3e3414dbf3
Refactor cleaning inline caches to after GC do_unloading. Reviewed-by: thartmann, eosterlund
717 lines
28 KiB
C++
717 lines
28 KiB
C++
/*
|
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/linkResolver.hpp"
|
|
#include "memory/metadataFactory.hpp"
|
|
#include "memory/oopFactory.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/method.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "oops/symbol.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/events.hpp"
|
|
|
|
|
|
// Every time a compiled IC is changed or its type is being accessed,
|
|
// either the CompiledIC_lock must be set or we must be at a safe point.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Low-level access to an inline cache. Private, since they might not be
|
|
// MT-safe to use.
|
|
|
|
void* CompiledIC::cached_value() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
|
|
|
|
if (!is_in_transition_state()) {
|
|
void* data = get_data();
|
|
// If we let the metadata value here be initialized to zero...
|
|
assert(data != NULL || Universe::non_oop_word() == NULL,
|
|
"no raw nulls in CompiledIC metadatas, because of patching races");
|
|
return (data == (void*)Universe::non_oop_word()) ? NULL : data;
|
|
} else {
|
|
return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
|
|
}
|
|
}
|
|
|
|
|
|
void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
|
|
assert(entry_point != NULL, "must set legal entry point");
|
|
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
|
|
assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
|
|
|
|
assert(!is_icholder || is_icholder_entry(entry_point), "must be");
|
|
|
|
// Don't use ic_destination for this test since that forwards
|
|
// through ICBuffer instead of returning the actual current state of
|
|
// the CompiledIC.
|
|
if (is_icholder_entry(_call->destination())) {
|
|
// When patching for the ICStub case the cached value isn't
|
|
// overwritten until the ICStub copied into the CompiledIC during
|
|
// the next safepoint. Make sure that the CompiledICHolder* is
|
|
// marked for release at this point since it won't be identifiable
|
|
// once the entry point is overwritten.
|
|
InlineCacheBuffer::queue_for_release((CompiledICHolder*)get_data());
|
|
}
|
|
|
|
if (TraceCompiledIC) {
|
|
tty->print(" ");
|
|
print_compiled_ic();
|
|
tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
|
|
if (!is_optimized()) {
|
|
tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
|
|
}
|
|
if (is_icstub) {
|
|
tty->print(" (icstub)");
|
|
}
|
|
tty->cr();
|
|
}
|
|
|
|
{
|
|
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
#ifdef ASSERT
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(_call->instruction_address());
|
|
assert(cb != NULL && cb->is_compiled(), "must be compiled");
|
|
#endif
|
|
_call->set_destination_mt_safe(entry_point);
|
|
}
|
|
|
|
if (is_optimized() || is_icstub) {
|
|
// Optimized call sites don't have a cache value and ICStub call
|
|
// sites only change the entry point. Changing the value in that
|
|
// case could lead to MT safety issues.
|
|
assert(cache == NULL, "must be null");
|
|
return;
|
|
}
|
|
|
|
if (cache == NULL) cache = (void*)Universe::non_oop_word();
|
|
|
|
set_data((intptr_t)cache);
|
|
}
|
|
|
|
|
|
void CompiledIC::set_ic_destination(ICStub* stub) {
|
|
internal_set_ic_destination(stub->code_begin(), true, NULL, false);
|
|
}
|
|
|
|
|
|
|
|
address CompiledIC::ic_destination() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
if (!is_in_transition_state()) {
|
|
return _call->destination();
|
|
} else {
|
|
return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
|
|
}
|
|
}
|
|
|
|
|
|
bool CompiledIC::is_in_transition_state() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
return InlineCacheBuffer::contains(_call->destination());;
|
|
}
|
|
|
|
|
|
bool CompiledIC::is_icholder_call() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
return !_is_optimized && is_icholder_entry(ic_destination());
|
|
}
|
|
|
|
// Returns native address of 'call' instruction in inline-cache. Used by
|
|
// the InlineCacheBuffer when it needs to find the stub.
|
|
address CompiledIC::stub_address() const {
|
|
assert(is_in_transition_state(), "should only be called when we are in a transition state");
|
|
return _call->destination();
|
|
}
|
|
|
|
// Clears the IC stub if the compiled IC is in transition state
|
|
void CompiledIC::clear_ic_stub() {
|
|
if (is_in_transition_state()) {
|
|
ICStub* stub = ICStub_from_destination_address(stub_address());
|
|
stub->clear();
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// High-level access to an inline cache. Guaranteed to be MT-safe.
