsToNode* field = i.get(); // Field (AddP)
|
|
if (!field->is_Field() || !field->as_Field()->is_oop())
|
|
continue; // Not oop field
|
|
int offset = field->as_Field()->offset();
|
|
if (offset == Type::OffsetBot) {
|
|
if (!visited_bottom_offset) {
|
|
// OffsetBot is used to reference array's element,
|
|
// always add reference to NULL to all Field nodes since we don't
|
|
// known which element is referenced.
|
|
if (add_edge(field, null_obj)) {
|
|
// New edge was added
|
|
new_edges++;
|
|
add_field_uses_to_worklist(field->as_Field());
|
|
visited_bottom_offset = true;
|
|
}
|
|
}
|
|
} else {
|
|
// Check only oop fields.
|
|
const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
|
|
if (adr_type->isa_rawptr()) {
|
|
#ifdef ASSERT
|
|
// Raw pointers are used for initializing stores so skip it
|
|
// since it should be recorded already
|
|
Node* base = get_addp_base(field->ideal_node());
|
|
assert(adr_type->isa_rawptr() && base->is_Proj() &&
|
|
(base->in(0) == alloc),"unexpected pointer type");
|
|
#endif
|
|
continue;
|
|
}
|
|
if (!offsets_worklist.contains(offset)) {
|
|
offsets_worklist.append(offset);
|
|
Node* value = NULL;
|
|
if (ini != NULL) {
|
|
// StoreP::memory_type() == T_ADDRESS
|
|
BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
|
|
Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
|
|
// Make sure initializing store has the same type as this AddP.
|
|
// This AddP may reference non existing field because it is on a
|
|
// dead branch of bimorphic call which is not eliminated yet.
|
|
if (store != NULL && store->is_Store() &&
|
|
store->as_Store()->memory_type() == ft) {
|
|
value = store->in(MemNode::ValueIn);
|
|
#ifdef ASSERT
|
|
if (VerifyConnectionGraph) {
|
|
// Verify that AddP already points to all objects the value points to.
|
|
PointsToNode* val = ptnode_adr(value->_idx);
|
|
assert((val != NULL), "should be processed already");
|
|
PointsToNode* missed_obj = NULL;
|
|
if (val->is_JavaObject()) {
|
|
if (!field->points_to(val->as_JavaObject())) {
|
|
missed_obj = val;
|
|
}
|
|
} else {
|
|
if (!val->is_LocalVar() || (val->edge_count() == 0)) {
|
|
tty->print_cr("----------init store has invalid value -----");
|
|
store->dump();
|
|
val->dump();
|
|
assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
|
|
}
|
|
for (EdgeIterator j(val); j.has_next(); j.next()) {
|
|
PointsToNode* obj = j.get();
|
|
if (obj->is_JavaObject()) {
|
|
if (!field->points_to(obj->as_JavaObject())) {
|
|
missed_obj = obj;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (missed_obj != NULL) {
|
|
tty->print_cr("----------field---------------------------------");
|
|
field->dump();
|
|
tty->print_cr("----------missed referernce to object-----------");
|
|
missed_obj->dump();
|
|
tty->print_cr("----------object referernced by init store -----");
|
|
store->dump();
|
|
val->dump();
|
|
assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
|
|
}
|
|
}
|
|
#endif
|
|
} else {
|
|
// There could be initializing stores which follow allocation.
|
|
// For example, a volatile field store is not collected
|
|
// by Initialize node.
|
|
//
|
|
// Need to check for dependent loads to separate such stores from
|
|
// stores which follow loads. For now, add initial value NULL so
|
|
// that compare pointers optimization works correctly.
|
|
}
|
|
}
|
|
if (value == NULL) {
|
|
// A field's initializing value was not recorded. Add NULL.
|
|
if (add_edge(field, null_obj)) {
|
|
// New edge was added
|
|
new_edges++;
|
|
add_field_uses_to_worklist(field->as_Field());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return new_edges;
|
|
}
|
|
|
|
// Adjust scalar_replaceable state after Connection Graph is built.
|
|
void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
|
|
// Search for non-escaping objects which are not scalar replaceable
|
|
// and mark them to propagate the state to referenced objects.
|
|
|
|
// 1. An object is not scalar replaceable if the field into which it is
|
|
// stored has unknown offset (stored into unknown element of an array).
|
|
//
|
|
for (UseIterator i(jobj); i.has_next(); i.next()) {
|
|
PointsToNode* use = i.get();
|
|
if (use->is_Arraycopy()) {
|
|
continue;
|
|
}
|
|
if (use->is_Field()) {
|
|
FieldNode* field = use->as_Field();
|
|
assert(field->is_oop() && field->scalar_replaceable(), "sanity");
|
|
if (field->offset() == Type::OffsetBot) {
|
|
jobj->set_scalar_replaceable(false);
|
|
return;
|
|
}
|
|
// 2. An object is not scalar replaceable if the field into which it is
|
|
// stored has multiple bases one of which is null.
|
|
if (field->base_count() > 1) {
|
|
for (BaseIterator i(field); i.has_next(); i.next()) {
|
|
PointsToNode* base = i.get();
|
|
if (base == null_obj) {
|
|
jobj->set_scalar_replaceable(false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(use->is_Field() || use->is_LocalVar(), "sanity");
|
|
// 3. An object is not scalar replaceable if it is merged with other objects.
|
|
for (EdgeIterator j(use); j.has_next(); j.next()) {
|
|
PointsToNode* ptn = j.get();
|
|
if (ptn->is_JavaObject() && ptn != jobj) {
|
|
// Mark all objects.
|
|
jobj->set_scalar_replaceable(false);
|
|
ptn->set_scalar_replaceable(false);
|
|
}
|
|
}
|
|
if (!jobj->scalar_replaceable()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (EdgeIterator j(jobj); j.has_next(); j.next()) {
|
|
if (j.get()->is_Arraycopy()) {
|
|
continue;
|
|
}
|
|
|
|
// Non-escaping object node should point only to field nodes.
|
|
FieldNode* field = j.get()->as_Field();
|
|
int offset = field->as_Field()->offset();
|
|
|
|
// 4. An object is not scalar replaceable if it has a field with unknown
|
|
// offset (array's element is accessed in loop).
|
|
if (offset == Type::OffsetBot) {
|
|
jobj->set_scalar_replaceable(false);
|
|
return;
|
|
}
|
|
// 5. Currently an object is not scalar replaceable if a LoadStore node
|
|
// access its field since the field value is unknown after it.
|
|
//
|
|
Node* n = field->ideal_node();
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
if (n->fast_out(i)->is_LoadStore()) {
|
|
jobj->set_scalar_replaceable(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// 6. Or the address may point to more then one object. This may produce
|
|
// the false positive result (set not scalar replaceable)
|
|
// since the flow-insensitive escape analysis can't separate
|
|
// the case when stores overwrite the field's value from the case
|
|
// when stores happened on different control branches.
|
|
//
|
|
// Note: it will disable scalar replacement in some cases:
|
|
//
|
|
// Point p[] = new Point[1];
|
|
// p[0] = new Point(); // Will be not scalar replaced
|
|
//
|
|
// but it will save us from incorrect optimizations in next cases:
|
|
//
|
|
// Point p[] = new Point[1];
|
|
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
|
|
//
|
|
if (field->base_count() > 1) {
|
|
for (BaseIterator i(field); i.has_next(); i.next()) {
|
|
PointsToNode* base = i.get();
|
|
// Don't take into account LocalVar nodes which
|
|
// may point to only one object which should be also
|
|
// this field's base by now.
|
|
if (base->is_JavaObject() && base != jobj) {
|
|
// Mark all bases.
|
|
jobj->set_scalar_replaceable(false);
|
|
base->set_scalar_replaceable(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void ConnectionGraph::verify_connection_graph(
|
|
GrowableArray<PointsToNode*>& ptnodes_worklist,
|
|
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
|
|
GrowableArray<JavaObjectNode*>& java_objects_worklist,
|
|
GrowableArray<Node*>& addp_worklist) {
|
|
// Verify that graph is complete - no new edges could be added.
|
|
int java_objects_length = java_objects_worklist.length();
|
|
int non_escaped_length = non_escaped_worklist.length();
|
|
int new_edges = 0;
|
|
for (int next = 0; next < java_objects_length; ++next) {
|
|
JavaObjectNode* ptn = java_objects_worklist.at(next);
|
|
new_edges += add_java_object_edges(ptn, true);
|
|
}
|
|
assert(new_edges == 0, "graph was not complete");
|
|
// Verify that escape state is final.
|
|
int length = non_escaped_worklist.length();
|
|
find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
|
|
assert((non_escaped_length == non_escaped_worklist.length()) &&
|
|
(non_escaped_length == length) &&
|
|
(_worklist.length() == 0), "escape state was not final");
|
|
|
|
// Verify fields information.
