1a1aecd166
Reviewed-by: coleenp
803 lines
30 KiB
C++
803 lines
30 KiB
C++
/*
|
|
* Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
|
|
#define SHARE_VM_CODE_DEPENDENCIES_HPP
|
|
|
|
#include "ci/ciCallSite.hpp"
|
|
#include "ci/ciKlass.hpp"
|
|
#include "ci/ciMethodHandle.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "code/compressedStream.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/safepointVerifiers.hpp"
|
|
#include "utilities/growableArray.hpp"
|
|
#include "utilities/hashtable.hpp"
|
|
|
|
//** Dependencies represent assertions (approximate invariants) within
|
|
// the runtime system, e.g. class hierarchy changes. An example is an
|
|
// assertion that a given method is not overridden; another example is
|
|
// that a type has only one concrete subtype. Compiled code which
|
|
// relies on such assertions must be discarded if they are overturned
|
|
// by changes in the runtime system. We can think of these assertions
|
|
// as approximate invariants, because we expect them to be overturned
|
|
// very infrequently. We are willing to perform expensive recovery
|
|
// operations when they are overturned. The benefit, of course, is
|
|
// performing optimistic optimizations (!) on the object code.
|
|
//
|
|
// Changes in the class hierarchy due to dynamic linking or
|
|
// class evolution can violate dependencies. There is enough
|
|
// indexing between classes and nmethods to make dependency
|
|
// checking reasonably efficient.
|
|
|
|
class ciEnv;
|
|
class nmethod;
|
|
class OopRecorder;
|
|
class xmlStream;
|
|
class CompileLog;
|
|
class DepChange;
|
|
class KlassDepChange;
|
|
class CallSiteDepChange;
|
|
class NoSafepointVerifier;
|
|
|
|
class Dependencies: public ResourceObj {
|
|
public:
|
|
// Note: In the comments on dependency types, most uses of the terms
|
|
// subtype and supertype are used in a "non-strict" or "inclusive"
|
|
// sense, and are starred to remind the reader of this fact.
|
|
// Strict uses of the terms use the word "proper".
|
|
//
|
|
// Specifically, every class is its own subtype* and supertype*.
|
|
// (This trick is easier than continually saying things like "Y is a
|
|
// subtype of X or X itself".)
|
|
//
|
|
// Sometimes we write X > Y to mean X is a proper supertype of Y.
|
|
// The notation X > {Y, Z} means X has proper subtypes Y, Z.
|
|
// The notation X.m > Y means that Y inherits m from X, while
|
|
// X.m > Y.m means Y overrides X.m. A star denotes abstractness,
|
|
// as *I > A, meaning (abstract) interface I is a super type of A,
|
|
// or A.*m > B.m, meaning B.m implements abstract method A.m.
|
|
//
|
|
// In this module, the terms "subtype" and "supertype" refer to
|
|
// Java-level reference type conversions, as detected by
|
|
// "instanceof" and performed by "checkcast" operations. The method
|
|
// Klass::is_subtype_of tests these relations. Note that "subtype"
|
|
// is richer than "subclass" (as tested by Klass::is_subclass_of),
|
|
// since it takes account of relations involving interface and array
|
|
// types.
|
|
//
|
|
// To avoid needless complexity, dependencies involving array types
|
|
// are not accepted. If you need to make an assertion about an
|
|
// array type, make the assertion about its corresponding element
|
|
// types. Any assertion that might change about an array type can
|
|
// be converted to an assertion about its element type.
|
|
//
|
|
// Most dependencies are evaluated over a "context type" CX, which
|
|
// stands for the set Subtypes(CX) of every Java type that is a subtype*
|
|
// of CX. When the system loads a new class or interface N, it is
|
|
// responsible for re-evaluating changed dependencies whose context
|
|
// type now includes N, that is, all super types of N.
|
|
//
|
|
enum DepType {
|
|
end_marker = 0,
|
|
|
|
// An 'evol' dependency simply notes that the contents of the
|
|
// method were used. If it evolves (is replaced), the nmethod
|
|
// must be recompiled. No other dependencies are implied.
|
|
evol_method,
|
|
FIRST_TYPE = evol_method,
|
|
|
|
// A context type CX is a leaf it if has no proper subtype.
|
|
leaf_type,
|
|
|
|
// An abstract class CX has exactly one concrete subtype CC.
|
|
abstract_with_unique_concrete_subtype,
|
|
|
|
// The type CX is purely abstract, with no concrete subtype* at all.