|
|
|
|
void CompiledIC::initialize_from_iter(RelocIterator* iter) {
|
|
assert(iter->addr() == _call->instruction_address(), "must find ic_call");
|
|
|
|
if (iter->type() == relocInfo::virtual_call_type) {
|
|
virtual_call_Relocation* r = iter->virtual_call_reloc();
|
|
_is_optimized = false;
|
|
_value = _call->get_load_instruction(r);
|
|
} else {
|
|
assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
|
|
_is_optimized = true;
|
|
_value = NULL;
|
|
}
|
|
}
|
|
|
|
CompiledIC::CompiledIC(CompiledMethod* cm, NativeCall* call)
|
|
: _method(cm)
|
|
{
|
|
_call = _method->call_wrapper_at((address) call);
|
|
address ic_call = _call->instruction_address();
|
|
|
|
assert(ic_call != NULL, "ic_call address must be set");
|
|
assert(cm != NULL, "must pass compiled method");
|
|
assert(cm->contains(ic_call), "must be in compiled method");
|
|
|
|
// Search for the ic_call at the given address.
|
|
RelocIterator iter(cm, ic_call, ic_call+1);
|
|
bool ret = iter.next();
|
|
assert(ret == true, "relocInfo must exist at this address");
|
|
assert(iter.addr() == ic_call, "must find ic_call");
|
|
|
|
initialize_from_iter(&iter);
|
|
}
|
|
|
|
CompiledIC::CompiledIC(RelocIterator* iter)
|
|
: _method(iter->code())
|
|
{
|
|
_call = _method->call_wrapper_at(iter->addr());
|
|
address ic_call = _call->instruction_address();
|
|
|
|
CompiledMethod* nm = iter->code();
|
|
assert(ic_call != NULL, "ic_call address must be set");
|
|
assert(nm != NULL, "must pass compiled method");
|
|
assert(nm->contains(ic_call), "must be in compiled method");
|
|
|
|
initialize_from_iter(iter);
|
|
}
|
|
|
|
bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
|
|
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
|
|
assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
|
|
|
|
address entry;
|
|
if (call_info->call_kind() == CallInfo::itable_call) {
|
|
assert(bytecode == Bytecodes::_invokeinterface, "");
|
|
int itable_index = call_info->itable_index();
|
|
entry = VtableStubs::find_itable_stub(itable_index);
|
|
if (entry == NULL) {
|
|
return false;
|
|
}
|
|
#ifdef ASSERT
|
|
int index = call_info->resolved_method()->itable_index();
|
|
assert(index == itable_index, "CallInfo pre-computes this");
|
|
InstanceKlass* k = call_info->resolved_method()->method_holder();
|
|
assert(k->verify_itable_index(itable_index), "sanity check");
|
|
#endif //ASSERT
|
|
CompiledICHolder* holder = new CompiledICHolder(call_info->resolved_method()->method_holder(),
|
|
call_info->resolved_klass(), false);
|
|
holder->claim();
|
|
InlineCacheBuffer::create_transition_stub(this, holder, entry);
|
|
} else {
|
|
assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
|
|
// Can be different than selected_method->vtable_index(), due to package-private etc.
|
|
int vtable_index = call_info->vtable_index();
|
|
assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
|
|
entry = VtableStubs::find_vtable_stub(vtable_index);
|
|
if (entry == NULL) {
|
|
return false;
|
|
}
|
|
InlineCacheBuffer::create_transition_stub(this, NULL, entry);
|
|
}
|
|
|
|
if (TraceICs) {
|
|
ResourceMark rm;
|
|
tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
|
|
p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
|
|
}
|
|
|
|
// We can't check this anymore. With lazy deopt we could have already
|
|
// cleaned this IC entry before we even return. This is possible if
|
|
// we ran out of space in the inline cache buffer trying to do the
|
|
// set_next and we safepointed to free up space. This is a benign
|
|
// race because the IC entry was complete when we safepointed so
|
|
// cleaning it immediately is harmless.
|
|
// assert(is_megamorphic(), "sanity check");
|
|
return true;
|
|
}
|
|
|
|
|
|
// true if destination is megamorphic stub
|
|
bool CompiledIC::is_megamorphic() const {
|
|
assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
assert(!is_optimized(), "an optimized call cannot be megamorphic");
|
|
|
|
// Cannot rely on cached_value. It is either an interface or a method.