|
|
int addp_length = addp_worklist.length();
|
|
for (int next = 0; next < addp_length; ++next ) {
|
|
Node* n = addp_worklist.at(next);
|
|
FieldNode* field = ptnode_adr(n->_idx)->as_Field();
|
|
if (field->is_oop()) {
|
|
// Verify that field has all bases
|
|
Node* base = get_addp_base(n);
|
|
PointsToNode* ptn = ptnode_adr(base->_idx);
|
|
if (ptn->is_JavaObject()) {
|
|
assert(field->has_base(ptn->as_JavaObject()), "sanity");
|
|
} else {
|
|
assert(ptn->is_LocalVar(), "sanity");
|
|
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
if (e->is_JavaObject()) {
|
|
assert(field->has_base(e->as_JavaObject()), "sanity");
|
|
}
|
|
}
|
|
}
|
|
// Verify that all fields have initializing values.
|
|
if (field->edge_count() == 0) {
|
|
tty->print_cr("----------field does not have references----------");
|
|
field->dump();
|
|
for (BaseIterator i(field); i.has_next(); i.next()) {
|
|
PointsToNode* base = i.get();
|
|
tty->print_cr("----------field has next base---------------------");
|
|
base->dump();
|
|
if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
|
|
tty->print_cr("----------base has fields-------------------------");
|
|
for (EdgeIterator j(base); j.has_next(); j.next()) {
|
|
j.get()->dump();
|
|
}
|
|
tty->print_cr("----------base has references---------------------");
|
|
for (UseIterator j(base); j.has_next(); j.next()) {
|
|
j.get()->dump();
|
|
}
|
|
}
|
|
}
|
|
for (UseIterator i(field); i.has_next(); i.next()) {
|
|
i.get()->dump();
|
|
}
|
|
assert(field->edge_count() > 0, "sanity");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Optimize ideal graph.
|
|
void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
|
|
GrowableArray<Node*>& storestore_worklist) {
|
|
Compile* C = _compile;
|
|
PhaseIterGVN* igvn = _igvn;
|
|
if (EliminateLocks) {
|
|
// Mark locks before changing ideal graph.
|
|
int cnt = C->macro_count();
|
|
for( int i=0; i < cnt; i++ ) {
|
|
Node *n = C->macro_node(i);
|
|
if (n->is_AbstractLock()) { // Lock and Unlock nodes
|
|
AbstractLockNode* alock = n->as_AbstractLock();
|
|
if (!alock->is_non_esc_obj()) {
|
|
if (not_global_escape(alock->obj_node())) {
|
|
assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
|
|
// The lock could be marked eliminated by lock coarsening
|
|
// code during first IGVN before EA. Replace coarsened flag
|
|
// to eliminate all associated locks/unlocks.
|
|
#ifdef ASSERT
|
|
alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
|
|
#endif
|
|
alock->set_non_esc_obj();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (OptimizePtrCompare) {
|
|
// Add ConI(#CC_GT) and ConI(#CC_EQ).
|
|
_pcmp_neq = igvn->makecon(TypeInt::CC_GT);
|
|
_pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
|
|
// Optimize objects compare.
|
|
while (ptr_cmp_worklist.length() != 0) {
|
|
Node *n = ptr_cmp_worklist.pop();
|
|
Node *res = optimize_ptr_compare(n);
|
|
if (res != NULL) {
|
|
#ifndef PRODUCT
|
|
if (PrintOptimizePtrCompare) {
|
|
tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
|
|
if (Verbose) {
|
|
n->dump(1);
|
|
}
|
|
}
|
|
#endif
|
|
igvn->replace_node(n, res);
|
|
}
|
|
}
|
|
// cleanup
|
|
if (_pcmp_neq->outcnt() == 0)
|
|
igvn->hash_delete(_pcmp_neq);
|
|
if (_pcmp_eq->outcnt() == 0)
|
|
igvn->hash_delete(_pcmp_eq);
|
|
}
|
|
|
|
// For MemBarStoreStore nodes added in library_call.cpp, check
|
|
// escape status of associated AllocateNode and optimize out
|
|
// MemBarStoreStore node if the allocated object never escapes.
|
|
while (storestore_worklist.length() != 0) {
|
|
Node *n = storestore_worklist.pop();
|
|
MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
|
|
Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
|
|
assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
|
|
if (not_global_escape(alloc)) {
|
|
MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
|
|
mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
|
|
mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
|
|
igvn->register_new_node_with_optimizer(mb);
|
|
igvn->replace_node(storestore, mb);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimize objects compare.
|
|
Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
|
|
assert(OptimizePtrCompare, "sanity");
|
|
PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
|
|
PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
|
|
JavaObjectNode* jobj1 = unique_java_object(n->in(1));
|
|
JavaObjectNode* jobj2 = unique_java_object(n->in(2));
|
|
assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
|
|
assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
|
|
|
|
// Check simple cases first.
|
|
if (jobj1 != NULL) {
|
|
if (jobj1->escape_state() == PointsToNode::NoEscape) {
|
|
if (jobj1 == jobj2) {
|
|
// Comparing the same not escaping object.
|
|
return _pcmp_eq;
|
|
}
|
|
Node* obj = jobj1->ideal_node();
|
|
// Comparing not escaping allocation.
|
|
if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
|
|
!ptn2->points_to(jobj1)) {
|
|
return _pcmp_neq; // This includes nullness check.
|
|
}
|
|
}
|
|
}
|
|
if (jobj2 != NULL) {
|
|
if (jobj2->escape_state() == PointsToNode::NoEscape) {
|
|
Node* obj = jobj2->ideal_node();
|
|
// Comparing not escaping allocation.
|
|
if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
|
|
!ptn1->points_to(jobj2)) {
|
|
return _pcmp_neq; // This includes nullness check.
|
|
}
|
|
}
|
|
}
|
|
if (jobj1 != NULL && jobj1 != phantom_obj &&
|
|
jobj2 != NULL && jobj2 != phantom_obj &&
|
|
jobj1->ideal_node()->is_Con() &&
|
|
jobj2->ideal_node()->is_Con()) {
|
|
// Klass or String constants compare. Need to be careful with
|
|
// compressed pointers - compare types of ConN and ConP instead of nodes.
|
|
const Type* t1 = jobj1->ideal_node()->get_ptr_type();
|
|
const Type* t2 = jobj2->ideal_node()->get_ptr_type();
|
|
if (t1->make_ptr() == t2->make_ptr()) {
|
|
return _pcmp_eq;
|
|
} else {
|
|
return _pcmp_neq;
|
|
}
|
|
}
|
|
if (ptn1->meet(ptn2)) {
|
|
return NULL; // Sets are not disjoint
|
|
}
|
|
|
|
// Sets are disjoint.
|
|
bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
|
|
bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
|
|
bool set1_has_null_ptr = ptn1->points_to(null_obj);
|
|
bool set2_has_null_ptr = ptn2->points_to(null_obj);
|
|
if (set1_has_unknown_ptr && set2_has_null_ptr ||
|
|
set2_has_unknown_ptr && set1_has_null_ptr) {
|
|
// Check nullness of unknown object.
|
|
return NULL;
|
|
}
|
|
|
|
// Disjointness by itself is not sufficient since
|
|
// alias analysis is not complete for escaped objects.
|
|
// Disjoint sets are definitely unrelated only when
|
|
// at least one set has only not escaping allocations.
|
|
if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
|
|
if (ptn1->non_escaping_allocation()) {
|
|
return _pcmp_neq;
|
|
}
|
|
}
|
|
if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
|
|
if (ptn2->non_escaping_allocation()) {
|
|
return _pcmp_neq;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Connection Graph constuction functions.
|
|
|
|
void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
|
|
PointsToNode* ptadr = _nodes.at(n->_idx);
|
|
if (ptadr != NULL) {
|
|
assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
|
|
return;
|
|
}
|
|
Compile* C = _compile;
|
|
ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
|
|
_nodes.at_put(n->_idx, ptadr);
|
|
}
|
|
|
|
void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
|
|
PointsToNode* ptadr = _nodes.at(n->_idx);
|
|
if (ptadr != NULL) {
|
|
assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
|
|
return;
|
|
}
|
|
Compile* C = _compile;
|
|
ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
|
|
_nodes.at_put(n->_idx, ptadr);
|
|
}
|
|
|
|
void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
|
|
PointsToNode* ptadr = _nodes.at(n->_idx);
|
|
if (ptadr != NULL) {
|
|
assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
|
|
return;
|
|
}
|
|
bool unsafe = false;
|
|
bool is_oop = is_oop_field(n, offset, &unsafe);
|
|
if (unsafe) {
|
|
es = PointsToNode::GlobalEscape;
|
|
}
|
|
Compile* C = _compile;
|
|
FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
|
|
_nodes.at_put(n->_idx, field);
|
|
}
|
|
|
|
void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
|
|
PointsToNode* src, PointsToNode* dst) {
|
|
assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
|
|
assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
|
|
PointsToNode* ptadr = _nodes.at(n->_idx);
|
|
if (ptadr != NULL) {
|
|
assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
|
|
return;
|
|
}
|
|
Compile* C = _compile;
|
|
ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
|
|
_nodes.at_put(n->_idx, ptadr);
|
|
// Add edge from arraycopy node to source object.
