020255a72d
Reviewed-by: valeriep, aivanov, iris, dholmes, ihse
2756 lines
112 KiB
Java
2756 lines
112 KiB
Java
/*
|
|
* Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/**
|
|
* A transliteration of the "Freely Distributable Math Library"
|
|
* algorithms from C into Java. That is, this port of the algorithms
|
|
* is as close to the C originals as possible while still being
|
|
* readable legal Java.
|
|
*/
|
|
public class FdlibmTranslit {
|
|
private FdlibmTranslit() {
|
|
throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
|
|
}
|
|
|
|
/**
|
|
* Return the low-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __LO(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)transducer;
|
|
}
|
|
|
|
/**
|
|
* Return a double with its low-order bits of the second argument
|
|
* and the high-order bits of the first argument..
|
|
*/
|
|
private static double __LO(double x, int low) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
|
|
(low & 0x0000_0000_FFFF_FFFFL));
|
|
}
|
|
|
|
/**
|
|
* Return the high-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __HI(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)(transducer >> 32);
|
|
}
|
|
|
|
/**
|
|
* Return a double with its high-order bits of the second argument
|
|
* and the low-order bits of the first argument..
|
|
*/
|
|
private static double __HI(double x, int high) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
|
|
( ((long)high)) << 32 );
|
|
}
|
|
|
|
public static double sin(double x) {
|
|
return Sin.compute(x);
|
|
}
|
|
|
|
public static double cos(double x) {
|
|
return Cos.compute(x);
|
|
}
|
|
|
|
public static double tan(double x) {
|
|
return Tan.compute(x);
|
|
}
|
|
|
|
public static double asin(double x) {
|
|
return Asin.compute(x);
|
|
}
|
|
|
|
public static double acos(double x) {
|
|
return Acos.compute(x);
|
|
}
|
|
|
|
public static double atan(double x) {
|
|
return Atan.compute(x);
|
|
}
|
|
|
|
public static double atan2(double y, double x) {
|
|
return Atan2.compute(y, x);
|
|
}
|
|
|
|
public static double hypot(double x, double y) {
|
|
return Hypot.compute(x, y);
|
|
}
|
|
|
|
public static double sqrt(double x) {
|
|
return Sqrt.compute(x);
|
|
}
|
|
|
|
public static double cbrt(double x) {
|
|
return Cbrt.compute(x);
|
|
}
|
|
|
|
public static double log(double x) {
|
|
return Log.compute(x);
|
|
}
|
|
|
|
public static double log10(double x) {
|
|
return Log10.compute(x);
|
|
}
|
|
|
|
public static double log1p(double x) {
|
|
return Log1p.compute(x);
|
|
}
|
|
|
|
public static double exp(double x) {
|
|
return Exp.compute(x);
|
|
}
|
|
|
|
public static double expm1(double x) {
|
|
return Expm1.compute(x);
|
|
}
|
|
|
|
public static double sinh(double x) {
|
|
return Sinh.compute(x);
|
|
}
|
|
|
|
public static double cosh(double x) {
|
|
return Cosh.compute(x);
|
|
}
|
|
|
|
public static double tanh(double x) {
|
|
return Tanh.compute(x);
|
|
}
|
|
|
|
public static double IEEEremainder(double f1, double f2) {
|
|
return IEEEremainder.compute(f1, f2);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------------
|
|
|
|
/** sin(x)
|
|
* Return sine function of x.
|
|
*
|
|
* kernel function:
|
|
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
|
* __kernel_cos ... cose function on [-pi/4,pi/4]
|
|
* __ieee754_rem_pio2 ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
static class Sin {
|
|
static double compute(double x) {
|
|
double[] y = new double[2];
|
|
double z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
|
|
|
|
/* sin(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x;
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = RemPio2.__ieee754_rem_pio2(x,y);
|
|
switch(n&3) {
|
|
case 0: return Sin.__kernel_sin(y[0],y[1],1);
|
|
case 1: return Cos.__kernel_cos(y[0],y[1]);
|
|
case 2: return -Sin.__kernel_sin(y[0],y[1],1);
|
|
default:
|
|
return -Cos.__kernel_cos(y[0],y[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** __kernel_sin( x, y, iy)
|
|
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
|
*
|
|
* Algorithm
|
|
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
|
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
|
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
|
* [0,pi/4]
|
|
* 3 13
|
|
* sin(x) ~ x + S1*x + ... + S6*x
|
|
* where
|
|
*
|
|
* |sin(x) 2 4 6 8 10 12 | -58
|
|
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
|
* | x |
|
|
*
|
|
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
|
* ~ sin(x) + (1-x*x/2)*y
|
|
* For better accuracy, let
|
|
* 3 2 2 2 2
|
|
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
|
* then 3 2
|
|
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
|
*/
|
|
private static final double
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
|
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
|
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
|
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
|
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
|
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
|
|
|
static double __kernel_sin(double x, double y, int iy) {
|
|
double z,r,v;
|
|
int ix;
|
|
ix = __HI(x)&0x7fffffff; /* high word of x */
|
|
if(ix<0x3e400000) /* |x| < 2**-27 */
|
|
{if((int)x==0) return x;} /* generate inexact */
|
|
z = x*x;
|
|
v = z*x;
|
|
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
|
if(iy==0) return x+v*(S1+z*r);
|
|
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
}
|
|
}
|
|
|
|
|
|
/** cos(x)
|
|
* Return cosine function of x.
|
|
*
|
|
* kernel function:
|
|
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
|
* __kernel_cos ... cosine function on [-pi/4,pi/4]
|
|
* __ieee754_rem_pio2 ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
static class Cos {
|
|
static double compute(double x) {
|
|
double[] y = new double[2];
|
|
double z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
|
|
|
|
/* cos(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x;
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = RemPio2.__ieee754_rem_pio2(x,y);
|
|
switch(n&3) {
|
|
case 0: return Cos.__kernel_cos(y[0],y[1]);
|
|
case 1: return -Sin.__kernel_sin(y[0],y[1],1);
|
|
case 2: return -Cos.__kernel_cos(y[0],y[1]);
|
|
default:
|
|
return Sin.__kernel_sin(y[0],y[1],1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __kernel_cos( x, y )
|
|
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
*
|
|
* Algorithm
|
|
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
|
* [0,pi/4]
|
|
* 4 14
|
|
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|
* where the remez error is
|
|
*
|
|
* | 2 4 6 8 10 12 14 | -58
|
|
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|
* | |
|
|
*
|
|
* 4 6 8 10 12 14
|
|
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|
* cos(x) = 1 - x*x/2 + r
|
|
* since cos(x+y) ~ cos(x) - sin(x)*y
|
|
* ~ cos(x) - x*y,
|
|
* a correction term is necessary in cos(x) and hence
|
|
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
|
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
|
* Then
|
|
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
|
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
|
* magnitude of the latter is at least a quarter of x*x/2,
|
|
* thus, reducing the rounding error in the subtraction.
|
|
*/
|
|
private static final double
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|
|
|
static double __kernel_cos(double x, double y) {
|
|
double a,hz,z,r,qx = 0.0;
|
|
int ix;
|
|
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
|
|
if(ix<0x3e400000) { /* if x < 2**27 */
|
|
if(((int)x)==0) return one; /* generate inexact */
|
|
}
|
|
z = x*x;
|
|
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|
return one - (0.5*z - (z*r - x*y));
|
|
else {
|
|
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|
qx = 0.28125;
|
|
} else {
|
|
//__HI(qx) = ix-0x00200000; /* x/4 */
|
|
qx = __HI(qx, ix-0x00200000);
|
|
// __LO(qx) = 0;
|
|
qx = __LO(qx, 0);
|
|
}
|
|
hz = 0.5*z-qx;
|
|
a = one-qx;
|
|
return a - (hz - (z*r-x*y));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** tan(x)
|
|
* Return tangent function of x.
|
|
*
|
|
* kernel function:
|
|
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
|
* __ieee754_rem_pio2 ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
static class Tan {
|
|
static double compute(double x) {
|
|
double[] y= new double[2];
|
|
double z=0.0;
|
|
int n, ix;
|
|
|
|
/* High word of x. */
|
|
ix = __HI(x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffff;
|
|
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|
|
|
/* tan(Inf or NaN) is NaN */
|
|
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = RemPio2.__ieee754_rem_pio2(x,y);
|
|
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
|
-1 -- n odd */
|
|
}
|
|
}
|
|
|
|
/** __kernel_tan( x, y, k )
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input k indicates whether tan (if k=1) or
|
|
* -1/tan (if k= -1) is returned.