|
|
return VtableStubs::entry_point(ic_destination()) != NULL;
|
|
}
|
|
|
|
bool CompiledIC::is_call_to_compiled() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
|
|
// Use unsafe, since an inline cache might point to a zombie method. However, the zombie
|
|
// method is guaranteed to still exist, since we only remove methods after all inline caches
|
|
// has been cleaned up
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
|
|
bool is_monomorphic = (cb != NULL && cb->is_compiled());
|
|
// Check that the cached_value is a klass for non-optimized monomorphic calls
|
|
// This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
|
|
// for calling directly to vep without using the inline cache (i.e., cached_value == NULL).
|
|
// For JVMCI this occurs because CHA is only used to improve inlining so call sites which could be optimized
|
|
// virtuals because there are no currently loaded subclasses of a type are left as virtual call sites.
|
|
#ifdef ASSERT
|
|
CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
|
|
bool is_c1_or_jvmci_method = caller->is_compiled_by_c1() || caller->is_compiled_by_jvmci();
|
|
assert( is_c1_or_jvmci_method ||
|
|
!is_monomorphic ||
|
|
is_optimized() ||
|
|
!caller->is_alive() ||
|
|
(cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
|
|
#endif // ASSERT
|
|
return is_monomorphic;
|
|
}
|
|
|
|
|
|
bool CompiledIC::is_call_to_interpreted() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
// Call to interpreter if destination is either calling to a stub (if it
|
|
// is optimized), or calling to an I2C blob
|
|
bool is_call_to_interpreted = false;
|
|
if (!is_optimized()) {
|
|
// must use unsafe because the destination can be a zombie (and we're cleaning)
|
|
// and the print_compiled_ic code wants to know if site (in the non-zombie)
|
|
// is to the interpreter.
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
|
|
is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
|
|
assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
|
|
} else {
|
|
// Check if we are calling into our own codeblob (i.e., to a stub)
|
|
address dest = ic_destination();
|
|
#ifdef ASSERT
|
|
{
|
|
_call->verify_resolve_call(dest);
|
|
}
|
|
#endif /* ASSERT */
|
|
is_call_to_interpreted = _call->is_call_to_interpreted(dest);
|
|
}
|
|
return is_call_to_interpreted;
|
|
}
|
|
|
|
void CompiledIC::set_to_clean(bool in_use) {
|
|
assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
|
|
if (TraceInlineCacheClearing || TraceICs) {
|
|
tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
|
|
print();
|
|
}
|
|
|
|
address entry = _call->get_resolve_call_stub(is_optimized());
|
|
|
|
// A zombie transition will always be safe, since the metadata has already been set to NULL, so
|
|
// we only need to patch the destination
|
|
bool safe_transition = _call->is_safe_for_patching() || !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();
|
|
|
|
if (safe_transition) {
|
|
// Kill any leftover stub we might have too
|
|
clear_ic_stub();
|
|
if (is_optimized()) {
|
|
set_ic_destination(entry);
|
|
} else {
|
|
set_ic_destination_and_value(entry, (void*)NULL);
|
|
}
|
|
} else {
|
|
// Unsafe transition - create stub.
|
|
InlineCacheBuffer::create_transition_stub(this, NULL, entry);
|
|
}
|
|
// We can't check this anymore. With lazy deopt we could have already
|
|
// cleaned this IC entry before we even return. This is possible if
|
|
// we ran out of space in the inline cache buffer trying to do the
|
|
// set_next and we safepointed to free up space. This is a benign
|
|
// race because the IC entry was complete when we safepointed so
|
|
// cleaning it immediately is harmless.
|
|
// assert(is_clean(), "sanity check");
|
|
}
|
|
|
|
bool CompiledIC::is_clean() const {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
bool is_clean = false;
|
|
address dest = ic_destination();
|
|
is_clean = dest == _call->get_resolve_call_stub(is_optimized());
|
|
assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
|
|
return is_clean;
|
|
}
|
|
|
|
void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
|
|
// Updating a cache to the wrong entry can cause bugs that are very hard
|
|
// to track down - if cache entry gets invalid - we just clean it. In
|
|
// this way it is always the same code path that is responsible for
|
|
// updating and resolving an inline cache
|
|
//
|
|
// The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
|
|
// callsites. In addition ic_miss code will update a site to monomorphic if it determines
|
|
// that an monomorphic call to the interpreter can now be monomorphic to compiled code.