|
|
(void)add_edge(ptadr, src);
|
|
src->set_arraycopy_src();
|
|
// Add edge from destination object to arraycopy node.
|
|
(void)add_edge(dst, ptadr);
|
|
dst->set_arraycopy_dst();
|
|
}
|
|
|
|
bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
|
|
const Type* adr_type = n->as_AddP()->bottom_type();
|
|
BasicType bt = T_INT;
|
|
if (offset == Type::OffsetBot) {
|
|
// Check only oop fields.
|
|
if (!adr_type->isa_aryptr() ||
|
|
(adr_type->isa_aryptr()->klass() == NULL) ||
|
|
adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
|
|
// OffsetBot is used to reference array's element. Ignore first AddP.
|
|
if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
|
|
bt = T_OBJECT;
|
|
}
|
|
}
|
|
} else if (offset != oopDesc::klass_offset_in_bytes()) {
|
|
if (adr_type->isa_instptr()) {
|
|
ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
|
|
if (field != NULL) {
|
|
bt = field->layout_type();
|
|
} else {
|
|
// Check for unsafe oop field access
|
|
if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
|
|
n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
|
|
n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
|
|
bt = T_OBJECT;
|
|
(*unsafe) = true;
|
|
}
|
|
}
|
|
} else if (adr_type->isa_aryptr()) {
|
|
if (offset == arrayOopDesc::length_offset_in_bytes()) {
|
|
// Ignore array length load.
|
|
} else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
|
|
// Ignore first AddP.
|
|
} else {
|
|
const Type* elemtype = adr_type->isa_aryptr()->elem();
|
|
bt = elemtype->array_element_basic_type();
|
|
}
|
|
} else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
|
|
// Allocation initialization, ThreadLocal field access, unsafe access
|
|
if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
|
|
n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
|
|
n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
|
|
bt = T_OBJECT;
|
|
}
|
|
}
|
|
}
|
|
return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
|
|
}
|
|
|
|
// Returns unique pointed java object or NULL.
|
|
JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
|
|
assert(!_collecting, "should not call when contructed graph");
|
|
// If the node was created after the escape computation we can't answer.
|
|
uint idx = n->_idx;
|
|
if (idx >= nodes_size()) {
|
|
return NULL;
|
|
}
|
|
PointsToNode* ptn = ptnode_adr(idx);
|
|
if (ptn->is_JavaObject()) {
|
|
return ptn->as_JavaObject();
|
|
}
|
|
assert(ptn->is_LocalVar(), "sanity");
|
|
// Check all java objects it points to.
|
|
JavaObjectNode* jobj = NULL;
|
|
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
if (e->is_JavaObject()) {
|
|
if (jobj == NULL) {
|
|
jobj = e->as_JavaObject();
|
|
} else if (jobj != e) {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
return jobj;
|
|
}
|
|
|
|
// Return true if this node points only to non-escaping allocations.
|
|
bool PointsToNode::non_escaping_allocation() {
|
|
if (is_JavaObject()) {
|
|
Node* n = ideal_node();
|
|
if (n->is_Allocate() || n->is_CallStaticJava()) {
|
|
return (escape_state() == PointsToNode::NoEscape);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
assert(is_LocalVar(), "sanity");
|
|
// Check all java objects it points to.
|
|
for (EdgeIterator i(this); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
if (e->is_JavaObject()) {
|
|
Node* n = e->ideal_node();
|
|
if ((e->escape_state() != PointsToNode::NoEscape) ||
|
|
!(n->is_Allocate() || n->is_CallStaticJava())) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if we know the node does not escape globally.
|
|
bool ConnectionGraph::not_global_escape(Node *n) {
|
|
assert(!_collecting, "should not call during graph construction");
|
|
// If the node was created after the escape computation we can't answer.
|
|
uint idx = n->_idx;
|
|
if (idx >= nodes_size()) {
|
|
return false;
|
|
}
|
|
PointsToNode* ptn = ptnode_adr(idx);
|
|
PointsToNode::EscapeState es = ptn->escape_state();
|
|
// If we have already computed a value, return it.
|
|
if (es >= PointsToNode::GlobalEscape)
|
|
return false;
|
|
if (ptn->is_JavaObject()) {
|
|
return true; // (es < PointsToNode::GlobalEscape);
|
|
}
|
|
assert(ptn->is_LocalVar(), "sanity");
|
|
// Check all java objects it points to.
|
|
for (EdgeIterator i(ptn); i.has_next(); i.next()) {
|
|
if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Helper functions
|
|
|
|
// Return true if this node points to specified node or nodes it points to.
|
|
bool PointsToNode::points_to(JavaObjectNode* ptn) const {
|
|
if (is_JavaObject()) {
|
|
return (this == ptn);
|
|
}
|
|
assert(is_LocalVar() || is_Field(), "sanity");
|
|
for (EdgeIterator i(this); i.has_next(); i.next()) {
|
|
if (i.get() == ptn)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if one node points to an other.
|
|
bool PointsToNode::meet(PointsToNode* ptn) {
|
|
if (this == ptn) {
|
|
return true;
|
|
} else if (ptn->is_JavaObject()) {
|
|
return this->points_to(ptn->as_JavaObject());
|
|
} else if (this->is_JavaObject()) {
|
|
return ptn->points_to(this->as_JavaObject());
|
|
}
|
|
assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
|
|
int ptn_count = ptn->edge_count();
|
|
for (EdgeIterator i(this); i.has_next(); i.next()) {
|
|
PointsToNode* this_e = i.get();
|
|
for (int j = 0; j < ptn_count; j++) {
|
|
if (this_e == ptn->edge(j))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Return true if bases point to this java object.
|
|
bool FieldNode::has_base(JavaObjectNode* jobj) const {
|
|
for (BaseIterator i(this); i.has_next(); i.next()) {
|
|
if (i.get() == jobj)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
|
|
const Type *adr_type = phase->type(adr);
|
|
if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
|
|
adr->in(AddPNode::Address)->is_Proj() &&
|
|
adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
|
|
// We are computing a raw address for a store captured by an Initialize
|
|
// compute an appropriate address type. AddP cases #3 and #5 (see below).
|
|
int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot ||
|
|
adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
|
|
"offset must be a constant or it is initialization of array");
|
|
return offs;
|
|
}
|
|
const TypePtr *t_ptr = adr_type->isa_ptr();
|
|
assert(t_ptr != NULL, "must be a pointer type");
|
|
return t_ptr->offset();
|
|
}
|
|
|
|
Node* ConnectionGraph::get_addp_base(Node *addp) {
|
|
assert(addp->is_AddP(), "must be AddP");
|
|
//
|
|
// AddP cases for Base and Address inputs:
|
|
// case #1. Direct object's field reference:
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// |
|
|
// CheckCastPP (cast to instance type)
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #2. Indirect object's field reference:
|
|
// Phi
|
|
// |
|
|
// CastPP (cast to instance type)
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #3. Raw object's field reference for Initialize node:
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// top |
|
|
// \ |
|
|
// AddP ( base == top )
|
|
//
|
|
// case #4. Array's element reference:
|
|
// {CheckCastPP | CastPP}
|
|
// | | |
|
|
// | AddP ( array's element offset )
|
|
// | |
|
|
// AddP ( array's offset )
|
|
//
|
|
// case #5. Raw object's field reference for arraycopy stub call:
|
|
// The inline_native_clone() case when the arraycopy stub is called
|
|
// after the allocation before Initialize and CheckCastPP nodes.