|
|
*
|
|
* Algorithm
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
|
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
|
* [0,0.67434]
|
|
* 3 27
|
|
* tan(x) ~ x + T1*x + ... + T13*x
|
|
* where
|
|
*
|
|
* |tan(x) 2 4 26 | -59.2
|
|
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
|
* | x |
|
|
*
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
* ~ tan(x) + (1+x*x)*y
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
|
* 3 2 2 2 2
|
|
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
|
* then
|
|
* 3 2
|
|
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
|
*
|
|
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
*/
|
|
private static final double
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
|
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
|
|
T[] = {
|
|
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
|
|
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
|
|
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
|
|
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
|
|
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
|
|
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
|
|
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
|
|
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
|
|
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
|
|
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
|
|
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
|
|
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
|
|
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
|
|
};
|
|
|
|
static double __kernel_tan(double x, double y, int iy) {
|
|
double z,r,v,w,s;
|
|
int ix,hx;
|
|
hx = __HI(x); /* high word of x */
|
|
ix = hx&0x7fffffff; /* high word of |x| */
|
|
if(ix<0x3e300000) { /* x < 2**-28 */
|
|
if((int)x==0) { /* generate inexact */
|
|
if (((ix | __LO(x)) | (iy + 1)) == 0)
|
|
return one / Math.abs(x);
|
|
else {
|
|
if (iy == 1)
|
|
return x;
|
|
else { /* compute -1 / (x+y) carefully */
|
|
double a, t;
|
|
|
|
z = w = x + y;
|
|
// __LO(z) = 0;
|
|
z= __LO(z, 0);
|
|
v = y - (z - x);
|
|
t = a = -one / w;
|
|
//__LO(t) = 0;
|
|
t = __LO(t, 0);
|
|
s = one + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
|
|
if(hx<0) {x = -x; y = -y;}
|
|
z = pio4-x;
|
|
w = pio4lo-y;
|
|
x = z+w; y = 0.0;
|
|
}
|
|
z = x*x;
|
|
w = z*z;
|
|
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
|
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
|
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
|
*/
|
|
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
|
|
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
|
|
s = z*x;
|
|
r = y + z*(s*(r+v)+y);
|
|
r += T[0]*s;
|
|
w = x+r;
|
|
if(ix>=0x3FE59428) {
|
|
v = (double)iy;
|
|
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
|
|
}
|
|
if(iy==1) return w;
|
|
else { /* if allow error up to 2 ulp,
|
|
simply return -1.0/(x+r) here */
|
|
/* compute -1.0/(x+r) accurately */
|
|
double a,t;
|
|
z = w;
|
|
// __LO(z) = 0;
|
|
z = __LO(z, 0);
|
|
v = r-(z - x); /* z+v = r+x */
|
|
t = a = -1.0/w; /* a = -1.0/w */
|
|
// __LO(t) = 0;
|
|
t = __LO(t, 0);
|
|
s = 1.0+t*z;
|
|
return t+a*(s+t*v);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** __ieee754_rem_pio2(x,y)
|
|
*
|
|
* return the remainder of x rem pi/2 in y[0]+y[1]
|
|
* use __kernel_rem_pio2()
|
|
*/
|
|
static class RemPio2 {
|
|
/*
|
|
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
|
*/
|
|
private static final int[] two_over_pi = {
|
|
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
|
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
|
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
|
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
|
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
|
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
|
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
|
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
|
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
|
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
|
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
|
};
|
|
|
|
private static final int[] npio2_hw = {
|
|
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
|
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
|
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
|
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
|
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
|
0x404858EB, 0x404921FB,
|
|
};
|
|
|
|
/*
|
|
* invpio2: 53 bits of 2/pi
|
|
* pio2_1: first 33 bit of pi/2
|
|
* pio2_1t: pi/2 - pio2_1
|
|
* pio2_2: second 33 bit of pi/2
|
|
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
|
* pio2_3: third 33 bit of pi/2
|
|
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
|
*/
|
|
|
|
private static final double
|
|
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
|
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
|
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
|
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
|
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
|
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
|
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
|
|
|
static int __ieee754_rem_pio2(double x, double[] y) {
|
|
double z = 0.0,w,t,r,fn;
|
|
double[] tx = new double[3];
|
|
int e0,i,j,nx,n,ix,hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
ix = hx&0x7fffffff;
|
|
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
|
{y[0] = x; y[1] = 0; return 0;}
|
|
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
|
|
if(hx>0) {
|
|
z = x - pio2_1;
|
|
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
y[0] = z - pio2_1t;
|
|
y[1] = (z-y[0])-pio2_1t;
|
|
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
z -= pio2_2;
|
|
y[0] = z - pio2_2t;
|
|
y[1] = (z-y[0])-pio2_2t;
|
|
}
|
|
return 1;
|
|
} else { /* negative x */
|
|
z = x + pio2_1;
|
|
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
y[0] = z + pio2_1t;
|
|
y[1] = (z-y[0])+pio2_1t;
|
|
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
z += pio2_2;
|
|
y[0] = z + pio2_2t;
|
|
y[1] = (z-y[0])+pio2_2t;
|
|
}
|
|
return -1;
|
|
}
|
|
}
|
|
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
|
t = Math.abs(x);
|
|
n = (int) (t*invpio2+half);
|
|
fn = (double)n;
|
|
r = t-fn*pio2_1;
|
|
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
|
if(n<32&&ix!=npio2_hw[n-1]) {
|
|
y[0] = r-w; /* quick check no cancellation */
|
|
} else {
|
|
j = ix>>20;
|
|
y[0] = r-w;
|
|
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
|
if(i>16) { /* 2nd iteration needed, good to 118 */
|
|
t = r;
|
|
w = fn*pio2_2;
|
|
r = t-w;
|
|
w = fn*pio2_2t-((t-r)-w);
|
|
y[0] = r-w;
|
|
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
|
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
|
t = r; /* will cover all possible cases */
|
|
w = fn*pio2_3;
|
|
r = t-w;
|
|
w = fn*pio2_3t-((t-r)-w);
|
|
y[0] = r-w;
|
|
}
|
|
}
|
|
}
|
|
y[1] = (r-y[0])-w;
|
|
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
else return n;
|
|
}
|
|
/*
|
|
* all other (large) arguments
|
|
*/
|
|
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
|
y[0]=y[1]=x-x; return 0;
|
|
}
|
|
/* set z = scalbn(|x|,ilogb(x)-23) */
|
|
// __LO(z) = __LO(x);
|
|
z = __LO(z, __LO(x));
|
|
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
|
|
// __HI(z) = ix - (e0<<20);
|
|
z = __HI(z, ix - (e0<<20));
|
|
for(i=0;i<2;i++) {
|
|
tx[i] = (double)((int)(z));
|
|
z = (z-tx[i])*two24;
|
|
}
|
|
tx[2] = z;
|
|
nx = 3;
|
|
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
|
n = KernelRemPio2.__kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
|
|
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
return n;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
|
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
|
*
|
|
* __kernel_rem_pio2 return the last three digits of N with
|
|
* y = x - N*pi/2
|
|
* so that |y| < pi/2.
|
|
*
|
|
* The method is to compute the integer (mod 8) and fraction parts of
|
|
* (2/pi)*x without doing the full multiplication. In general we
|
|
* skip the part of the product that are known to be a huge integer (
|
|
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
|
* independent of the exponent of the input.
|
|
*
|
|
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
|
*
|
|
* Input parameters:
|
|
* x[] The input value (must be positive) is broken into nx
|
|
* pieces of 24-bit integers in double precision format.
|
|
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
|
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
|
* match x's up to 24 bits.
|
|
*
|
|
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
|
* e0 = ilogb(z)-23
|
|
* z = scalbn(z,-e0)
|
|
* for i = 0,1,2
|
|
* x[i] = floor(z)
|
|
* z = (z-x[i])*2**24
|
|
*
|
|
*
|
|
* y[] output result in an array of double precision numbers.
|
|
* The dimension of y[] is:
|
|
* 24-bit precision 1
|
|
* 53-bit precision 2
|
|
* 64-bit precision 2
|
|
* 113-bit precision 3
|
|
* The actual value is the sum of them. Thus for 113-bit
|
|
* precision, one may have to do something like:
|
|
*
|
|
* long double t,w,r_head, r_tail;
|
|
* t = (long double)y[2] + (long double)y[1];
|
|
* w = (long double)y[0];
|
|
* r_head = t+w;
|
|
* r_tail = w - (r_head - t);
|
|
*
|
|
* e0 The exponent of x[0]
|
|
*
|
|
* nx dimension of x[]
|
|
*
|
|
* prec an integer indicating the precision:
|
|
* 0 24 bits (single)
|
|
* 1 53 bits (double)
|
|
* 2 64 bits (extended)
|
|
* 3 113 bits (quad)
|
|
*
|
|
* ipio2[]
|
|
* integer array, contains the (24*i)-th to (24*i+23)-th
|
|
* bit of 2/pi after binary point. The corresponding
|
|
* floating value is
|
|
*
|
|
* ipio2[i] * 2^(-24(i+1)).
|
|
*
|
|
* External function:
|
|
* double scalbn(), floor();
|
|
*
|
|
*
|
|
* Here is the description of some local variables:
|
|
*
|
|
* jk jk+1 is the initial number of terms of ipio2[] needed
|
|
* in the computation. The recommended value is 2,3,4,
|
|
* 6 for single, double, extended,and quad.
|
|
*
|
|
* jz local integer variable indicating the number of
|
|
* terms of ipio2[] used.
|
|
*
|
|
* jx nx - 1
|
|
*
|
|
* jv index for pointing to the suitable ipio2[] for the
|
|
* computation. In general, we want
|
|
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
|
* is an integer. Thus
|
|
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
|
* Hence jv = max(0,(e0-3)/24).
|
|
*
|
|
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
|
*
|
|
* q[] double array with integral value, representing the
|
|
* 24-bits chunk of the product of x and 2/pi.
|
|
*
|
|
* q0 the corresponding exponent of q[0]. Note that the
|
|
* exponent for q[i] would be q0-24*i.
|
|
*
|
|
* PIo2[] double precision array, obtained by cutting pi/2
|
|
* into 24 bits chunks.
|
|
*
|
|
* f[] ipio2[] in floating point
|
|
*
|
|
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
|
*
|
|
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
|
*
|
|
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
|
* it also indicates the *sign* of the result.