|
|
//
|
|
// In both of these cases the only thing being modifed is the jump/call target and these
|
|
// transitions are mt_safe
|
|
|
|
Thread *thread = Thread::current();
|
|
if (info.to_interpreter() || info.to_aot()) {
|
|
// Call to interpreter
|
|
if (info.is_optimized() && is_optimized()) {
|
|
assert(is_clean(), "unsafe IC path");
|
|
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
// the call analysis (callee structure) specifies that the call is optimized
|
|
// (either because of CHA or the static target is final)
|
|
// At code generation time, this call has been emitted as static call
|
|
// Call via stub
|
|
assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
|
|
methodHandle method (thread, (Method*)info.cached_metadata());
|
|
_call->set_to_interpreted(method, info);
|
|
|
|
if (TraceICs) {
|
|
ResourceMark rm(thread);
|
|
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to %s: %s",
|
|
p2i(instruction_address()),
|
|
(info.to_aot() ? "aot" : "interpreter"),
|
|
method->print_value_string());
|
|
}
|
|
} else {
|
|
// Call via method-klass-holder
|
|
InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
|
|
if (TraceICs) {
|
|
ResourceMark rm(thread);
|
|
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
|
|
}
|
|
}
|
|
} else {
|
|
// Call to compiled code
|
|
bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
|
|
#ifdef ASSERT
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
|
|
assert (cb != NULL && cb->is_compiled(), "must be compiled!");
|
|
#endif /* ASSERT */
|
|
|
|
// This is MT safe if we come from a clean-cache and go through a
|
|
// non-verified entry point
|
|
bool safe = SafepointSynchronize::is_at_safepoint() ||
|
|
(!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
|
|
|
|
if (!safe) {
|
|
InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
|
|
} else {
|
|
if (is_optimized()) {
|
|
set_ic_destination(info.entry());
|
|
} else {
|
|
set_ic_destination_and_value(info.entry(), info.cached_metadata());
|
|
}
|
|
}
|
|
|
|
if (TraceICs) {
|
|
ResourceMark rm(thread);
|
|
assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
|
|
tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
|
|
p2i(instruction_address()),
|
|
((Klass*)info.cached_metadata())->print_value_string(),
|
|
(safe) ? "" : "via stub");
|
|
}
|
|
}
|
|
// We can't check this anymore. With lazy deopt we could have already
|
|
// cleaned this IC entry before we even return. This is possible if
|
|
// we ran out of space in the inline cache buffer trying to do the
|
|
// set_next and we safepointed to free up space. This is a benign
|
|
// race because the IC entry was complete when we safepointed so
|
|
// cleaning it immediately is harmless.
|
|
// assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
|
|
}
|
|
|
|
|
|
// is_optimized: Compiler has generated an optimized call (i.e. fixed, no inline cache)
|
|
// static_bound: The call can be static bound. If it isn't also optimized, the property
|
|
// wasn't provable at time of compilation. An optimized call will have any necessary
|
|
// null check, while a static_bound won't. A static_bound (but not optimized) must
|
|
// therefore use the unverified entry point.
|
|
void CompiledIC::compute_monomorphic_entry(const methodHandle& method,
|
|
Klass* receiver_klass,
|
|
bool is_optimized,
|
|
bool static_bound,
|
|
bool caller_is_nmethod,
|
|
CompiledICInfo& info,
|
|
TRAPS) {
|
|
CompiledMethod* method_code = method->code();
|
|
|
|
address entry = NULL;
|
|
if (method_code != NULL && method_code->is_in_use()) {
|
|
assert(method_code->is_compiled(), "must be compiled");
|
|
// Call to compiled code
|
|
//
|
|
// Note: the following problem exists with Compiler1:
|
|
// - at compile time we may or may not know if the destination is final
|
|
// - if we know that the destination is final (is_optimized), we will emit
|
|
// an optimized virtual call (no inline cache), and need a Method* to make
|
|
// a call to the interpreter
|
|
// - if we don't know if the destination is final, we emit a standard
|
|
// virtual call, and use CompiledICHolder to call interpreted code
|
|
// (no static call stub has been generated)
|
|
// - In the case that we here notice the call is static bound we
|
|
// convert the call into what looks to be an optimized virtual call,
|
|
// but we must use the unverified entry point (since there will be no
|
|
// null check on a call when the target isn't loaded).
|
|
// This causes problems when verifying the IC because
|
|
// it looks vanilla but is optimized. Code in is_call_to_interpreted
|
|
// is aware of this and weakens its asserts.