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #6. Constant Pool, ThreadLocal, CastX2P or
|
|
// Raw object's field reference:
|
|
// {ConP, ThreadLocal, CastX2P, raw Load}
|
|
// top |
|
|
// \ |
|
|
// AddP ( base == top )
|
|
//
|
|
// case #7. Klass's field reference.
|
|
// LoadKlass
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #8. narrow Klass's field reference.
|
|
// LoadNKlass
|
|
// |
|
|
// DecodeN
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
Node *base = addp->in(AddPNode::Base);
|
|
if (base->uncast()->is_top()) { // The AddP case #3 and #6.
|
|
base = addp->in(AddPNode::Address);
|
|
while (base->is_AddP()) {
|
|
// Case #6 (unsafe access) may have several chained AddP nodes.
|
|
assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
|
|
base = base->in(AddPNode::Address);
|
|
}
|
|
Node* uncast_base = base->uncast();
|
|
int opcode = uncast_base->Opcode();
|
|
assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
|
|
opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
|
|
(uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
|
|
(uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
|
|
}
|
|
return base;
|
|
}
|
|
|
|
Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
|
|
assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
|
|
Node* addp2 = addp->raw_out(0);
|
|
if (addp->outcnt() == 1 && addp2->is_AddP() &&
|
|
addp2->in(AddPNode::Base) == n &&
|
|
addp2->in(AddPNode::Address) == addp) {
|
|
assert(addp->in(AddPNode::Base) == n, "expecting the same base");
|
|
//
|
|
// Find array's offset to push it on worklist first and
|
|
// as result process an array's element offset first (pushed second)
|
|
// to avoid CastPP for the array's offset.
|
|
// Otherwise the inserted CastPP (LocalVar) will point to what
|
|
// the AddP (Field) points to. Which would be wrong since
|
|
// the algorithm expects the CastPP has the same point as
|
|
// as AddP's base CheckCastPP (LocalVar).
|
|
//
|
|
// ArrayAllocation
|
|
// |
|
|
// CheckCastPP
|
|
// |
|
|
// memProj (from ArrayAllocation CheckCastPP)
|
|
// | ||
|
|
// | || Int (element index)
|
|
// | || | ConI (log(element size))
|
|
// | || | /
|
|
// | || LShift
|
|
// | || /
|
|
// | AddP (array's element offset)
|
|
// | |
|
|
// | | ConI (array's offset: #12(32-bits) or #24(64-bits))
|
|
// | / /
|
|
// AddP (array's offset)
|
|
// |
|
|
// Load/Store (memory operation on array's element)
|
|
//
|
|
return addp2;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Adjust the type and inputs of an AddP which computes the
|
|
// address of a field of an instance
|
|
//
|
|
bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
|
|
PhaseGVN* igvn = _igvn;
|
|
const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
|
|
assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
|
|
const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
|
|
if (t == NULL) {
|
|
// We are computing a raw address for a store captured by an Initialize
|
|
// compute an appropriate address type (cases #3 and #5).
|
|
assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
|
|
assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
|
|
intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot, "offset must be a constant");
|
|
t = base_t->add_offset(offs)->is_oopptr();
|
|
}
|
|
int inst_id = base_t->instance_id();
|
|
assert(!t->is_known_instance() || t->instance_id() == inst_id,
|
|
"old type must be non-instance or match new type");
|
|
|
|
// The type 't' could be subclass of 'base_t'.
|
|
// As result t->offset() could be large then base_t's size and it will
|
|
// cause the failure in add_offset() with narrow oops since TypeOopPtr()
|
|
// constructor verifies correctness of the offset.
|
|
//
|
|
// It could happened on subclass's branch (from the type profiling
|
|
// inlining) which was not eliminated during parsing since the exactness
|
|
// of the allocation type was not propagated to the subclass type check.
|
|
//
|
|
// Or the type 't' could be not related to 'base_t' at all.
|
|
// It could happened when CHA type is different from MDO type on a dead path
|
|
// (for example, from instanceof check) which is not collapsed during parsing.
|
|
//
|
|
// Do nothing for such AddP node and don't process its users since
|
|
// this code branch will go away.
|
|
//
|
|
if (!t->is_known_instance() &&
|
|
!base_t->klass()->is_subtype_of(t->klass())) {
|
|
return false; // bail out
|
|
}
|
|
const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
|
|
// Do NOT remove the next line: ensure a new alias index is allocated
|
|
// for the instance type. Note: C++ will not remove it since the call
|
|
// has side effect.
|
|
int alias_idx = _compile->get_alias_index(tinst);
|
|
igvn->set_type(addp, tinst);
|
|
// record the allocation in the node map
|
|
set_map(addp, get_map(base->_idx));
|
|
// Set addp's Base and Address to 'base'.
|
|
Node *abase = addp->in(AddPNode::Base);
|
|
Node *adr = addp->in(AddPNode::Address);
|
|
if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
|
|
adr->in(0)->_idx == (uint)inst_id) {
|
|
// Skip AddP cases #3 and #5.
|
|
} else {
|
|
assert(!abase->is_top(), "sanity"); // AddP case #3
|
|
if (abase != base) {
|
|
igvn->hash_delete(addp);
|
|
addp->set_req(AddPNode::Base, base);
|
|
if (abase == adr) {
|
|
addp->set_req(AddPNode::Address, base);
|
|
} else {
|
|
// AddP case #4 (adr is array's element offset AddP node)
|
|
#ifdef ASSERT
|
|
const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
|
|
assert(adr->is_AddP() && atype != NULL &&
|
|
atype->instance_id() == inst_id, "array's element offset should be processed first");
|
|
#endif
|
|
}
|
|
igvn->hash_insert(addp);
|
|
}
|
|
}
|
|
// Put on IGVN worklist since at least addp's type was changed above.
|
|
record_for_optimizer(addp);
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Create a new version of orig_phi if necessary. Returns either the newly
|
|
// created phi or an existing phi. Sets create_new to indicate whether a new
|
|
// phi was created. Cache the last newly created phi in the node map.
|
|
//
|
|
PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
|
|
Compile *C = _compile;
|
|
PhaseGVN* igvn = _igvn;
|
|
new_created = false;
|
|
int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
|
|
// nothing to do if orig_phi is bottom memory or matches alias_idx
|
|
if (phi_alias_idx == alias_idx) {
|
|
return orig_phi;
|
|
}
|
|
// Have we recently created a Phi for this alias index?
|
|
PhiNode *result = get_map_phi(orig_phi->_idx);
|
|
if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
|
|
return result;
|
|
}
|
|
// Previous check may fail when the same wide memory Phi was split into Phis
|
|
// for different memory slices. Search all Phis for this region.
|
|
if (result != NULL) {
|
|
Node* region = orig_phi->in(0);
|
|
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
|
|
Node* phi = region->fast_out(i);
|
|
if (phi->is_Phi() &&
|
|
C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
|
|
assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
|
|
return phi->as_Phi();
|
|
}
|
|
}
|
|
}
|
|
if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
|
|
if (C->do_escape_analysis() == true && !C->failing()) {
|
|
// Retry compilation without escape analysis.
|
|
// If this is the first failure, the sentinel string will "stick"
|
|
// to the Compile object, and the C2Compiler will see it and retry.
|
|
C->record_failure(C2Compiler::retry_no_escape_analysis());
|
|
}
|
|
return NULL;
|
|
}
|
|
orig_phi_worklist.append_if_missing(orig_phi);
|
|
const TypePtr *atype = C->get_adr_type(alias_idx);
|
|
result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
|
|
C->copy_node_notes_to(result, orig_phi);
|
|
igvn->set_type(result, result->bottom_type());
|
|
record_for_optimizer(result);
|
|
set_map(orig_phi, result);
|
|
new_created = true;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Return a new version of Memory Phi "orig_phi" with the inputs having the
|
|
// specified alias index.
|
|
//
|
|
PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
|
|
assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
|
|
Compile *C = _compile;
|
|
PhaseGVN* igvn = _igvn;
|
|
bool new_phi_created;
|
|
PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
|
|
if (!new_phi_created) {
|
|
return result;
|
|
}
|
|
GrowableArray<PhiNode *> phi_list;
|
|
GrowableArray<uint> cur_input;
|
|
PhiNode *phi = orig_phi;
|
|
uint idx = 1;
|
|
bool finished = false;
|
|
while(!finished) {
|
|
while (idx < phi->req()) {
|
|
Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
|
|
if (mem != NULL && mem->is_Phi()) {
|
|
PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
|
|
if (new_phi_created) {
|
|
// found an phi for which we created a new split, push current one on worklist and begin
|
|
// processing new one
|
|
phi_list.push(phi);
|
|
cur_input.push(idx);
|
|
phi = mem->as_Phi();
|
|
result = newphi;
|
|
idx = 1;
|
|
continue;
|
|
} else {
|
|
mem = newphi;
|
|
}
|
|
}
|
|
if (C->failing()) {
|
|
return NULL;
|
|
}
|
|
result->set_req(idx++, mem);
|
|
}
|
|
#ifdef ASSERT
|
|
// verify that the new Phi has an input for each input of the original
|
|
assert( phi->req() == result->req(), "must have same number of inputs.");
|
|
assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
|
|
#endif
|
|
// Check if all new phi's inputs have specified alias index.
|
|
// Otherwise use old phi.
|
|
for (uint i = 1; i < phi->req(); i++) {
|
|
Node* in = result->in(i);
|
|
assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
|
|
}
|
|
// we have finished processing a Phi, see if there are any more to do
|
|
finished = (phi_list.length() == 0 );
|
|
if (!finished) {
|
|
phi = phi_list.pop();
|
|
idx = cur_input.pop();
|
|
PhiNode *prev_result = get_map_phi(phi->_idx);
|
|
prev_result->set_req(idx++, result);
|
|
result = prev_result;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// The next methods are derived from methods in MemNode.