|
|
*
|
|
*/
|
|
static class KernelRemPio2 {
|
|
/*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
private static final int[] init_jk = {2,3,4,6}; /* initial value for jk */
|
|
|
|
private static final double[] PIo2 = {
|
|
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
|
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
|
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
|
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
|
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
|
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
|
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
|
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
|
};
|
|
static final double
|
|
zero = 0.0,
|
|
one = 1.0,
|
|
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
|
|
|
static int __kernel_rem_pio2(double[] x, double[] y, int e0, int nx, int prec, final int[] ipio2) {
|
|
int jz,jx,jv,jp,jk,carry,n,i,j,k,m,q0,ih;
|
|
int[] iq = new int[20];
|
|
double z,fw;
|
|
double [] f = new double[20];
|
|
double [] fq= new double[20];
|
|
double [] q = new double[20];
|
|
|
|
/* initialize jk*/
|
|
jk = init_jk[prec];
|
|
jp = jk;
|
|
|
|
/* determine jx,jv,q0, note that 3>q0 */
|
|
jx = nx-1;
|
|
jv = (e0-3)/24; if(jv<0) jv=0;
|
|
q0 = e0-24*(jv+1);
|
|
|
|
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
|
j = jv-jx; m = jx+jk;
|
|
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
|
|
|
|
/* compute q[0],q[1],...q[jk] */
|
|
for (i=0;i<=jk;i++) {
|
|
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
|
q[i] = fw;
|
|
}
|
|
|
|
jz = jk;
|
|
/*
|
|
* Transliteration note: the FDLIBM C sources have a
|
|
* "recompute:" label at this point and a "goto
|
|
* recompute;" later on at the indicated point. This
|
|
* structure was replaced by wrapping the code in the
|
|
* while(true){...} loop below, replacing the goto with
|
|
* the continue to re-execute the loop and by adding
|
|
* breaks to exit the loop on the other control flow
|
|
* paths.
|
|
*/
|
|
while(true) {
|
|
/* distill q[] into iq[] reversingly */
|
|
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
|
fw = (double)((int)(twon24* z));
|
|
iq[i] = (int)(z-two24*fw);
|
|
z = q[j-1]+fw;
|
|
}
|
|
|
|
/* compute n */
|
|
z = Math.scalb(z,q0); /* actual value of z */
|
|
z -= 8.0*Math.floor(z*0.125); /* trim off integer >= 8 */
|
|
n = (int) z;
|
|
z -= (double)n;
|
|
ih = 0;
|
|
if(q0>0) { /* need iq[jz-1] to determine n */
|
|
i = (iq[jz-1]>>(24-q0)); n += i;
|
|
iq[jz-1] -= i<<(24-q0);
|
|
ih = iq[jz-1]>>(23-q0);
|
|
}
|
|
else if(q0==0) ih = iq[jz-1]>>23;
|
|
else if(z>=0.5) ih=2;
|
|
|
|
if(ih>0) { /* q > 0.5 */
|
|
n += 1; carry = 0;
|
|
for(i=0;i<jz ;i++) { /* compute 1-q */
|
|
j = iq[i];
|
|
if(carry==0) {
|
|
if(j!=0) {
|
|
carry = 1; iq[i] = 0x1000000- j;
|
|
}
|
|
} else iq[i] = 0xffffff - j;
|
|
}
|
|
if(q0>0) { /* rare case: chance is 1 in 12 */
|
|
switch(q0) {
|
|
case 1:
|
|
iq[jz-1] &= 0x7fffff; break;
|
|
case 2:
|
|
iq[jz-1] &= 0x3fffff; break;
|
|
}
|
|
}
|
|
if(ih==2) {
|
|
z = one - z;
|
|
if(carry!=0) z -= Math.scalb(one,q0);
|
|
}
|
|
}
|
|
|
|
/* check if recomputation is needed */
|
|
if(z==zero) {
|
|
j = 0;
|
|
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
|
if(j==0) { /* need recomputation */
|
|
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
|
|
|
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
|
f[jx+i] = (double) ipio2[jv+i];
|
|
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
|
q[i] = fw;
|
|
}
|
|
jz += k;
|
|
// At this point "goto recompute;" in the original C sources.
|
|
continue;
|
|
} else { break;}
|
|
} else {break;}
|
|
}
|
|
|
|
/* chop off zero terms */
|
|
if(z==0.0) {
|
|
jz -= 1; q0 -= 24;
|
|
while(iq[jz]==0) { jz--; q0-=24;}
|
|
} else { /* break z into 24-bit if necessary */
|
|
z = Math.scalb(z,-q0);
|
|
if(z>=two24) {
|
|
fw = (double)((int)(twon24*z));
|
|
iq[jz] = (int)(z-two24*fw);
|
|
jz += 1; q0 += 24;
|
|
iq[jz] = (int) fw;
|
|
} else iq[jz] = (int) z ;
|
|
}
|
|
|
|
/* convert integer "bit" chunk to floating-point value */
|
|
fw = Math.scalb(one,q0);
|
|
for(i=jz;i>=0;i--) {
|
|
q[i] = fw*(double)iq[i]; fw*=twon24;
|
|
}
|
|
|
|
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
|
for(i=jz;i>=0;i--) {
|
|
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
|
fq[jz-i] = fw;
|
|
}
|
|
|
|
/* compress fq[] into y[] */
|
|
switch(prec) {
|
|
case 0:
|
|
fw = 0.0;
|
|
for (i=jz;i>=0;i--) fw += fq[i];
|
|
y[0] = (ih==0)? fw: -fw;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
fw = 0.0;
|
|
for (i=jz;i>=0;i--) fw += fq[i];
|
|
y[0] = (ih==0)? fw: -fw;
|
|
fw = fq[0]-fw;
|
|
for (i=1;i<=jz;i++) fw += fq[i];
|
|
y[1] = (ih==0)? fw: -fw;
|
|
break;
|
|
case 3: /* painful */
|
|
for (i=jz;i>0;i--) {
|
|
fw = fq[i-1]+fq[i];
|
|
fq[i] += fq[i-1]-fw;
|
|
fq[i-1] = fw;
|
|
}
|
|
for (i=jz;i>1;i--) {
|
|
fw = fq[i-1]+fq[i];
|
|
fq[i] += fq[i-1]-fw;
|
|
fq[i-1] = fw;
|
|
}
|
|
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
|
if(ih==0) {
|
|
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
|
} else {
|
|
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
|
}
|
|
}
|
|
return n&7;
|
|
}
|
|
}
|
|
|
|
/** Returns the arcsine of x.
|
|
*
|
|
* Method :
|
|
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
|
* we approximate asin(x) on [0,0.5] by
|
|
* asin(x) = x + x*x^2*R(x^2)
|
|
* where
|
|
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
|
* and its remez error is bounded by
|
|
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
|
*
|
|
* For x in [0.5,1]
|
|
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
|
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
|
* then for x>0.98
|
|
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
|
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
|
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
|
* f = hi part of s;
|
|
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
|
* and
|
|
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
|
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
|
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
|
*
|
|
* Special cases:
|
|
* if x is NaN, return x itself;
|
|
* if |x|>1, return NaN with invalid signal.
|
|
*
|
|
*/
|
|
static class Asin {
|
|
private static final double
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
huge = 1.000e+300,
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
|
/* coefficient for R(x^2) */
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
static double compute(double x) {
|
|
double t=0,w,p,q,c,r,s;
|
|
int hx,ix;
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
|
if(((ix-0x3ff00000)|__LO(x))==0)
|
|
/* asin(1)=+-pi/2 with inexact */
|
|
return x*pio2_hi+x*pio2_lo;
|
|
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
|
} else if (ix<0x3fe00000) { /* |x|<0.5 */
|
|
if(ix<0x3e400000) { /* if |x| < 2**-27 */
|
|
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
|
} else
|
|
t = x*x;
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
|
w = p/q;
|
|
return x+x*w;
|
|
}
|
|
/* 1> |x|>= 0.5 */
|
|
w = one-Math.abs(x);
|
|
t = w*0.5;
|
|
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
|
|
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
|
|
s = Math.sqrt(t);
|
|
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
|
|
w = p/q;
|
|
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
|
} else {
|
|
w = s;
|
|
// __LO(w) = 0;
|
|
w = __LO(w, 0);
|
|
c = (t-w*w)/(s+w);
|
|
r = p/q;
|
|
p = 2.0*s*r-(pio2_lo-2.0*c);
|
|
q = pio4_hi-2.0*w;
|
|
t = pio4_hi-(p-q);
|
|
}
|
|
if(hx>0) return t; else return -t;
|
|
}
|
|
}
|
|
|
|
/** Returns the arccosine of x.
|
|
* Method :
|
|
* acos(x) = pi/2 - asin(x)
|
|
* acos(-x) = pi/2 + asin(x)
|
|
* For |x|<=0.5
|
|
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
|
* For x>0.5
|
|
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
|
* = 2asin(sqrt((1-x)/2))
|
|
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
|
* = 2f + (2c + 2s*z*R(z))
|
|
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
|
* for f so that f+c ~ sqrt(z).
|
|
* For x<-0.5
|
|
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
|
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
|
*
|
|
* Special cases:
|
|
* if x is NaN, return x itself;
|
|
* if |x|>1, return NaN with invalid signal.
|
|
*
|
|
* Function needed: sqrt
|
|
*/
|
|
static class Acos {
|
|
private static final double
|
|
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
|
|
|
static double compute(double x) {
|
|
double z,p,q,r,w,s,c,df;
|
|
int hx,ix;
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
|
if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */
|
|
if(hx>0) return 0.0; /* acos(1) = 0 */
|
|
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
|
}
|
|
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
|
}
|
|
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
|
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
|
z = x*x;
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
r = p/q;
|
|
return pio2_hi - (x - (pio2_lo-x*r));
|
|
} else if (hx<0) { /* x < -0.5 */
|
|
z = (one+x)*0.5;
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
s = Math.sqrt(z);
|
|
r = p/q;
|
|
w = r*s-pio2_lo;
|
|
return pi - 2.0*(s+w);
|
|
} else { /* x > 0.5 */
|
|
z = (one-x)*0.5;
|
|
s = Math.sqrt(z);
|
|
df = s;
|
|
// __LO(df) = 0;
|
|
df = __LO(df, 0);
|
|
c = (z-df*df)/(s+df);
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
|
r = p/q;
|
|
w = r*s+c;
|
|
return 2.0*(df+w);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns the arctangent of x.