|
|
abstract_with_no_concrete_subtype,
|
|
|
|
// The concrete CX is free of concrete proper subtypes.
|
|
concrete_with_no_concrete_subtype,
|
|
|
|
// Given a method M1 and a context class CX, the set MM(CX, M1) of
|
|
// "concrete matching methods" in CX of M1 is the set of every
|
|
// concrete M2 for which it is possible to create an invokevirtual
|
|
// or invokeinterface call site that can reach either M1 or M2.
|
|
// That is, M1 and M2 share a name, signature, and vtable index.
|
|
// We wish to notice when the set MM(CX, M1) is just {M1}, or
|
|
// perhaps a set of two {M1,M2}, and issue dependencies on this.
|
|
|
|
// The set MM(CX, M1) can be computed by starting with any matching
|
|
// concrete M2 that is inherited into CX, and then walking the
|
|
// subtypes* of CX looking for concrete definitions.
|
|
|
|
// The parameters to this dependency are the method M1 and the
|
|
// context class CX. M1 must be either inherited in CX or defined
|
|
// in a subtype* of CX. It asserts that MM(CX, M1) is no greater
|
|
// than {M1}.
|
|
unique_concrete_method, // one unique concrete method under CX
|
|
|
|
// An "exclusive" assertion concerns two methods or subtypes, and
|
|
// declares that there are at most two (or perhaps later N>2)
|
|
// specific items that jointly satisfy the restriction.
|
|
// We list all items explicitly rather than just giving their
|
|
// count, for robustness in the face of complex schema changes.
|
|
|
|
// A context class CX (which may be either abstract or concrete)
|
|
// has two exclusive concrete subtypes* C1, C2 if every concrete
|
|
// subtype* of CX is either C1 or C2. Note that if neither C1 or C2
|
|
// are equal to CX, then CX itself must be abstract. But it is
|
|
// also possible (for example) that C1 is CX (a concrete class)
|
|
// and C2 is a proper subtype of C1.
|
|
abstract_with_exclusive_concrete_subtypes_2,
|
|
|
|
// This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
|
|
exclusive_concrete_methods_2,
|
|
|
|
// This dependency asserts that no instances of class or it's
|
|
// subclasses require finalization registration.
|
|
no_finalizable_subclasses,
|
|
|
|
// This dependency asserts when the CallSite.target value changed.
|
|
call_site_target_value,
|
|
|
|
TYPE_LIMIT
|
|
};
|
|
enum {
|
|
LG2_TYPE_LIMIT = 4, // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
|
|
|
|
// handy categorizations of dependency types:
|
|
all_types = ((1 << TYPE_LIMIT) - 1) & ((~0u) << FIRST_TYPE),
|
|
|
|
non_klass_types = (1 << call_site_target_value),
|
|
klass_types = all_types & ~non_klass_types,
|
|
|
|
non_ctxk_types = (1 << evol_method) | (1 << call_site_target_value),
|
|
implicit_ctxk_types = 0,
|
|
explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
|
|
|
|
max_arg_count = 3, // current maximum number of arguments (incl. ctxk)
|
|
|
|
// A "context type" is a class or interface that
|
|
// provides context for evaluating a dependency.
|
|
// When present, it is one of the arguments (dep_context_arg).
|
|
//
|
|
// If a dependency does not have a context type, there is a
|
|
// default context, depending on the type of the dependency.
|
|
// This bit signals that a default context has been compressed away.