|
|
//
|
|
Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
|
|
Node *mem = mmem;
|
|
// TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
|
|
// means an array I have not precisely typed yet. Do not do any
|
|
// alias stuff with it any time soon.
|
|
if (toop->base() != Type::AnyPtr &&
|
|
!(toop->klass() != NULL &&
|
|
toop->klass()->is_java_lang_Object() &&
|
|
toop->offset() == Type::OffsetBot)) {
|
|
mem = mmem->memory_at(alias_idx);
|
|
// Update input if it is progress over what we have now
|
|
}
|
|
return mem;
|
|
}
|
|
|
|
//
|
|
// Move memory users to their memory slices.
|
|
//
|
|
void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
|
|
Compile* C = _compile;
|
|
PhaseGVN* igvn = _igvn;
|
|
const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int alias_idx = C->get_alias_index(tp);
|
|
int general_idx = C->get_general_index(alias_idx);
|
|
|
|
// Move users first
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* use = n->fast_out(i);
|
|
if (use->is_MergeMem()) {
|
|
MergeMemNode* mmem = use->as_MergeMem();
|
|
assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
|
|
if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
|
|
continue; // Nothing to do
|
|
}
|
|
// Replace previous general reference to mem node.
|
|
uint orig_uniq = C->unique();
|
|
Node* m = find_inst_mem(n, general_idx, orig_phis);
|
|
assert(orig_uniq == C->unique(), "no new nodes");
|
|
mmem->set_memory_at(general_idx, m);
|
|
--imax;
|
|
--i;
|
|
} else if (use->is_MemBar()) {
|
|
assert(!use->is_Initialize(), "initializing stores should not be moved");
|
|
if (use->req() > MemBarNode::Precedent &&
|
|
use->in(MemBarNode::Precedent) == n) {
|
|
// Don't move related membars.
|
|
record_for_optimizer(use);
|
|
continue;
|
|
}
|
|
tp = use->as_MemBar()->adr_type()->isa_ptr();
|
|
if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
|
|
alias_idx == general_idx) {
|
|
continue; // Nothing to do
|
|
}
|
|
// Move to general memory slice.
|
|
uint orig_uniq = C->unique();
|
|
Node* m = find_inst_mem(n, general_idx, orig_phis);
|
|
assert(orig_uniq == C->unique(), "no new nodes");
|
|
igvn->hash_delete(use);
|
|
imax -= use->replace_edge(n, m);
|
|
igvn->hash_insert(use);
|
|
record_for_optimizer(use);
|
|
--i;
|
|
#ifdef ASSERT
|
|
} else if (use->is_Mem()) {
|
|
if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
|
|
// Don't move related cardmark.
|
|
continue;
|
|
}
|
|
// Memory nodes should have new memory input.
|
|
tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int idx = C->get_alias_index(tp);
|
|
assert(get_map(use->_idx) != NULL || idx == alias_idx,
|
|
"Following memory nodes should have new memory input or be on the same memory slice");
|
|
} else if (use->is_Phi()) {
|
|
// Phi nodes should be split and moved already.
|
|
tp = use->as_Phi()->adr_type()->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int idx = C->get_alias_index(tp);
|
|
assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
|
|
} else {
|
|
use->dump();
|
|
assert(false, "should not be here");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Search memory chain of "mem" to find a MemNode whose address
|
|
// is the specified alias index.
|
|
//
|
|
Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
|
|
if (orig_mem == NULL)
|
|
return orig_mem;
|
|
Compile* C = _compile;
|
|
PhaseGVN* igvn = _igvn;
|
|
const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
|
|
bool is_instance = (toop != NULL) && toop->is_known_instance();
|
|
Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
|
|
Node *prev = NULL;
|
|
Node *result = orig_mem;
|
|
while (prev != result) {
|
|
prev = result;
|
|
if (result == start_mem)
|
|
break; // hit one of our sentinels
|
|
if (result->is_Mem()) {
|
|
const Type *at = igvn->type(result->in(MemNode::Address));
|
|
if (at == Type::TOP)
|
|
break; // Dead
|
|
assert (at->isa_ptr() != NULL, "pointer type required.");
|
|
int idx = C->get_alias_index(at->is_ptr());
|
|
if (idx == alias_idx)
|
|
break; // Found
|
|
if (!is_instance && (at->isa_oopptr() == NULL ||
|
|
!at->is_oopptr()->is_known_instance())) {
|
|
break; // Do not skip store to general memory slice.
|
|
}
|
|
result = result->in(MemNode::Memory);
|
|
}
|
|
if (!is_instance)
|
|
continue; // don't search further for non-instance types
|
|
// skip over a call which does not affect this memory slice
|
|
if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
|
|
Node *proj_in = result->in(0);
|
|
if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
|
|
break; // hit one of our sentinels
|
|
} else if (proj_in->is_Call()) {
|
|
// ArrayCopy node processed here as well
|
|
CallNode *call = proj_in->as_Call();
|
|
if (!call->may_modify(toop, igvn)) {
|
|
result = call->in(TypeFunc::Memory);
|
|
}
|
|
} else if (proj_in->is_Initialize()) {
|
|
AllocateNode* alloc = proj_in->as_Initialize()->allocation();
|
|
// Stop if this is the initialization for the object instance which
|
|
// which contains this memory slice, otherwise skip over it.
|
|
if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
|
|
result = proj_in->in(TypeFunc::Memory);
|
|
}
|
|
} else if (proj_in->is_MemBar()) {
|
|
if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
|
|
proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
|
|
proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
|
|
// clone
|
|
ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
|
|
if (ac->may_modify(toop, igvn)) {
|
|
break;
|
|
}
|
|
}
|
|
result = proj_in->in(TypeFunc::Memory);
|
|
}
|
|
} else if (result->is_MergeMem()) {
|
|
MergeMemNode *mmem = result->as_MergeMem();
|
|
result = step_through_mergemem(mmem, alias_idx, toop);
|
|
if (result == mmem->base_memory()) {
|
|
// Didn't find instance memory, search through general slice recursively.
|
|
result = mmem->memory_at(C->get_general_index(alias_idx));
|
|
result = find_inst_mem(result, alias_idx, orig_phis);
|
|
if (C->failing()) {
|
|
return NULL;
|
|
}
|
|
mmem->set_memory_at(alias_idx, result);
|
|
}
|
|
} else if (result->is_Phi() &&
|
|
C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
|
|
Node *un = result->as_Phi()->unique_input(igvn);
|
|
if (un != NULL) {
|
|
orig_phis.append_if_missing(result->as_Phi());
|
|
result = un;
|
|
} else {
|
|
break;
|
|
}
|
|
} else if (result->is_ClearArray()) {
|
|
if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
|
|
// Can not bypass initialization of the instance
|
|
// we are looking for.
|
|
break;
|
|
}
|
|
// Otherwise skip it (the call updated 'result' value).
|
|
} else if (result->Opcode() == Op_SCMemProj) {
|
|
Node* mem = result->in(0);
|
|
Node* adr = NULL;
|
|
if (mem->is_LoadStore()) {
|
|
adr = mem->in(MemNode::Address);
|
|
} else {
|
|
assert(mem->Opcode() == Op_EncodeISOArray ||
|
|
mem->Opcode() == Op_StrCompressedCopy, "sanity");
|
|
adr = mem->in(3); // Memory edge corresponds to destination array
|
|
}
|
|
const Type *at = igvn->type(adr);
|
|
if (at != Type::TOP) {
|
|
assert(at->isa_ptr() != NULL, "pointer type required.");
|
|
int idx = C->get_alias_index(at->is_ptr());
|
|
if (idx == alias_idx) {
|
|
// Assert in debug mode
|
|
assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
|
|
break; // In product mode return SCMemProj node
|
|
}
|
|
}
|
|
result = mem->in(MemNode::Memory);
|
|
} else if (result->Opcode() == Op_StrInflatedCopy) {
|
|
Node* adr = result->in(3); // Memory edge corresponds to destination array
|
|
const Type *at = igvn->type(adr);
|
|
if (at != Type::TOP) {
|
|
assert(at->isa_ptr() != NULL, "pointer type required.");
|
|
int idx = C->get_alias_index(at->is_ptr());
|
|
if (idx == alias_idx) {
|
|
// Assert in debug mode
|
|
assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
|
|
break; // In product mode return SCMemProj node
|
|
}
|
|
}
|
|
result = result->in(MemNode::Memory);
|
|
}
|
|
}
|
|
if (result->is_Phi()) {
|
|
PhiNode *mphi = result->as_Phi();
|
|
assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
|
|
const TypePtr *t = mphi->adr_type();
|
|
if (!is_instance) {
|
|
// Push all non-instance Phis on the orig_phis worklist to update inputs
|
|
// during Phase 4 if needed.
|
|
orig_phis.append_if_missing(mphi);
|
|
} else if (C->get_alias_index(t) != alias_idx) {
|
|
// Create a new Phi with the specified alias index type.
|
|
result = split_memory_phi(mphi, alias_idx, orig_phis);
|
|
}
|
|
}
|
|
// the result is either MemNode, PhiNode, InitializeNode.