|
|
* Method
|
|
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
|
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
|
* is further reduced to one of the following intervals and the
|
|
* arctangent of t is evaluated by the corresponding formula:
|
|
*
|
|
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
|
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
|
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
|
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
|
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
static class Atan {
|
|
private static final double atanhi[] = {
|
|
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
|
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
|
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
|
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
|
};
|
|
|
|
private static final double atanlo[] = {
|
|
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
|
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
|
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
|
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
|
};
|
|
|
|
private static final double aT[] = {
|
|
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
|
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
|
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
|
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
|
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
|
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
|
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
|
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
|
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
|
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
|
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
|
};
|
|
|
|
private static final double
|
|
one = 1.0,
|
|
huge = 1.0e300;
|
|
|
|
static double compute(double x) {
|
|
double w,s1,s2,z;
|
|
int ix,hx,id;
|
|
|
|
hx = __HI(x);
|
|
ix = hx&0x7fffffff;
|
|
if(ix>=0x44100000) { /* if |x| >= 2^66 */
|
|
if(ix>0x7ff00000||
|
|
(ix==0x7ff00000&&(__LO(x)!=0)))
|
|
return x+x; /* NaN */
|
|
if(hx>0) return atanhi[3]+atanlo[3];
|
|
else return -atanhi[3]-atanlo[3];
|
|
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
|
if (ix < 0x3e200000) { /* |x| < 2^-29 */
|
|
if(huge+x>one) return x; /* raise inexact */
|
|
}
|
|
id = -1;
|
|
} else {
|
|
x = Math.abs(x);
|
|
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
|
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
|
id = 0; x = (2.0*x-one)/(2.0+x);
|
|
} else { /* 11/16<=|x|< 19/16 */
|
|
id = 1; x = (x-one)/(x+one);
|
|
}
|
|
} else {
|
|
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
|
id = 2; x = (x-1.5)/(one+1.5*x);
|
|
} else { /* 2.4375 <= |x| < 2^66 */
|
|
id = 3; x = -1.0/x;
|
|
}
|
|
}}
|
|
/* end of argument reduction */
|
|
z = x*x;
|
|
w = z*z;
|
|
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
|
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
|
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
|
if (id<0) return x - x*(s1+s2);
|
|
else {
|
|
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
|
return (hx<0)? -z:z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the angle theta from the conversion of rectangular
|
|
* coordinates (x, y) to polar coordinates (r, theta).
|
|
*
|
|
* Method :
|
|
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
|
* 2. Reduce x to positive by (if x and y are unexceptional):
|
|
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
|
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
|
*
|
|
* Special cases:
|
|
*
|
|
* ATAN2((anything), NaN ) is NaN;
|
|
* ATAN2(NAN , (anything) ) is NaN;
|
|
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
|
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
|
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
|
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
|
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
|
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
|
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
|
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
static class Atan2 {
|
|
private static final double
|
|
tiny = 1.0e-300,
|
|
zero = 0.0,
|
|
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
|
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
|
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
|
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
|
|
|
static double compute(double y, double x) {
|
|
double z;
|
|
int k,m,hx,hy,ix,iy;
|
|
/*unsigned*/ int lx,ly;
|
|
|
|
hx = __HI(x); ix = hx&0x7fffffff;
|
|
lx = __LO(x);
|
|
hy = __HI(y); iy = hy&0x7fffffff;
|
|
ly = __LO(y);
|
|
if(((ix|((lx|-lx)>>>31))>0x7ff00000)|| // Note unsigned shifts
|
|
((iy|((ly|-ly)>>>31))>0x7ff00000)) /* x or y is NaN */
|
|
return x+y;
|
|
if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */
|
|
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
|
|
|
|
/* when y = 0 */
|
|
if((iy|ly)==0) {
|
|
switch(m) {
|
|
case 0:
|
|
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
|
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
|
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
|
}
|
|
}
|
|
/* when x = 0 */
|
|
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
|
|
/* when x is INF */
|
|
if(ix==0x7ff00000) {
|
|
if(iy==0x7ff00000) {
|
|
switch(m) {
|
|
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
|
|
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
|
|
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
|
|
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
|
|
}
|
|
} else {
|
|
switch(m) {
|
|
case 0: return zero ; /* atan(+...,+INF) */
|
|
case 1: return -1.0*zero ; /* atan(-...,+INF) */
|
|
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
|
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
|
}
|
|
}
|
|
}
|
|
/* when y is INF */
|
|
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
|
|
|
|
/* compute y/x */
|
|
k = (iy-ix)>>20;
|
|
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
|
|
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
|
|
else z=atan(Math.abs(y/x)); /* safe to do y/x */
|
|
switch (m) {
|
|
case 0: return z ; /* atan(+,+) */
|
|
case 1:
|
|
// original:__HI(z) ^= 0x80000000;
|
|
z = __HI(z, __HI(z) ^ 0x80000000);
|
|
return z ; /* atan(-,+) */
|
|
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
|
default: /* case 3 */
|
|
return (z-pi_lo)-pi;/* atan(-,-) */
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return correctly rounded sqrt.
|
|
* ------------------------------------------
|
|
* | Use the hardware sqrt if you have one |
|
|
* ------------------------------------------
|
|
* Method:
|
|
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
|
* 1. Normalization
|
|
* Scale x to y in [1,4) with even powers of 2:
|
|
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
|
* sqrt(x) = 2^k * sqrt(y)
|
|
* 2. Bit by bit computation
|
|
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
|
* i 0
|
|
* i+1 2
|
|
* s = 2*q , and y = 2 * ( y - q ). (1)
|
|
* i i i i
|
|
*
|
|
* To compute q from q , one checks whether
|
|
* i+1 i
|
|
*
|
|
* -(i+1) 2
|
|
* (q + 2 ) <= y. (2)
|
|
* i
|
|
* -(i+1)
|
|
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
|
* i+1 i i+1 i
|
|
*
|
|
* With some algebraic manipulation, it is not difficult to see
|
|
* that (2) is equivalent to
|
|
* -(i+1)
|
|
* s + 2 <= y (3)
|
|
* i i
|
|
*
|
|
* The advantage of (3) is that s and y can be computed by
|
|
* i i
|
|
* the following recurrence formula:
|
|
* if (3) is false
|
|
*
|
|
* s = s , y = y ; (4)
|
|
* i+1 i i+1 i
|
|
*
|
|
* otherwise,
|
|
* -i -(i+1)
|
|
* s = s + 2 , y = y - s - 2 (5)
|
|
* i+1 i i+1 i i
|
|
*
|
|
* One may easily use induction to prove (4) and (5).
|
|
* Note. Since the left hand side of (3) contain only i+2 bits,
|
|
* it does not necessary to do a full (53-bit) comparison
|
|
* in (3).
|
|
* 3. Final rounding
|
|
* After generating the 53 bits result, we compute one more bit.
|
|
* Together with the remainder, we can decide whether the
|
|
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
|
* (it will never equal to 1/2ulp).
|
|
* The rounding mode can be detected by checking whether
|
|
* huge + tiny is equal to huge, and whether huge - tiny is
|
|
* equal to huge for some floating point number "huge" and "tiny".
|
|
*
|
|
* Special cases:
|
|
* sqrt(+-0) = +-0 ... exact
|
|
* sqrt(inf) = inf
|
|
* sqrt(-ve) = NaN ... with invalid signal
|
|
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
|
*
|
|
* Other methods : see the appended file at the end of the program below.