|
|
default_context_type_bit = (1<<LG2_TYPE_LIMIT)
|
|
};
|
|
|
|
static const char* dep_name(DepType dept);
|
|
static int dep_args(DepType dept);
|
|
|
|
static bool is_klass_type( DepType dept) { return dept_in_mask(dept, klass_types ); }
|
|
|
|
static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
|
|
static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
|
|
|
|
static int dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
|
|
static int dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
|
|
|
|
static void check_valid_dependency_type(DepType dept);
|
|
|
|
#if INCLUDE_JVMCI
|
|
// A Metadata* or object value recorded in an OopRecorder
|
|
class DepValue {
|
|
private:
|
|
// Unique identifier of the value within the associated OopRecorder that
|
|
// encodes both the category of the value (0: invalid, positive: metadata, negative: object)
|
|
// and the index within a category specific array (metadata: index + 1, object: -(index + 1))
|
|
int _id;
|
|
|
|
public:
|
|
DepValue() : _id(0) {}
|
|
DepValue(OopRecorder* rec, Metadata* metadata, DepValue* candidate = NULL) {
|
|
assert(candidate == NULL || candidate->is_metadata(), "oops");
|
|
if (candidate != NULL && candidate->as_metadata(rec) == metadata) {
|
|
_id = candidate->_id;
|
|
} else {
|
|
_id = rec->find_index(metadata) + 1;
|
|
}
|
|
}
|
|
DepValue(OopRecorder* rec, jobject obj, DepValue* candidate = NULL) {
|
|
assert(candidate == NULL || candidate->is_object(), "oops");
|
|
if (candidate != NULL && candidate->as_object(rec) == obj) {
|
|
_id = candidate->_id;
|
|
} else {
|
|
_id = -(rec->find_index(obj) + 1);
|
|
}
|
|
}
|
|
|
|
// Used to sort values in ascending order of index() with metadata values preceding object values
|
|
int sort_key() const { return -_id; }
|
|
|
|
bool operator == (const DepValue& other) const { return other._id == _id; }
|
|
|
|
bool is_valid() const { return _id != 0; }
|
|
int index() const { assert(is_valid(), "oops"); return _id < 0 ? -(_id + 1) : _id - 1; }
|
|
bool is_metadata() const { assert(is_valid(), "oops"); return _id > 0; }
|
|
bool is_object() const { assert(is_valid(), "oops"); return _id < 0; }
|
|
|
|
Metadata* as_metadata(OopRecorder* rec) const { assert(is_metadata(), "oops"); return rec->metadata_at(index()); }
|
|
Klass* as_klass(OopRecorder* rec) const {
|
|
Metadata* m = as_metadata(rec);
|
|
assert(m != NULL, "as_metadata returned NULL");
|
|
assert(m->is_klass(), "oops");
|
|
return (Klass*) m;
|
|
}
|
|
Method* as_method(OopRecorder* rec) const {
|
|
Metadata* m = as_metadata(rec);
|
|
assert(m != NULL, "as_metadata returned NULL");
|
|
assert(m->is_method(), "oops");
|
|
return (Method*) m;
|
|
}
|
|
jobject as_object(OopRecorder* rec) const { assert(is_object(), "oops"); return rec->oop_at(index()); }
|
|
};
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
private:
|
|
// State for writing a new set of dependencies:
|
|
GrowableArray<int>* _dep_seen; // (seen[h->ident] & (1<<dept))
|
|
GrowableArray<ciBaseObject*>* _deps[TYPE_LIMIT];
|
|
#if INCLUDE_JVMCI
|
|
bool _using_dep_values;
|
|
GrowableArray<DepValue>* _dep_values[TYPE_LIMIT];
|
|
#endif
|
|
|
|
static const char* _dep_name[TYPE_LIMIT];
|
|
static int _dep_args[TYPE_LIMIT];
|
|
|
|
static bool dept_in_mask(DepType dept, int mask) {
|
|
return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
|
|
}
|
|
|
|
bool note_dep_seen(int dept, ciBaseObject* x) {
|
|
assert(dept < BitsPerInt, "oob");
|
|
int x_id = x->ident();
|
|
assert(_dep_seen != NULL, "deps must be writable");
|
|
int seen = _dep_seen->at_grow(x_id, 0);
|
|
_dep_seen->at_put(x_id, seen | (1<<dept));
|
|
// return true if we've already seen dept/x
|
|
return (seen & (1<<dept)) != 0;
|
|
}
|
|
|
|
#if INCLUDE_JVMCI
|
|
bool note_dep_seen(int dept, DepValue x) {
|
|
assert(dept < BitsPerInt, "oops");
|
|
// place metadata deps at even indexes, object deps at odd indexes
|
|
int x_id = x.is_metadata() ? x.index() * 2 : (x.index() * 2) + 1;
|
|
assert(_dep_seen != NULL, "deps must be writable");
|
|
int seen = _dep_seen->at_grow(x_id, 0);
|
|
_dep_seen->at_put(x_id, seen | (1<<dept));
|
|
// return true if we've already seen dept/x
|
|
return (seen & (1<<dept)) != 0;
|
|
}
|
|
#endif
|
|
|
|
bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
|
|
int ctxk_i, ciKlass* ctxk);
|
|
#if INCLUDE_JVMCI
|
|
bool maybe_merge_ctxk(GrowableArray<DepValue>* deps,
|
|
int ctxk_i, DepValue ctxk);
|
|
#endif
|
|
|
|
void sort_all_deps();
|
|
size_t estimate_size_in_bytes();
|
|
|
|
// Initialize _deps, etc.