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Convert the types of unescaped object to instance types where possible,
|
|
// propagate the new type information through the graph, and update memory
|
|
// edges and MergeMem inputs to reflect the new type.
|
|
//
|
|
// We start with allocations (and calls which may be allocations) on alloc_worklist.
|
|
// The processing is done in 4 phases:
|
|
//
|
|
// Phase 1: Process possible allocations from alloc_worklist. Create instance
|
|
// types for the CheckCastPP for allocations where possible.
|
|
// Propagate the new types through users as follows:
|
|
// casts and Phi: push users on alloc_worklist
|
|
// AddP: cast Base and Address inputs to the instance type
|
|
// push any AddP users on alloc_worklist and push any memnode
|
|
// users onto memnode_worklist.
|
|
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
|
|
// search the Memory chain for a store with the appropriate type
|
|
// address type. If a Phi is found, create a new version with
|
|
// the appropriate memory slices from each of the Phi inputs.
|
|
// For stores, process the users as follows:
|
|
// MemNode: push on memnode_worklist
|
|
// MergeMem: push on mergemem_worklist
|
|
// Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
|
|
// moving the first node encountered of each instance type to the
|
|
// the input corresponding to its alias index.
|
|
// appropriate memory slice.
|
|
// Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
|
|
//
|
|
// In the following example, the CheckCastPP nodes are the cast of allocation
|
|
// results and the allocation of node 29 is unescaped and eligible to be an
|
|
// instance type.
|
|
//
|
|
// We start with:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo"
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=4
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 40 30 ... alias_index=4
|
|
// 60 StoreP 45 50 20 ... alias_index=4
|
|
// 70 LoadP _ 60 30 ... alias_index=4
|
|
// 80 Phi 75 50 60 Memory alias_index=4
|
|
// 90 LoadP _ 80 30 ... alias_index=4
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
//
|
|
// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
|
|
// and creating a new alias index for node 30. This gives:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo" iid=24
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 40 30 ... alias_index=6
|
|
// 60 StoreP 45 50 20 ... alias_index=4
|
|
// 70 LoadP _ 60 30 ... alias_index=6
|
|
// 80 Phi 75 50 60 Memory alias_index=4
|
|
// 90 LoadP _ 80 30 ... alias_index=6
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
// In phase 2, new memory inputs are computed for the loads and stores,
|
|
// And a new version of the phi is created. In phase 4, the inputs to
|
|
// node 80 are updated and then the memory nodes are updated with the
|
|
// values computed in phase 2. This results in:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo" iid=24
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 7 30 ... alias_index=6
|
|
// 60 StoreP 45 40 20 ... alias_index=4
|
|
// 70 LoadP _ 50 30 ... alias_index=6
|
|
// 80 Phi 75 40 60 Memory alias_index=4
|
|
// 120 Phi 75 50 50 Memory alias_index=6
|
|
// 90 LoadP _ 120 30 ... alias_index=6
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
|
|
GrowableArray<Node *> memnode_worklist;
|
|
GrowableArray<PhiNode *> orig_phis;
|
|
PhaseIterGVN *igvn = _igvn;
|
|
uint new_index_start = (uint) _compile->num_alias_types();
|
|
Arena* arena = Thread::current()->resource_area();
|
|
VectorSet visited(arena);
|
|
ideal_nodes.clear(); // Reset for use with set_map/get_map.
|
|
uint unique_old = _compile->unique();
|
|
|
|
// Phase 1: Process possible allocations from alloc_worklist.
|
|
// Create instance types for the CheckCastPP for allocations where possible.
|
|
//
|
|
// (Note: don't forget to change the order of the second AddP node on
|
|
// the alloc_worklist if the order of the worklist processing is changed,
|
|
// see the comment in find_second_addp().)
|
|
//
|
|
while (alloc_worklist.length() != 0) {
|
|
Node *n = alloc_worklist.pop();
|
|
uint ni = n->_idx;
|
|
if (n->is_Call()) {
|
|
CallNode *alloc = n->as_Call();
|
|
// copy escape information to call node
|
|
PointsToNode* ptn = ptnode_adr(alloc->_idx);
|
|
PointsToNode::EscapeState es = ptn->escape_state();
|
|
// We have an allocation or call which returns a Java object,
|
|
// see if it is unescaped.
|
|
if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
|
|
continue;
|
|
// Find CheckCastPP for the allocate or for the return value of a call
|
|
n = alloc->result_cast();
|
|
if (n == NULL) { // No uses except Initialize node
|
|
if (alloc->is_Allocate()) {
|
|
// Set the scalar_replaceable flag for allocation
|
|
// so it could be eliminated if it has no uses.
|
|
alloc->as_Allocate()->_is_scalar_replaceable = true;
|
|
}
|
|
if (alloc->is_CallStaticJava()) {
|
|
// Set the scalar_replaceable flag for boxing method
|
|
// so it could be eliminated if it has no uses.
|
|
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
|
|
}
|
|
continue;
|
|
}
|
|
if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
|
|
assert(!alloc->is_Allocate(), "allocation should have unique type");
|
|
continue;
|
|
}
|
|
|
|
// The inline code for Object.clone() casts the allocation result to
|
|
// java.lang.Object and then to the actual type of the allocated
|
|
// object. Detect this case and use the second cast.
|
|
// Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
|
|
// the allocation result is cast to java.lang.Object and then
|
|
// to the actual Array type.
|
|
if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
|
|
&& (alloc->is_AllocateArray() ||
|
|
igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
|
|
Node *cast2 = NULL;
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->is_CheckCastPP()) {
|
|
cast2 = use;
|
|
break;
|
|
}
|
|
}
|
|
if (cast2 != NULL) {
|
|
n = cast2;
|
|
} else {
|
|
// Non-scalar replaceable if the allocation type is unknown statically
|
|
// (reflection allocation), the object can't be restored during
|
|
// deoptimization without precise type.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
|
|
if (t == NULL)
|
|
continue; // not a TypeOopPtr
|
|
if (!t->klass_is_exact())
|
|
continue; // not an unique type
|
|
|
|
if (alloc->is_Allocate()) {
|
|
// Set the scalar_replaceable flag for allocation
|
|
// so it could be eliminated.
|
|
alloc->as_Allocate()->_is_scalar_replaceable = true;
|
|
}
|
|
if (alloc->is_CallStaticJava()) {
|
|
// Set the scalar_replaceable flag for boxing method
|
|
// so it could be eliminated.
|
|
alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
|
|
}
|
|
set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
|
|
// in order for an object to be scalar-replaceable, it must be:
|
|
// - a direct allocation (not a call returning an object)
|
|
// - non-escaping
|
|
// - eligible to be a unique type
|
|
// - not determined to be ineligible by escape analysis
|
|
set_map(alloc, n);
|
|
set_map(n, alloc);
|
|
const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
|
|
igvn->hash_delete(n);
|
|
igvn->set_type(n, tinst);
|
|
n->raise_bottom_type(tinst);
|
|
igvn->hash_insert(n);
|
|
record_for_optimizer(n);
|
|
if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
|
|
|
|
// First, put on the worklist all Field edges from Connection Graph
|
|
// which is more accurate than putting immediate users from Ideal Graph.
|
|
for (EdgeIterator e(ptn); e.has_next(); e.next()) {
|
|
PointsToNode* tgt = e.get();
|
|
if (tgt->is_Arraycopy()) {
|
|
continue;
|
|
}
|
|
Node* use = tgt->ideal_node();
|
|
assert(tgt->is_Field() && use->is_AddP(),
|
|
"only AddP nodes are Field edges in CG");
|
|
if (use->outcnt() > 0) { // Don't process dead nodes
|
|
Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
|
|
if (addp2 != NULL) {
|
|
assert(alloc->is_AllocateArray(),"array allocation was expected");
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
}
|
|
}
|
|
|
|
// An allocation may have an Initialize which has raw stores. Scan
|
|
// the users of the raw allocation result and push AddP users
|
|
// on alloc_worklist.