|
|
*---------------
|
|
*/
|
|
static class Sqrt {
|
|
private static final double one = 1.0, tiny=1.0e-300;
|
|
|
|
public static double compute(double x) {
|
|
double z = 0.0;
|
|
int sign = (int)0x80000000;
|
|
/*unsigned*/ int r,t1,s1,ix1,q1;
|
|
int ix0,s0,q,m,t,i;
|
|
|
|
ix0 = __HI(x); /* high word of x */
|
|
ix1 = __LO(x); /* low word of x */
|
|
|
|
/* take care of Inf and NaN */
|
|
if((ix0&0x7ff00000)==0x7ff00000) {
|
|
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
|
sqrt(-inf)=sNaN */
|
|
}
|
|
/* take care of zero */
|
|
if(ix0<=0) {
|
|
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
|
else if(ix0<0)
|
|
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
|
}
|
|
/* normalize x */
|
|
m = (ix0>>20);
|
|
if(m==0) { /* subnormal x */
|
|
while(ix0==0) {
|
|
m -= 21;
|
|
ix0 |= (ix1>>>11); ix1 <<= 21; // unsigned shift
|
|
}
|
|
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
|
m -= i-1;
|
|
ix0 |= (ix1>>>(32-i)); // unsigned shift
|
|
ix1 <<= i;
|
|
}
|
|
m -= 1023; /* unbias exponent */
|
|
ix0 = (ix0&0x000fffff)|0x00100000;
|
|
if((m&1) != 0){ /* odd m, double x to make it even */
|
|
ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift
|
|
ix1 += ix1;
|
|
}
|
|
m >>= 1; /* m = [m/2] */
|
|
|
|
/* generate sqrt(x) bit by bit */
|
|
ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift
|
|
ix1 += ix1;
|
|
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
|
r = 0x00200000; /* r = moving bit from right to left */
|
|
|
|
while(r!=0) {
|
|
t = s0+r;
|
|
if(t<=ix0) {
|
|
s0 = t+r;
|
|
ix0 -= t;
|
|
q += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift
|
|
ix1 += ix1;
|
|
r>>>=1; // unsigned shift
|
|
}
|
|
|
|
r = sign;
|
|
while(r!=0) {
|
|
t1 = s1+r;
|
|
t = s0;
|
|
if((t<ix0)||((t==ix0)&&(Integer.compareUnsigned(t1, ix1) <= 0 ))) { // t1<=ix1
|
|
s1 = t1+r;
|
|
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
|
ix0 -= t;
|
|
if (Integer.compareUnsigned(ix1, t1) < 0) ix0 -= 1; // ix1 < t1
|
|
ix1 -= t1;
|
|
q1 += r;
|
|
}
|
|
ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift
|
|
ix1 += ix1;
|
|
r>>>=1; // unsigned shift
|
|
}
|
|
|
|
/* use floating add to find out rounding direction */
|
|
if((ix0|ix1)!=0) {
|
|
z = one-tiny; /* trigger inexact flag */
|
|
if (z>=one) {
|
|
z = one+tiny;
|
|
if (q1==0xffffffff) { q1=0; q += 1;}
|
|
else if (z>one) {
|
|
if (q1==0xfffffffe) q+=1;
|
|
q1+=2;
|
|
} else
|
|
q1 += (q1&1);
|
|
}
|
|
}
|
|
ix0 = (q>>1)+0x3fe00000;
|
|
ix1 = q1>>>1; // unsigned shift
|
|
if ((q&1)==1) ix1 |= sign;
|
|
ix0 += (m <<20);
|
|
// __HI(z) = ix0;
|
|
z = __HI(z, ix0);
|
|
// __LO(z) = ix1;
|
|
z = __LO(z, ix1);
|
|
return z;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cbrt(x)
|
|
* Return cube root of x
|
|
*/
|
|
public static class Cbrt {
|
|
// unsigned
|
|
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
|
|
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
|
|
|
private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
|
|
private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
|
|
private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
|
|
private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
|
|
private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
|
|
|
|
public static double compute(double x) {
|
|
int hx;
|
|
double r, s, t=0.0, w;
|
|
int sign; // unsigned
|
|
|
|
hx = __HI(x); // high word of x
|
|
sign = hx & 0x80000000; // sign= sign(x)
|
|
hx ^= sign;
|
|
if (hx >= 0x7ff00000)
|
|
return (x+x); // cbrt(NaN,INF) is itself
|
|
if ((hx | __LO(x)) == 0)
|
|
return(x); // cbrt(0) is itself
|
|
|
|
x = __HI(x, hx); // x <- |x|
|
|
// rough cbrt to 5 bits
|
|
if (hx < 0x00100000) { // subnormal number
|
|
t = __HI(t, 0x43500000); // set t= 2**54
|
|
t *= x;
|
|
t = __HI(t, __HI(t)/3+B2);
|
|
} else {
|
|
t = __HI(t, hx/3+B1);
|
|
}
|
|
|
|
// new cbrt to 23 bits, may be implemented in single precision
|
|
r = t * t/x;
|
|
s = C + r*t;
|
|
t *= G + F/(s + E + D/s);
|
|
|
|
// chopped to 20 bits and make it larger than cbrt(x)
|
|
t = __LO(t, 0);
|
|
t = __HI(t, __HI(t)+0x00000001);
|
|
|
|
|
|
// one step newton iteration to 53 bits with error less than 0.667 ulps
|
|
s = t * t; // t*t is exact
|
|
r = x / s;
|
|
w = t + t;
|
|
r= (r - t)/(w + r); // r-s is exact
|
|
t= t + t*r;
|
|
|
|
// retore the sign bit
|
|
t = __HI(t, __HI(t) | sign);
|
|
return(t);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hypot(x,y)
|
|
*
|
|
* Method :
|
|
* If (assume round-to-nearest) z = x*x + y*y
|
|
* has error less than sqrt(2)/2 ulp, than
|
|
* sqrt(z) has error less than 1 ulp (exercise).
|
|
*
|
|
* So, compute sqrt(x*x + y*y) with some care as
|
|
* follows to get the error below 1 ulp:
|
|
*
|
|
* Assume x > y > 0;
|
|
* (if possible, set rounding to round-to-nearest)
|
|
* 1. if x > 2y use
|
|
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
|
|
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
|
|
* 2. if x <= 2y use
|
|
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
|
|
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
|
|
* y1= y with lower 32 bits chopped, y2 = y - y1.
|
|
*
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
* large or too tiny
|
|
*
|
|
* Special cases:
|
|
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
|
* hypot(x,y) is NAN if x or y is NAN.
|
|
*
|
|
* Accuracy:
|
|
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
|
|
* than 1 ulps (units in the last place)
|
|
*/
|
|
static class Hypot {
|
|
public static double compute(double x, double y) {
|
|
double a = x;
|
|
double b = y;
|
|
double t1, t2, y1, y2, w;
|
|
int j, k, ha, hb;
|
|
|
|
ha = __HI(x) & 0x7fffffff; // high word of x
|
|
hb = __HI(y) & 0x7fffffff; // high word of y
|
|
if(hb > ha) {
|
|
a = y;
|
|
b = x;
|
|
j = ha;
|
|
ha = hb;
|
|
hb = j;
|
|
} else {
|
|
a = x;
|
|
b = y;
|
|
}
|
|
a = __HI(a, ha); // a <- |a|
|
|
b = __HI(b, hb); // b <- |b|
|
|
if ((ha - hb) > 0x3c00000) {
|
|
return a + b; // x / y > 2**60
|
|
}
|
|
k=0;
|
|
if (ha > 0x5f300000) { // a>2**500
|
|
if (ha >= 0x7ff00000) { // Inf or NaN
|
|
w = a + b; // for sNaN
|
|
if (((ha & 0xfffff) | __LO(a)) == 0)
|
|
w = a;
|
|
if (((hb ^ 0x7ff00000) | __LO(b)) == 0)
|
|
w = b;
|
|
return w;
|
|
}
|
|
// scale a and b by 2**-600
|
|
ha -= 0x25800000;
|
|
hb -= 0x25800000;
|
|
k += 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
if (hb < 0x20b00000) { // b < 2**-500
|
|
if (hb <= 0x000fffff) { // subnormal b or 0 */
|
|
if ((hb | (__LO(b))) == 0)
|
|
return a;
|
|
t1 = 0;
|
|
t1 = __HI(t1, 0x7fd00000); // t1=2^1022
|
|
b *= t1;
|
|
a *= t1;
|
|
k -= 1022;
|
|
} else { // scale a and b by 2^600
|
|
ha += 0x25800000; // a *= 2^600
|
|
hb += 0x25800000; // b *= 2^600
|
|
k -= 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
}
|
|
// medium size a and b
|
|
w = a - b;
|
|
if (w > b) {
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
|
|
} else {
|
|
a = a + a;
|
|
y1 = 0;
|
|
y1 = __HI(y1, hb);
|
|
y2 = b - y1;
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha + 0x00100000);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
|
|
}
|
|
if (k != 0) {
|
|
t1 = 1.0;
|
|
int t1_hi = __HI(t1);
|
|
t1_hi += (k << 20);
|
|
t1 = __HI(t1, t1_hi);
|
|
return t1 * w;
|
|
} else
|
|
return w;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the exponential of x.
|
|
*
|
|
* Method
|
|
* 1. Argument reduction:
|
|
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
* Given x, find r and integer k such that
|
|
*
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
*
|
|
* Here r will be represented as r = hi-lo for better
|
|
* accuracy.
|
|
*
|
|
* 2. Approximation of exp(r) by a special rational function on
|
|
* the interval [0,0.34658]:
|
|
* Write
|
|
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
* We use a special Reme algorithm on [0,0.34658] to generate
|
|
* a polynomial of degree 5 to approximate R. The maximum error
|
|
* of this polynomial approximation is bounded by 2**-59. In
|
|
* other words,
|
|
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
* (where z=r*r, and the values of P1 to P5 are listed below)
|
|
* and
|
|
* | 5 | -59
|
|
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
* | |
|
|
* The computation of exp(r) thus becomes
|
|
* 2*r
|
|
* exp(r) = 1 + -------
|
|
* R - r
|
|
* r*R1(r)
|
|
* = 1 + r + ----------- (for better accuracy)
|
|
* 2 - R1(r)
|
|
* where
|
|
* 2 4 10
|
|
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
*
|
|
* 3. Scale back to obtain exp(x):
|
|
* From step 1, we have
|
|
* exp(x) = 2^k * exp(r)
|
|
*
|
|
* Special cases:
|
|
* exp(INF) is INF, exp(NaN) is NaN;
|
|
* exp(-INF) is 0, and
|
|
* for finite argument, only exp(0)=1 is exact.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Misc. info.