|
|
if (is_optimized) {
|
|
entry = method_code->verified_entry_point();
|
|
} else {
|
|
entry = method_code->entry_point();
|
|
}
|
|
}
|
|
bool far_c2a = entry != NULL && caller_is_nmethod && method_code->is_far_code();
|
|
if (entry != NULL && !far_c2a) {
|
|
// Call to near compiled code (nmethod or aot).
|
|
info.set_compiled_entry(entry, is_optimized ? NULL : receiver_klass, is_optimized);
|
|
} else {
|
|
if (is_optimized) {
|
|
if (far_c2a) {
|
|
// Call to aot code from nmethod.
|
|
info.set_aot_entry(entry, method());
|
|
} else {
|
|
// Use stub entry
|
|
info.set_interpreter_entry(method()->get_c2i_entry(), method());
|
|
}
|
|
} else {
|
|
// Use icholder entry
|
|
assert(method_code == NULL || method_code->is_compiled(), "must be compiled");
|
|
CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass);
|
|
info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
|
|
}
|
|
}
|
|
assert(info.is_optimized() == is_optimized, "must agree");
|
|
}
|
|
|
|
|
|
bool CompiledIC::is_icholder_entry(address entry) {
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
|
|
if (cb != NULL && cb->is_adapter_blob()) {
|
|
return true;
|
|
}
|
|
// itable stubs also use CompiledICHolder
|
|
if (cb != NULL && cb->is_vtable_blob()) {
|
|
VtableStub* s = VtableStubs::entry_point(entry);
|
|
return (s != NULL) && s->is_itable_stub();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CompiledIC::is_icholder_call_site(virtual_call_Relocation* call_site, const CompiledMethod* cm) {
|
|
// This call site might have become stale so inspect it carefully.
|
|
address dest = cm->call_wrapper_at(call_site->addr())->destination();
|
|
return is_icholder_entry(dest);
|
|
}
|
|
|
|
// Release the CompiledICHolder* associated with this call site is there is one.
|
|
void CompiledIC::cleanup_call_site(virtual_call_Relocation* call_site, const CompiledMethod* cm) {
|
|
assert(cm->is_nmethod(), "must be nmethod");
|
|
// This call site might have become stale so inspect it carefully.
|
|
NativeCall* call = nativeCall_at(call_site->addr());
|
|
if (is_icholder_entry(call->destination())) {
|
|
NativeMovConstReg* value = nativeMovConstReg_at(call_site->cached_value());
|
|
InlineCacheBuffer::queue_for_release((CompiledICHolder*)value->data());
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void CompiledStaticCall::set_to_clean(bool in_use) {
|
|
// in_use is unused but needed to match template function in CompiledMethod
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
|
|
// Reset call site
|
|
MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
#ifdef ASSERT
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(instruction_address());
|
|
assert(cb != NULL && cb->is_compiled(), "must be compiled");
|
|
#endif
|
|
|
|
set_destination_mt_safe(resolve_call_stub());
|
|
|
|
// Do not reset stub here: It is too expensive to call find_stub.
|
|
// Instead, rely on caller (nmethod::clear_inline_caches) to clear
|
|
// both the call and its stub.
|
|
}
|
|
|
|
bool CompiledStaticCall::is_clean() const {
|
|
return destination() == resolve_call_stub();
|
|
}
|
|
|
|
bool CompiledStaticCall::is_call_to_compiled() const {
|
|
return CodeCache::contains(destination());
|
|
}
|
|
|
|
bool CompiledDirectStaticCall::is_call_to_interpreted() const {
|
|
// It is a call to interpreted, if it calls to a stub. Hence, the destination
|
|
// must be in the stub part of the nmethod that contains the call
|
|
CompiledMethod* cm = CodeCache::find_compiled(instruction_address());
|
|
return cm->stub_contains(destination());
|
|
}
|
|
|
|
bool CompiledDirectStaticCall::is_call_to_far() const {
|
|
// It is a call to aot method, if it calls to a stub. Hence, the destination
|
|
// must be in the stub part of the nmethod that contains the call
|
|
CodeBlob* desc = CodeCache::find_blob(instruction_address());
|
|
return desc->as_compiled_method()->stub_contains(destination());
|
|
}
|
|
|
|
void CompiledStaticCall::set_to_compiled(address entry) {
|
|
if (TraceICs) {
|
|
ResourceMark rm;
|
|
tty->print_cr("%s@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
|
|
name(),
|
|
p2i(instruction_address()),
|
|
p2i(entry));
|
|
}
|
|
// Call to compiled code
|
|
assert(CodeCache::contains(entry), "wrong entry point");
|
|
set_destination_mt_safe(entry);
|
|
}
|
|
|
|
void CompiledStaticCall::set(const StaticCallInfo& info) {
|
|
assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
|
|
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
// Updating a cache to the wrong entry can cause bugs that are very hard
|
|
// to track down - if cache entry gets invalid - we just clean it. In
|
|
// this way it is always the same code path that is responsible for
|
|
// updating and resolving an inline cache
|
|
assert(is_clean(), "do not update a call entry - use clean");
|
|
|
|
if (info._to_interpreter) {
|
|
// Call to interpreted code
|
|
set_to_interpreted(info.callee(), info.entry());
|
|
#if INCLUDE_AOT
|
|
} else if (info._to_aot) {
|
|
// Call to far code
|
|
set_to_far(info.callee(), info.entry());
|
|
#endif
|
|
} else {
|
|
set_to_compiled(info.entry());
|
|
}
|
|
}
|
|
|
|
// Compute settings for a CompiledStaticCall. Since we might have to set
|
|
// the stub when calling to the interpreter, we need to return arguments.