|
|
Node *raw_result = alloc->proj_out(TypeFunc::Parms);
|
|
assert (raw_result != NULL, "must have an allocation result");
|
|
for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
|
|
Node *use = raw_result->fast_out(i);
|
|
if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
|
|
Node* addp2 = find_second_addp(use, raw_result);
|
|
if (addp2 != NULL) {
|
|
assert(alloc->is_AllocateArray(),"array allocation was expected");
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
}
|
|
}
|
|
} else if (n->is_AddP()) {
|
|
JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
|
|
if (jobj == NULL || jobj == phantom_obj) {
|
|
#ifdef ASSERT
|
|
ptnode_adr(get_addp_base(n)->_idx)->dump();
|
|
ptnode_adr(n->_idx)->dump();
|
|
assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
|
|
#endif
|
|
_compile->record_failure(C2Compiler::retry_no_escape_analysis());
|
|
return;
|
|
}
|
|
Node *base = get_map(jobj->idx()); // CheckCastPP node
|
|
if (!split_AddP(n, base)) continue; // wrong type from dead path
|
|
} else if (n->is_Phi() ||
|
|
n->is_CheckCastPP() ||
|
|
n->is_EncodeP() ||
|
|
n->is_DecodeN() ||
|
|
(n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
|
|
if (visited.test_set(n->_idx)) {
|
|
assert(n->is_Phi(), "loops only through Phi's");
|
|
continue; // already processed
|
|
}
|
|
JavaObjectNode* jobj = unique_java_object(n);
|
|
if (jobj == NULL || jobj == phantom_obj) {
|
|
#ifdef ASSERT
|
|
ptnode_adr(n->_idx)->dump();
|
|
assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
|
|
#endif
|
|
_compile->record_failure(C2Compiler::retry_no_escape_analysis());
|
|
return;
|
|
} else {
|
|
Node *val = get_map(jobj->idx()); // CheckCastPP node
|
|
TypeNode *tn = n->as_Type();
|
|
const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
|
|
assert(tinst != NULL && tinst->is_known_instance() &&
|
|
tinst->instance_id() == jobj->idx() , "instance type expected.");
|
|
|
|
const Type *tn_type = igvn->type(tn);
|
|
const TypeOopPtr *tn_t;
|
|
if (tn_type->isa_narrowoop()) {
|
|
tn_t = tn_type->make_ptr()->isa_oopptr();
|
|
} else {
|
|
tn_t = tn_type->isa_oopptr();
|
|
}
|
|
if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
|
|
if (tn_type->isa_narrowoop()) {
|
|
tn_type = tinst->make_narrowoop();
|
|
} else {
|
|
tn_type = tinst;
|
|
}
|
|
igvn->hash_delete(tn);
|
|
igvn->set_type(tn, tn_type);
|
|
tn->set_type(tn_type);
|
|
igvn->hash_insert(tn);
|
|
record_for_optimizer(n);
|
|
} else {
|
|
assert(tn_type == TypePtr::NULL_PTR ||
|
|
tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
|
|
"unexpected type");
|
|
continue; // Skip dead path with different type
|
|
}
|
|
}
|
|
} else {
|
|
debug_only(n->dump();)
|
|
assert(false, "EA: unexpected node");
|
|
continue;
|
|
}
|
|
// push allocation's users on appropriate worklist
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if(use->is_Mem() && use->in(MemNode::Address) == n) {
|
|
// Load/store to instance's field
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
} else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
|
|
Node* addp2 = find_second_addp(use, n);
|
|
if (addp2 != NULL) {
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
} else if (use->is_Phi() ||
|
|
use->is_CheckCastPP() ||
|
|
use->is_EncodeNarrowPtr() ||
|
|
use->is_DecodeNarrowPtr() ||
|
|
(use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
|
|
alloc_worklist.append_if_missing(use);
|
|
#ifdef ASSERT
|
|
} else if (use->is_Mem()) {
|
|
assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
|
|
} else if (use->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
} else if (use->is_SafePoint()) {
|
|
// Look for MergeMem nodes for calls which reference unique allocation
|
|
// (through CheckCastPP nodes) even for debug info.
|
|
Node* m = use->in(TypeFunc::Memory);
|
|
if (m->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
}
|
|
} else if (use->Opcode() == Op_EncodeISOArray) {
|
|
if (use->in(MemNode::Memory) == n || use->in(3) == n) {
|
|
// EncodeISOArray overwrites destination array
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
} else {
|
|
uint op = use->Opcode();
|
|
if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
|
|
(use->in(MemNode::Memory) == n)) {
|
|
// They overwrite memory edge corresponding to destination array,
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (!(op == Op_CmpP || op == Op_Conv2B ||
|
|
op == Op_CastP2X || op == Op_StoreCM ||
|
|
op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
|
|
op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
|
|
op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
|
|
n->dump();
|
|
use->dump();
|
|
assert(false, "EA: missing allocation reference path");
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Go over all ArrayCopy nodes and if one of the inputs has a unique
|
|
// type, record it in the ArrayCopy node so we know what memory this
|
|
// node uses/modified.
|
|
for (int next = 0; next < arraycopy_worklist.length(); next++) {
|
|
ArrayCopyNode* ac = arraycopy_worklist.at(next);
|
|
Node* dest = ac->in(ArrayCopyNode::Dest);
|
|
if (dest->is_AddP()) {
|
|
dest = get_addp_base(dest);
|
|
}
|
|
JavaObjectNode* jobj = unique_java_object(dest);
|
|
if (jobj != NULL) {
|
|
Node *base = get_map(jobj->idx());
|
|
if (base != NULL) {
|
|
const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
|
|
ac->_dest_type = base_t;
|
|
}
|
|
}
|
|
Node* src = ac->in(ArrayCopyNode::Src);
|
|
if (src->is_AddP()) {
|
|
src = get_addp_base(src);
|
|
}
|
|
jobj = unique_java_object(src);
|
|
if (jobj != NULL) {
|
|
Node* base = get_map(jobj->idx());
|
|
if (base != NULL) {
|
|
const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
|
|
ac->_src_type = base_t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// New alias types were created in split_AddP().
|
|
uint new_index_end = (uint) _compile->num_alias_types();
|
|
assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
|
|
|
|
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
|
|
// compute new values for Memory inputs (the Memory inputs are not
|
|
// actually updated until phase 4.)
|
|
if (memnode_worklist.length() == 0)
|
|
return; // nothing to do
|
|
while (memnode_worklist.length() != 0) {
|
|
Node *n = memnode_worklist.pop();
|
|
if (visited.test_set(n->_idx))
|
|
continue;
|
|
if (n->is_Phi() || n->is_ClearArray()) {
|
|
// we don't need to do anything, but the users must be pushed
|
|
} else if (n->is_MemBar()) { // Initialize, MemBar nodes
|
|
// we don't need to do anything, but the users must be pushed
|
|
n = n->as_MemBar()->proj_out(TypeFunc::Memory);
|
|
if (n == NULL)
|
|
continue;
|
|
} else if (n->Opcode() == Op_StrCompressedCopy ||
|
|
n->Opcode() == Op_EncodeISOArray) {
|
|
// get the memory projection
|
|
n = n->find_out_with(Op_SCMemProj);
|
|
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
|
|
} else {
|
|
assert(n->is_Mem(), "memory node required.");
|
|
Node *addr = n->in(MemNode::Address);
|
|
const Type *addr_t = igvn->type(addr);
|
|
if (addr_t == Type::TOP)
|
|
continue;
|
|
assert (addr_t->isa_ptr() != NULL, "pointer type required.");
|
|
int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
|
|
assert ((uint)alias_idx < new_index_end, "wrong alias index");
|
|
Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
if (mem != n->in(MemNode::Memory)) {
|
|
// We delay the memory edge update since we need old one in
|
|
// MergeMem code below when instances memory slices are separated.
|
|
set_map(n, mem);
|
|
}
|
|
if (n->is_Load()) {
|
|
continue; // don't push users
|
|
} else if (n->is_LoadStore()) {
|
|
// get the memory projection
|
|
n = n->find_out_with(Op_SCMemProj);
|
|
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
|
|
}
|
|
}
|
|
// push user on appropriate worklist
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->is_Phi() || use->is_ClearArray()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
|
|
if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
|
|
continue;
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
#ifdef ASSERT
|
|
} else if(use->is_Mem()) {
|
|
assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
|
|
} else if (use->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
} else if (use->Opcode() == Op_EncodeISOArray) {
|
|
if (use->in(MemNode::Memory) == n || use->in(3) == n) {
|
|
// EncodeISOArray overwrites destination array
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
} else {
|
|
uint op = use->Opcode();
|
|
if ((use->in(MemNode::Memory) == n) &&
|
|
(op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
|
|
// They overwrite memory edge corresponding to destination array,
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (!(op == Op_StoreCM ||
|
|
(op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
|
|
strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
|
|
op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
|
|
op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
|
|
op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
|
|
n->dump();
|
|
use->dump();
|
|
assert(false, "EA: missing memory path");
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// Phase 3: Process MergeMem nodes from mergemem_worklist.
|
|
// Walk each memory slice moving the first node encountered of each
|
|
// instance type to the the input corresponding to its alias index.