|
|
* For IEEE double
|
|
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
private static final class Exp {
|
|
private static final double one = 1.0;
|
|
private static final double[] halF = {0.5,-0.5,};
|
|
private static final double huge = 1.0e+300;
|
|
private static final double twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
|
|
private static final double o_threshold= 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
|
private static final double u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
|
|
private static final double[] ln2HI ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
-6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */
|
|
private static final double[] ln2LO ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
-1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
|
|
private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
|
private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
|
|
private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
|
|
private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
|
|
private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
static double compute(double x) {
|
|
double y,hi=0,lo=0,c,t;
|
|
int k=0,xsb;
|
|
/*unsigned*/ int hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
xsb = (hx>>31)&1; /* sign bit of x */
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
/* filter out non-finite argument */
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
if(hx>=0x7ff00000) {
|
|
if(((hx&0xfffff)|__LO(x))!=0)
|
|
return x+x; /* NaN */
|
|
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|
}
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
|
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|
}
|
|
|
|
/* argument reduction */
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|
} else {
|
|
k = (int)(invln2*x+halF[xsb]);
|
|
t = k;
|
|
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
lo = t*ln2LO[0];
|
|
}
|
|
x = hi - lo;
|
|
}
|
|
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|
if(huge+x>one) return one+x;/* trigger inexact */
|
|
}
|
|
else k = 0;
|
|
|
|
/* x is now in primary range */
|
|
t = x*x;
|
|
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
if(k==0) return one-((x*c)/(c-2.0)-x);
|
|
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|
if(k >= -1021) {
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
return y;
|
|
} else {
|
|
y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
|
|
return y*twom1000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the logarithm of x
|
|
*
|
|
* Method :
|
|
* 1. Argument Reduction: find k and f such that
|
|
* x = 2^k * (1+f),
|
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
*
|
|
* 2. Approximation of log(1+f).
|
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
* = 2s + s*R
|
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
* a polynomial of degree 14 to approximate R The maximum error
|
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
* other words,
|
|
* 2 4 6 8 10 12 14
|
|
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
* (the values of Lg1 to Lg7 are listed in the program)
|
|
* and
|
|
* | 2 14 | -58.45
|
|
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
* | |
|
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
* In order to guarantee error in log below 1ulp, we compute log
|
|
* by
|
|
* log(1+f) = f - s*(f - R) (if f is not too large)
|
|
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
*
|
|
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
|
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
* Here ln2 is split into two floating point number:
|
|
* ln2_hi + ln2_lo,
|
|
* where n*ln2_hi is always exact for |n| < 2000.
|
|
*
|
|
* Special cases:
|
|
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
|
* log(+INF) is +INF; log(0) is -INF with signal;
|
|
* log(NaN) is that NaN with no signal.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
private static final class Log {
|
|
private static final double
|
|
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
|
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
|
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
|
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
|
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|
|
|
private static double zero = 0.0;
|
|
|
|
static double compute(double x) {
|
|
double hfsq,f,s,z,R,w,t1,t2,dk;
|
|
int k,hx,i,j;
|
|
/*unsigned*/ int lx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
lx = __LO(x); /* low word of x */
|
|
|
|
k=0;
|
|
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
if (((hx&0x7fffffff)|lx)==0)
|
|
return -two54/zero; /* log(+-0)=-inf */
|
|
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
|
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
hx = __HI(x); /* high word of x */
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
k += (hx>>20)-1023;
|
|
hx &= 0x000fffff;
|
|
i = (hx+0x95f64)&0x100000;
|
|
// __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
|
|
x =__HI(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
|
k += (i>>20);
|
|
f = x-1.0;
|
|
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
|
if(f==zero) {
|
|
if (k==0) return zero;
|
|
else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
|
|
}
|
|
R = f*f*(0.5-0.33333333333333333*f);
|
|
if(k==0) return f-R; else {dk=(double)k;
|
|
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
|
}
|
|
s = f/(2.0+f);
|
|
dk = (double)k;
|
|
z = s*s;
|
|
i = hx-0x6147a;
|
|
w = z*z;
|
|
j = 0x6b851-hx;
|
|
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
|
i |= j;
|
|
R = t2+t1;
|
|
if(i>0) {
|
|
hfsq=0.5*f*f;
|
|
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
|
} else {
|
|
if(k==0) return f-s*(f-R); else
|
|
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the base 10 logarithm of x
|
|
*
|
|
* Method :
|
|
* Let log10_2hi = leading 40 bits of log10(2) and
|
|
* log10_2lo = log10(2) - log10_2hi,
|
|
* ivln10 = 1/log(10) rounded.
|
|
* Then
|
|
* n = ilogb(x),
|
|
* if(n<0) n = n+1;
|
|
* x = scalbn(x,-n);
|
|
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
|
|
*
|
|
* Note 1:
|
|
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
|
|
* mode must set to Round-to-Nearest.
|
|
* Note 2:
|
|
* [1/log(10)] rounded to 53 bits has error .198 ulps;
|
|
* log10 is monotonic at all binary break points.
|
|
*
|
|
* Special cases:
|
|
* log10(x) is NaN with signal if x < 0;
|
|
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
|
|
* log10(NaN) is that NaN with no signal;
|
|
* log10(10**N) = N for N=0,1,...,22.
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following constants.
|
|
* The decimal values may be used, provided that the compiler will convert
|
|
* from decimal to binary accurately enough to produce the hexadecimal values
|
|
* shown.
|
|
*/
|
|
static class Log10 {
|
|
private static double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
|
|
private static double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B, 0x1526E50E */
|
|
|
|
private static double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
|
|
private static double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
|
|
|
private static double zero = 0.0;
|
|
|
|
public static double compute(double x) {
|
|
double y,z;
|
|
int i,k,hx;
|
|
/*unsigned*/ int lx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
lx = __LO(x); /* low word of x */
|
|
|
|
k=0;
|
|
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
if (((hx&0x7fffffff)|lx)==0)
|
|
return -two54/zero; /* log(+-0)=-inf */
|
|
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
|
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
hx = __HI(x); /* high word of x */
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
k += (hx>>20)-1023;
|
|
i = (k&0x80000000)>>>31; // unsigned shift
|
|
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
|
|
y = (double)(k+i);
|
|
x = __HI(x, hx); //original: __HI(x) = hx;
|
|
z = y*log10_2lo + ivln10*log(x);
|
|
return z+y*log10_2hi;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the natural logarithm of the sum of the argument and 1.
|
|
*
|
|
* Method :
|
|
* 1. Argument Reduction: find k and f such that
|
|
* 1+x = 2^k * (1+f),
|
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
*
|
|
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
|
* may not be representable exactly. In that case, a correction
|
|
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
|
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
|
* and add back the correction term c/u.
|
|
* (Note: when x > 2**53, one can simply return log(x))
|
|
*
|
|
* 2. Approximation of log1p(f).
|
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
* = 2s + s*R
|
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
* a polynomial of degree 14 to approximate R The maximum error
|
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
* other words,
|
|
* 2 4 6 8 10 12 14
|
|
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
|
* (the values of Lp1 to Lp7 are listed in the program)
|
|
* and
|
|
* | 2 14 | -58.45
|
|
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
|
* | |
|
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
* In order to guarantee error in log below 1ulp, we compute log
|
|
* by
|
|
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
|
*
|
|
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
|
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
* Here ln2 is split into two floating point number:
|
|
* ln2_hi + ln2_lo,
|
|
* where n*ln2_hi is always exact for |n| < 2000.
|
|
*
|
|
* Special cases:
|
|
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
|
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
|
* log1p(NaN) is that NaN with no signal.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*
|
|
* Note: Assuming log() return accurate answer, the following
|
|
* algorithm can be used to compute log1p(x) to within a few ULP:
|
|
*
|
|
* u = 1+x;
|
|
* if(u==1.0) return x ; else
|
|
* return log(u)*(x/(u-1.0));
|
|
*
|
|
* See HP-15C Advanced Functions Handbook, p.193.
|
|
*/
|
|
static class Log1p {
|
|
private static double ln2_hi = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
|
private static double ln2_lo = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
|
private static double two54 = 1.80143985094819840000e+16; /* 43500000 00000000 */
|
|
private static double Lp1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
|
private static double Lp2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
|
private static double Lp3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
|
private static double Lp4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
|
private static double Lp5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
|
private static double Lp6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
|
private static double Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|
private static double zero = 0.0;
|
|
|
|
public static double compute(double x) {
|
|
double hfsq,f=0,c=0,s,z,R,u;
|
|
int k,hx,hu=0,ax;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
ax = hx&0x7fffffff;
|
|
|
|
k = 1;
|
|
if (hx < 0x3FDA827A) { /* x < 0.41422 */
|
|
if(ax>=0x3ff00000) { /* x <= -1.0 */
|
|
/*
|
|
* Added redundant test against hx to work around VC++
|
|
* code generation problem.
|
|
*/
|
|
if(x==-1.0 && (hx==0xbff00000)) /* log1p(-1)=-inf */
|
|
return -two54/zero;
|
|
else
|
|
return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
|
}
|
|
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
|
if(two54+x>zero /* raise inexact */
|
|
&&ax<0x3c900000) /* |x| < 2**-54 */
|
|
return x;
|
|
else
|
|
return x - x*x*0.5;
|
|
}
|
|
if(hx>0||hx<=((int)0xbfd2bec3)) {
|
|
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
if(k!=0) {
|
|
if(hx<0x43400000) {
|
|
u = 1.0+x;
|
|
hu = __HI(u); /* high word of u */
|
|
k = (hu>>20)-1023;
|
|
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
|
c /= u;
|
|
} else {
|
|
u = x;
|
|
hu = __HI(u); /* high word of u */
|
|
k = (hu>>20)-1023;
|
|
c = 0;
|
|
}
|
|
hu &= 0x000fffff;
|
|
if(hu<0x6a09e) {
|
|
u = __HI(u, hu|0x3ff00000); /* normalize u */
|
|
} else {
|
|
k += 1;
|
|
u = __HI(u, hu|0x3fe00000); /* normalize u/2 */
|
|
hu = (0x00100000-hu)>>2;
|
|
}
|
|
f = u-1.0;
|
|
}
|
|
hfsq=0.5*f*f;
|
|
if(hu==0) { /* |f| < 2**-20 */
|
|
if(f==zero) { if(k==0) return zero;
|
|
else {c += k*ln2_lo; return k*ln2_hi+c;}}
|
|
R = hfsq*(1.0-0.66666666666666666*f);
|
|
if(k==0) return f-R; else
|
|
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
|
}
|
|
s = f/(2.0+f);
|
|
z = s*s;
|
|
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
|
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
|
}
|
|
}
|
|
|
|
/* expm1(x)
|
|
* Returns exp(x)-1, the exponential of x minus 1.