|
|
void CompiledStaticCall::compute_entry(const methodHandle& m, bool caller_is_nmethod, StaticCallInfo& info) {
|
|
CompiledMethod* m_code = m->code();
|
|
info._callee = m;
|
|
if (m_code != NULL && m_code->is_in_use()) {
|
|
if (caller_is_nmethod && m_code->is_far_code()) {
|
|
// Call to far aot code from nmethod.
|
|
info._to_aot = true;
|
|
} else {
|
|
info._to_aot = false;
|
|
}
|
|
info._to_interpreter = false;
|
|
info._entry = m_code->verified_entry_point();
|
|
} else {
|
|
// Callee is interpreted code. In any case entering the interpreter
|
|
// puts a converter-frame on the stack to save arguments.
|
|
assert(!m->is_method_handle_intrinsic(), "Compiled code should never call interpreter MH intrinsics");
|
|
info._to_interpreter = true;
|
|
info._entry = m()->get_c2i_entry();
|
|
}
|
|
}
|
|
|
|
address CompiledDirectStaticCall::find_stub_for(address instruction, bool is_aot) {
|
|
// Find reloc. information containing this call-site
|
|
RelocIterator iter((nmethod*)NULL, instruction);
|
|
while (iter.next()) {
|
|
if (iter.addr() == instruction) {
|
|
switch(iter.type()) {
|
|
case relocInfo::static_call_type:
|
|
return iter.static_call_reloc()->static_stub(is_aot);
|
|
// We check here for opt_virtual_call_type, since we reuse the code
|
|
// from the CompiledIC implementation
|
|
case relocInfo::opt_virtual_call_type:
|
|
return iter.opt_virtual_call_reloc()->static_stub(is_aot);
|
|
case relocInfo::poll_type:
|
|
case relocInfo::poll_return_type: // A safepoint can't overlap a call.
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
address CompiledDirectStaticCall::find_stub(bool is_aot) {
|
|
return CompiledDirectStaticCall::find_stub_for(instruction_address(), is_aot);
|
|
}
|
|
|
|
address CompiledDirectStaticCall::resolve_call_stub() const {
|
|
return SharedRuntime::get_resolve_static_call_stub();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Non-product mode code
|
|
#ifndef PRODUCT
|
|
|
|
void CompiledIC::verify() {
|
|
_call->verify();
|
|
assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
|
|
|| is_optimized() || is_megamorphic(), "sanity check");
|
|
}
|
|
|
|
void CompiledIC::print() {
|
|
print_compiled_ic();
|
|
tty->cr();
|
|
}
|
|
|
|
void CompiledIC::print_compiled_ic() {
|
|
tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
|
|
p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
|
|
}
|
|
|
|
void CompiledDirectStaticCall::print() {
|
|
tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
|
|
if (is_clean()) {
|
|
tty->print("clean");
|
|
} else if (is_call_to_compiled()) {
|
|
tty->print("compiled");
|
|
} else if (is_call_to_far()) {
|
|
tty->print("far");
|
|
} else if (is_call_to_interpreted()) {
|
|
tty->print("interpreted");
|
|
}
|
|
tty->cr();
|
|
}
|
|
|
|
#endif // !PRODUCT
|