|
|
uint length = _mergemem_worklist.length();
|
|
for( uint next = 0; next < length; ++next ) {
|
|
MergeMemNode* nmm = _mergemem_worklist.at(next);
|
|
assert(!visited.test_set(nmm->_idx), "should not be visited before");
|
|
// Note: we don't want to use MergeMemStream here because we only want to
|
|
// scan inputs which exist at the start, not ones we add during processing.
|
|
// Note 2: MergeMem may already contains instance memory slices added
|
|
// during find_inst_mem() call when memory nodes were processed above.
|
|
igvn->hash_delete(nmm);
|
|
uint nslices = MIN2(nmm->req(), new_index_start);
|
|
for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
|
|
Node* mem = nmm->in(i);
|
|
Node* cur = NULL;
|
|
if (mem == NULL || mem->is_top())
|
|
continue;
|
|
// First, update mergemem by moving memory nodes to corresponding slices
|
|
// if their type became more precise since this mergemem was created.
|
|
while (mem->is_Mem()) {
|
|
const Type *at = igvn->type(mem->in(MemNode::Address));
|
|
if (at != Type::TOP) {
|
|
assert (at->isa_ptr() != NULL, "pointer type required.");
|
|
uint idx = (uint)_compile->get_alias_index(at->is_ptr());
|
|
if (idx == i) {
|
|
if (cur == NULL)
|
|
cur = mem;
|
|
} else {
|
|
if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
|
|
nmm->set_memory_at(idx, mem);
|
|
}
|
|
}
|
|
}
|
|
mem = mem->in(MemNode::Memory);
|
|
}
|
|
nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
|
|
// Find any instance of the current type if we haven't encountered
|
|
// already a memory slice of the instance along the memory chain.
|
|
for (uint ni = new_index_start; ni < new_index_end; ni++) {
|
|
if((uint)_compile->get_general_index(ni) == i) {
|
|
Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
|
|
if (nmm->is_empty_memory(m)) {
|
|
Node* result = find_inst_mem(mem, ni, orig_phis);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
nmm->set_memory_at(ni, result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Find the rest of instances values
|
|
for (uint ni = new_index_start; ni < new_index_end; ni++) {
|
|
const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
|
|
Node* result = step_through_mergemem(nmm, ni, tinst);
|
|
if (result == nmm->base_memory()) {
|
|
// Didn't find instance memory, search through general slice recursively.
|
|
result = nmm->memory_at(_compile->get_general_index(ni));
|
|
result = find_inst_mem(result, ni, orig_phis);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
nmm->set_memory_at(ni, result);
|
|
}
|
|
}
|
|
igvn->hash_insert(nmm);
|
|
record_for_optimizer(nmm);
|
|
}
|
|
|
|
// Phase 4: Update the inputs of non-instance memory Phis and
|
|
// the Memory input of memnodes
|
|
// First update the inputs of any non-instance Phi's from
|
|
// which we split out an instance Phi. Note we don't have
|
|
// to recursively process Phi's encounted on the input memory
|
|
// chains as is done in split_memory_phi() since they will
|
|
// also be processed here.
|
|
for (int j = 0; j < orig_phis.length(); j++) {
|
|
PhiNode *phi = orig_phis.at(j);
|
|
int alias_idx = _compile->get_alias_index(phi->adr_type());
|
|
igvn->hash_delete(phi);
|
|
for (uint i = 1; i < phi->req(); i++) {
|
|
Node *mem = phi->in(i);
|
|
Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
if (mem != new_mem) {
|
|
phi->set_req(i, new_mem);
|
|
}
|
|
}
|
|
igvn->hash_insert(phi);
|
|
record_for_optimizer(phi);
|
|
}
|
|
|
|
// Update the memory inputs of MemNodes with the value we computed
|
|
// in Phase 2 and move stores memory users to corresponding memory slices.
|
|
// Disable memory split verification code until the fix for 6984348.
|
|
// Currently it produces false negative results since it does not cover all cases.
|
|
#if 0 // ifdef ASSERT
|
|
visited.Reset();
|
|
Node_Stack old_mems(arena, _compile->unique() >> 2);
|
|
#endif
|
|
for (uint i = 0; i < ideal_nodes.size(); i++) {
|
|
Node* n = ideal_nodes.at(i);
|
|
Node* nmem = get_map(n->_idx);
|
|
assert(nmem != NULL, "sanity");
|
|
if (n->is_Mem()) {
|
|
#if 0 // ifdef ASSERT
|
|
Node* old_mem = n->in(MemNode::Memory);
|
|
if (!visited.test_set(old_mem->_idx)) {
|
|
old_mems.push(old_mem, old_mem->outcnt());
|
|
}
|
|
#endif
|
|
assert(n->in(MemNode::Memory) != nmem, "sanity");
|
|
if (!n->is_Load()) {
|
|
// Move memory users of a store first.
|
|
move_inst_mem(n, orig_phis);
|
|
}
|
|
// Now update memory input
|
|
igvn->hash_delete(n);
|
|
n->set_req(MemNode::Memory, nmem);
|
|
igvn->hash_insert(n);
|
|
record_for_optimizer(n);
|
|
} else {
|
|
assert(n->is_Allocate() || n->is_CheckCastPP() ||
|
|
n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
|
|
}
|
|
}
|
|
#if 0 // ifdef ASSERT
|
|
// Verify that memory was split correctly
|
|
while (old_mems.is_nonempty()) {
|
|
Node* old_mem = old_mems.node();
|
|
uint old_cnt = old_mems.index();
|
|
old_mems.pop();
|
|
assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
static const char *node_type_names[] = {
|
|
"UnknownType",
|
|
"JavaObject",
|
|
"LocalVar",
|
|
"Field",
|
|
"Arraycopy"
|
|
};
|
|
|
|
static const char *esc_names[] = {
|
|
"UnknownEscape",
|
|
"NoEscape",
|
|
"ArgEscape",
|
|
"GlobalEscape"
|
|
};
|
|
|
|
void PointsToNode::dump(bool print_state) const {
|
|
NodeType nt = node_type();
|
|
tty->print("%s ", node_type_names[(int) nt]);
|
|
if (print_state) {
|
|
EscapeState es = escape_state();
|
|
EscapeState fields_es = fields_escape_state();
|
|
tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
|
|
if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
|
|
tty->print("NSR ");
|
|
}
|
|
if (is_Field()) {
|
|
FieldNode* f = (FieldNode*)this;
|
|
if (f->is_oop())
|
|
tty->print("oop ");
|
|
if (f->offset() > 0)
|
|
tty->print("+%d ", f->offset());
|
|
tty->print("(");
|
|
for (BaseIterator i(f); i.has_next(); i.next()) {
|
|
PointsToNode* b = i.get();
|
|
tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
|
|
}
|
|
tty->print(" )");
|
|
}
|
|
tty->print("[");
|
|
for (EdgeIterator i(this); i.has_next(); i.next()) {
|
|
PointsToNode* e = i.get();
|
|
tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
|
|
}
|
|
tty->print(" [");
|
|
for (UseIterator i(this); i.has_next(); i.next()) {
|
|
PointsToNode* u = i.get();
|
|
bool is_base = false;
|
|
if (PointsToNode::is_base_use(u)) {
|
|
is_base = true;
|
|
u = PointsToNode::get_use_node(u)->as_Field();
|
|
}
|
|
tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
|
|
}
|
|
tty->print(" ]] ");
|
|
if (_node == NULL)
|
|
tty->print_cr("<null>");
|
|
else
|
|
_node->dump();
|
|
}
|
|
|
|
void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
|
|
bool first = true;
|
|
int ptnodes_length = ptnodes_worklist.length();
|
|
for (int i = 0; i < ptnodes_length; i++) {
|
|
PointsToNode *ptn = ptnodes_worklist.at(i);
|
|
if (ptn == NULL || !ptn->is_JavaObject())
|
|
continue;
|
|
PointsToNode::EscapeState es = ptn->escape_state();
|
|
if ((es != PointsToNode::NoEscape) && !Verbose) {
|
|
continue;
|
|
}
|
|
Node* n = ptn->ideal_node();
|
|
if (n->is_Allocate() || (n->is_CallStaticJava() &&
|
|
n->as_CallStaticJava()->is_boxing_method())) {
|
|
if (first) {
|
|
tty->cr();
|
|
tty->print("======== Connection graph for ");
|
|
_compile->method()->print_short_name();
|
|
tty->cr();
|
|
first = false;
|
|
}
|
|
ptn->dump();
|
|
// Print all locals and fields which reference this allocation
|
|
for (UseIterator j(ptn); j.has_next(); j.next()) {
|
|
PointsToNode* use = j.get();
|
|
if (use->is_LocalVar()) {
|
|
use->dump(Verbose);
|
|
} else if (Verbose) {
|
|
use->dump();
|
|
}
|
|
}
|
|
tty->cr();
|
|
}
|
|
}
|
|
}
|
|
#endif
|