|
|
*
|
|
* Method
|
|
* 1. Argument reduction:
|
|
* Given x, find r and integer k such that
|
|
*
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
|
*
|
|
* Here a correction term c will be computed to compensate
|
|
* the error in r when rounded to a floating-point number.
|
|
*
|
|
* 2. Approximating expm1(r) by a special rational function on
|
|
* the interval [0,0.34658]:
|
|
* Since
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
|
* we define R1(r*r) by
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
|
* That is,
|
|
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
|
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
|
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
|
* We use a special Reme algorithm on [0,0.347] to generate
|
|
* a polynomial of degree 5 in r*r to approximate R1. The
|
|
* maximum error of this polynomial approximation is bounded
|
|
* by 2**-61. In other words,
|
|
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
|
* where Q1 = -1.6666666666666567384E-2,
|
|
* Q2 = 3.9682539681370365873E-4,
|
|
* Q3 = -9.9206344733435987357E-6,
|
|
* Q4 = 2.5051361420808517002E-7,
|
|
* Q5 = -6.2843505682382617102E-9;
|
|
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
|
* with error bounded by
|
|
* | 5 | -61
|
|
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
|
* | |
|
|
*
|
|
* expm1(r) = exp(r)-1 is then computed by the following
|
|
* specific way which minimize the accumulation rounding error:
|
|
* 2 3
|
|
* r r [ 3 - (R1 + R1*r/2) ]
|
|
* expm1(r) = r + --- + --- * [--------------------]
|
|
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
|
*
|
|
* To compensate the error in the argument reduction, we use
|
|
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
|
* ~ expm1(r) + c + r*c
|
|
* Thus c+r*c will be added in as the correction terms for
|
|
* expm1(r+c). Now rearrange the term to avoid optimization
|
|
* screw up:
|
|
* ( 2 2 )
|
|
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
|
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
|
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
|
* ( )
|
|
*
|
|
* = r - E
|
|
* 3. Scale back to obtain expm1(x):
|
|
* From step 1, we have
|
|
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
|
* = or 2^k*[expm1(r) + (1-2^-k)]
|
|
* 4. Implementation notes:
|
|
* (A). To save one multiplication, we scale the coefficient Qi
|
|
* to Qi*2^i, and replace z by (x^2)/2.
|
|
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
|
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
|
* (ii) if k=0, return r-E
|
|
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
|
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
|
* else return 1.0+2.0*(r-E);
|
|
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
|
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
|
* (vii) return 2^k(1-((E+2^-k)-r))
|
|
*
|
|
* Special cases:
|
|
* expm1(INF) is INF, expm1(NaN) is NaN;
|
|
* expm1(-INF) is -1, and
|
|
* for finite argument, only expm1(0)=0 is exact.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Misc. info.
|
|
* For IEEE double
|
|
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
static class Expm1 {
|
|
private static final double one = 1.0;
|
|
private static final double huge = 1.0e+300;
|
|
private static final double tiny = 1.0e-300;
|
|
private static final double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
|
private static final double ln2_hi = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
|
|
private static final double ln2_lo = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
|
|
private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
|
/* scaled coefficients related to expm1 */
|
|
private static final double Q1 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
|
|
private static final double Q2 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
|
|
private static final double Q3 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
|
|
private static final double Q4 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
|
|
private static final double Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
|
|
|
static double compute(double x) {
|
|
double y,hi,lo,c=0,t,e,hxs,hfx,r1;
|
|
int k,xsb;
|
|
/*unsigned*/ int hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
xsb = hx&0x80000000; /* sign bit of x */
|
|
if(xsb==0) y=x; else y= -x; /* y = |x| */
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
/* filter out huge and non-finite argument */
|
|
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
if(hx>=0x7ff00000) {
|
|
if(((hx&0xfffff)|__LO(x))!=0)
|
|
return x+x; /* NaN */
|
|
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
|
}
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
|
}
|
|
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
|
if(x+tiny<0.0) /* raise inexact */
|
|
return tiny-one; /* return -1 */
|
|
}
|
|
}
|
|
|
|
/* argument reduction */
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
if(xsb==0)
|
|
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
|
else
|
|
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
|
} else {
|
|
k = (int)(invln2*x+((xsb==0)?0.5:-0.5));
|
|
t = k;
|
|
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
|
lo = t*ln2_lo;
|
|
}
|
|
x = hi - lo;
|
|
c = (hi-x)-lo;
|
|
}
|
|
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
|
t = huge+x; /* return x with inexact flags when x!=0 */
|
|
return x - (t-(huge+x));
|
|
}
|
|
else k = 0;
|
|
|
|
/* x is now in primary range */
|
|
hfx = 0.5*x;
|
|
hxs = x*hfx;
|
|
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
|
t = 3.0-r1*hfx;
|
|
e = hxs*((r1-t)/(6.0 - x*t));
|
|
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
|
else {
|
|
e = (x*(e-c)-c);
|
|
e -= hxs;
|
|
if(k== -1) return 0.5*(x-e)-0.5;
|
|
if(k==1) {
|
|
if(x < -0.25) return -2.0*(e-(x+0.5));
|
|
else return one+2.0*(x-e);
|
|
}
|
|
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
|
y = one-(e-x);
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
return y-one;
|
|
}
|
|
t = one;
|
|
if(k<20) {
|
|
t = __HI(t, 0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
|
y = t-(e-x);
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
} else {
|
|
t = __HI(t, ((0x3ff-k)<<20)); /* 2^-k */
|
|
y = x-(e+t);
|
|
y += one;
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Method :
|
|
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
|
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
|
|
* 2.
|
|
* E + E/(E+1)
|
|
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
|
|
* 2
|
|
*
|
|
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
|
|
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
|
|
* ln2ovft < x : sinh(x) := x*shuge (overflow)
|
|
*
|
|
* Special cases:
|
|
* sinh(x) is |x| if x is +INF, -INF, or NaN.
|
|
* only sinh(0)=0 is exact for finite x.
|
|
*/
|
|
private static final class Sinh {
|
|
private static final double one = 1.0, shuge = 1.0e307;
|
|
|
|
static double compute(double x) {
|
|
double t,w,h;
|
|
int ix,jx;
|
|
/* unsigned */ int lx;
|
|
|
|
/* High word of |x|. */
|
|
jx = __HI(x);
|
|
ix = jx&0x7fffffff;
|
|
|
|
/* x is INF or NaN */
|
|
if(ix>=0x7ff00000) return x+x;
|
|
|
|
h = 0.5;
|
|
if (jx<0) h = -h;
|
|
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
|
|
if (ix < 0x40360000) { /* |x|<22 */
|
|
if (ix<0x3e300000) /* |x|<2**-28 */
|
|
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
|
|
t = FdlibmTranslit.expm1(Math.abs(x));
|
|
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
|
|
return h*(t+t/(t+one));
|
|
}
|
|
|
|
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
|
|
if (ix < 0x40862E42) return h*FdlibmTranslit.exp(Math.abs(x));
|
|
|
|
/* |x| in [log(maxdouble), overflowthresold] */
|
|
// Note: the original FDLIBM sources use
|
|
// lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x);
|
|
// to set lx to the low-order 32 bits of x. The expression
|
|
// in question is an alternate way to implement the
|
|
// functionality of the C FDLIBM __LO macro and the
|
|
// expression is coded to work on both big-edian and
|
|
// little-endian machines. However, this port will instead
|
|
// use the __LO method call to represent this
|
|
// functionality.
|
|
lx = __LO(x);
|
|
if (ix<0x408633CE || ((ix==0x408633ce)&&(Long.compareUnsigned(lx, 0x8fb9f87d) <= 0 ))) {
|
|
w = exp(0.5*Math.abs(x));
|
|
t = h*w;
|
|
return t*w;
|
|
}
|
|
|
|
/* |x| > overflowthresold, sinh(x) overflow */
|
|
return x*shuge;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Method :
|
|
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
|
|
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
|
|
* 2.
|
|
* [ exp(x) - 1 ]^2
|
|
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
|
|
* 2*exp(x)
|
|
*
|
|
* exp(x) + 1/exp(x)
|
|
* ln2/2 <= x <= 22 : cosh(x) := -------------------
|
|
* 2
|
|
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
|
|
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
|
|
* ln2ovft < x : cosh(x) := huge*huge (overflow)
|
|
*
|
|
* Special cases:
|
|
* cosh(x) is |x| if x is +INF, -INF, or NaN.
|
|
* only cosh(0)=1 is exact for finite x.
|
|
*/
|
|
private static final class Cosh {
|
|
private static final double one = 1.0, half=0.5, huge = 1.0e300;
|
|
static double compute(double x) {
|
|
double t,w;
|
|
int ix;
|
|
/*unsigned*/ int lx;
|
|
|
|
/* High word of |x|. */
|
|
ix = __HI(x);
|
|
ix &= 0x7fffffff;
|
|
|
|
/* x is INF or NaN */
|
|
if(ix>=0x7ff00000) return x*x;
|
|
|
|
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
|
|
if(ix<0x3fd62e43) {
|
|
t = expm1(Math.abs(x));
|
|
w = one+t;
|
|
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
|
|
return one+(t*t)/(w+w);
|
|
}
|
|
|
|
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
|
|
if (ix < 0x40360000) {
|
|
t = exp(Math.abs(x));
|
|
return half*t+half/t;
|
|
}
|
|
|
|
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
|
|
if (ix < 0x40862E42) return half*exp(Math.abs(x));
|
|
|
|
/* |x| in [log(maxdouble), overflowthresold] */
|
|
// See note above in the sinh implementation for how this
|
|
// transliteration port uses __LO(x) in the line below
|
|
// that differs from the idiom used in the original FDLIBM.
|
|
lx = __LO(x);
|
|
if (ix<0x408633CE ||
|
|
((ix==0x408633ce)&&(Integer.compareUnsigned(lx, 0x8fb9f87d) <= 0))) {
|
|
w = exp(half*Math.abs(x));
|
|
t = half*w;
|
|
return t*w;
|
|
}
|
|
|
|
/* |x| > overflowthresold, cosh(x) overflow */
|
|
return huge*huge;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the Hyperbolic Tangent of x
|
|
*
|
|
* Method :
|
|
* x -x
|
|
* e - e
|
|
* 0. tanh(x) is defined to be -----------
|
|
* x -x
|
|
* e + e
|
|
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
|
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
|
|
* -t
|
|
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
|
|
* t + 2
|
|
* 2
|
|
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
|
|
* t + 2
|
|
* 22.0 < x <= INF : tanh(x) := 1.
|
|
*
|
|
* Special cases:
|
|
* tanh(NaN) is NaN;
|
|
* only tanh(0)=0 is exact for finite argument.
|
|
*/
|
|
private static final class Tanh {
|
|
private static final double one=1.0, two=2.0, tiny = 1.0e-300;
|
|
static double compute(double x) {
|
|
double t,z;
|
|
int jx,ix;
|
|
|
|
/* High word of |x|. */
|
|
jx = __HI(x);
|
|
ix = jx&0x7fffffff;
|
|
|
|
/* x is INF or NaN */
|
|
if(ix>=0x7ff00000) {
|
|
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
|
|
else return one/x-one; /* tanh(NaN) = NaN */
|
|
}
|
|
|
|
/* |x| < 22 */
|
|
if (ix < 0x40360000) { /* |x|<22 */
|
|
if (ix<0x3c800000) /* |x|<2**-55 */
|
|
return x*(one+x); /* tanh(small) = small */
|
|
if (ix>=0x3ff00000) { /* |x|>=1 */
|
|
t = expm1(two*Math.abs(x));
|
|
z = one - two/(t+two);
|
|
} else {
|
|
t = expm1(-two*Math.abs(x));
|
|
z= -t/(t+two);
|
|
}
|
|
/* |x| > 22, return +-1 */
|
|
} else {
|
|
z = one - tiny; /* raised inexact flag */
|
|
}
|
|
return (jx>=0)? z: -z;
|
|
}
|
|
}
|
|
|
|
private static final class IEEEremainder {
|
|
private static final double zero = 0.0;
|
|
private static double one = 1.0;
|
|
private static double[] Zero = {0.0, -0.0,};
|
|
|
|
static double compute(double x, double p) {
|
|
int hx,hp;
|
|
/*unsigned*/ int sx,lx,lp;
|
|
double p_half;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
lx = __LO(x); /* low word of x */
|
|
hp = __HI(p); /* high word of p */
|
|
lp = __LO(p); /* low word of p */
|
|
sx = hx&0x80000000;
|
|
hp &= 0x7fffffff;
|
|
hx &= 0x7fffffff;
|
|
|
|
/* purge off exception values */
|
|
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
|
|
if((hx>=0x7ff00000)|| /* x not finite */
|
|
((hp>=0x7ff00000)&& /* p is NaN */
|
|
(((hp-0x7ff00000)|lp)!=0)))
|
|
return (x*p)/(x*p);
|
|
|
|
|
|
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
|
|
if (((hx-hp)|(lx-lp))==0) return zero*x;
|
|
x = Math.abs(x);
|
|
p = Math.abs(p);
|
|
if (hp<0x00200000) {
|
|
if(x+x>p) {
|
|
x-=p;
|
|
if(x+x>=p) x -= p;
|
|
}
|
|
} else {
|
|
p_half = 0.5*p;
|
|
if(x>p_half) {
|
|
x-=p;
|
|
if(x>=p_half) x -= p;
|
|
}
|
|
}
|
|
// __HI(x) ^= sx;
|
|
x = __HI(x, __HI(x)^sx);
|
|
return x;
|
|
}
|
|
|
|
private static double __ieee754_fmod(double x, double y) {
|
|
int n,hx,hy,hz,ix,iy,sx,i;
|
|
/*unsigned*/ int lx,ly,lz;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
lx = __LO(x); /* low word of x */
|
|
hy = __HI(y); /* high word of y */
|
|
ly = __LO(y); /* low word of y */
|
|
sx = hx&0x80000000; /* sign of x */
|
|
hx ^=sx; /* |x| */
|
|
hy &= 0x7fffffff; /* |y| */
|
|
|
|
/* purge off exception values */
|
|
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
|
|
((hy|((ly|-ly)>>>31))>0x7ff00000)) /* or y is NaN */ // unsigned shift
|
|
return (x*y)/(x*y);
|
|
if(hx<=hy) {
|
|
// if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
|
|
if((hx<hy)||(Integer.compareUnsigned(lx,ly) < 0)) return x; /* |x|<|y| return x */
|
|
if(lx==ly)
|
|
return Zero[/*(unsigned)*/sx>>>31]; /* |x|=|y| return x*0*/ // unsigned shift
|
|
}
|
|
|
|
/* determine ix = ilogb(x) */
|
|
if(hx<0x00100000) { /* subnormal x */
|
|
if(hx==0) {
|
|
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
|
|
} else {
|
|
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
|
|
}
|
|
} else ix = (hx>>20)-1023;
|
|
|
|
/* determine iy = ilogb(y) */
|
|
if(hy<0x00100000) { /* subnormal y */
|
|
if(hy==0) {
|
|
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
|
|
} else {
|
|
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
|
|
}
|
|
} else iy = (hy>>20)-1023;
|
|
|
|
/* set up {hx,lx}, {hy,ly} and align y to x */
|
|
if(ix >= -1022)
|
|
hx = 0x00100000|(0x000fffff&hx);
|
|
else { /* subnormal x, shift x to normal */
|
|
n = -1022-ix;
|
|
if(n<=31) {
|
|
hx = (hx<<n)|(lx >>> (32-n)); // unsigned shift
|
|
lx <<= n;
|
|
} else {
|
|
hx = lx<<(n-32);
|
|
lx = 0;
|
|
}
|
|
}
|
|
if(iy >= -1022)
|
|
hy = 0x00100000|(0x000fffff&hy);
|
|
else { /* subnormal y, shift y to normal */
|
|
n = -1022-iy;
|
|
if(n<=31) {
|
|
hy = (hy<<n)|(ly >>> (32-n)); // unsigned shift
|
|
ly <<= n;
|
|
} else {
|
|
hy = ly<<(n-32);
|
|
ly = 0;
|
|
}
|
|
}
|
|
|
|
/* fix point fmod */
|
|
n = ix - iy;
|
|
while(n-- != 0) {
|
|
hz=hx-hy;lz=lx-ly;
|
|
// if(lx<ly) hz -= 1;
|
|
if(Integer.compareUnsigned(lx, ly) < 0) hz -= 1;
|
|
if(hz<0){hx = hx+hx+(lx >>> 31); lx = lx+lx;} // unsigned shift
|
|
else {
|
|
if((hz|lz)==0) /* return sign(x)*0 */
|
|
return Zero[/*(unsigned)*/sx>>>31]; // unsigned shift
|
|
hx = hz+hz+(lz >>> 31); // unsigned shift
|
|
lx = lz+lz;
|
|
}
|
|
}
|
|
hz=hx-hy;lz=lx-ly;
|
|
// if(lx<ly) hz -= 1;
|
|
if(Integer.compareUnsigned(lx, ly) < 0) hz -= 1;
|
|
if(hz>=0) {hx=hz;lx=lz;}
|
|
|
|
/* convert back to floating value and restore the sign */
|
|
if((hx|lx)==0) /* return sign(x)*0 */
|
|
return Zero[/*(unsigned)*/sx >>> 31]; // unsigned shift
|
|
while(hx<0x00100000) { /* normalize x */
|
|
hx = hx+hx+(lx >>> 31); lx = lx+lx; // unsigned shift
|
|
iy -= 1;
|
|
}
|
|
if(iy>= -1022) { /* normalize output */
|
|
hx = ((hx-0x00100000)|((iy+1023)<<20));
|
|
// __HI(x) = hx|sx;
|
|
x = __HI(x, hx|sx);
|
|
// __LO(x) = lx;
|
|
x = __LO(x, lx);
|
|
} else { /* subnormal output */
|
|
n = -1022 - iy;
|
|
if(n<=20) {
|
|
lx = (lx >>> n)|(/*(unsigned)*/hx<<(32-n)); // unsigned shift
|
|
hx >>= n;
|
|
} else if (n<=31) {
|
|
lx = (hx<<(32-n))|(lx >>> n); // unsigned shift
|
|
hx = sx;
|
|
} else {
|
|
lx = hx>>(n-32); hx = sx;
|
|
}
|
|
// __HI(x) = hx|sx;
|
|
x = __HI(x, hx|sx);
|
|
// __LO(x) = lx;
|
|
x = __LO(x, lx);
|
|
x *= one; /* create necessary signal */
|
|
}
|
|
return x; /* exact output */
|
|
}
|
|
}
|
|
}
|