|
|
void initialize(ciEnv* env);
|
|
|
|
// State for making a new set of dependencies:
|
|
OopRecorder* _oop_recorder;
|
|
|
|
// Logging support
|
|
CompileLog* _log;
|
|
|
|
address _content_bytes; // everything but the oop references, encoded
|
|
size_t _size_in_bytes;
|
|
|
|
public:
|
|
// Make a new empty dependencies set.
|
|
Dependencies(ciEnv* env) {
|
|
initialize(env);
|
|
}
|
|
#if INCLUDE_JVMCI
|
|
Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log);
|
|
#endif
|
|
|
|
private:
|
|
// Check for a valid context type.
|
|
// Enforce the restriction against array types.
|
|
static void check_ctxk(ciKlass* ctxk) {
|
|
assert(ctxk->is_instance_klass(), "java types only");
|
|
}
|
|
static void check_ctxk_concrete(ciKlass* ctxk) {
|
|
assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
|
|
}
|
|
static void check_ctxk_abstract(ciKlass* ctxk) {
|
|
check_ctxk(ctxk);
|
|
assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
|
|
}
|
|
|
|
void assert_common_1(DepType dept, ciBaseObject* x);
|
|
void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
|
|
void assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2);
|
|
|
|
public:
|
|
// Adding assertions to a new dependency set at compile time:
|
|
void assert_evol_method(ciMethod* m);
|
|
void assert_leaf_type(ciKlass* ctxk);
|
|
void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
|
|
void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
|
|
void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
|
|
void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
|
|
void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
|
|
void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
|
|
void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
|
|
void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
|
|
|
|
#if INCLUDE_JVMCI
|
|
private:
|
|
static void check_ctxk(Klass* ctxk) {
|
|
assert(ctxk->is_instance_klass(), "java types only");
|
|
}
|
|
static void check_ctxk_abstract(Klass* ctxk) {
|
|
check_ctxk(ctxk);
|
|
assert(ctxk->is_abstract(), "must be abstract");
|
|
}
|
|
void assert_common_1(DepType dept, DepValue x);
|
|
void assert_common_2(DepType dept, DepValue x0, DepValue x1);
|
|
|
|
public:
|
|
void assert_evol_method(Method* m);
|
|
void assert_has_no_finalizable_subclasses(Klass* ctxk);
|
|
void assert_leaf_type(Klass* ctxk);
|
|
void assert_unique_concrete_method(Klass* ctxk, Method* uniqm);
|
|
void assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck);
|
|
void assert_call_site_target_value(oop callSite, oop methodHandle);
|
|
#endif // INCLUDE_JVMCI
|
|
|
|
// Define whether a given method or type is concrete.
|
|
// These methods define the term "concrete" as used in this module.
|
|
// For this module, an "abstract" class is one which is non-concrete.
|
|
//
|
|
// Future optimizations may allow some classes to remain
|
|
// non-concrete until their first instantiation, and allow some
|
|
// methods to remain non-concrete until their first invocation.
|
|
// In that case, there would be a middle ground between concrete
|
|
// and abstract (as defined by the Java language and VM).
|
|
static bool is_concrete_klass(Klass* k); // k is instantiable
|
|
static bool is_concrete_method(Method* m, Klass* k); // m is invocable
|
|
static Klass* find_finalizable_subclass(Klass* k);
|
|
|
|
// These versions of the concreteness queries work through the CI.
|
|
// The CI versions are allowed to skew sometimes from the VM
|
|
// (oop-based) versions. The cost of such a difference is a
|
|
// (safely) aborted compilation, or a deoptimization, or a missed
|
|
// optimization opportunity.
|
|
//
|
|
// In order to prevent spurious assertions, query results must
|
|
// remain stable within any single ciEnv instance. (I.e., they must
|
|
// not go back into the VM to get their value; they must cache the
|
|
// bit in the CI, either eagerly or lazily.)
|
|
static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
|
|
static bool has_finalizable_subclass(ciInstanceKlass* k);
|
|
|
|
// As a general rule, it is OK to compile under the assumption that
|
|
// a given type or method is concrete, even if it at some future
|
|
// point becomes abstract. So dependency checking is one-sided, in
|
|
// that it permits supposedly concrete classes or methods to turn up
|
|
// as really abstract. (This shouldn't happen, except during class
|
|
// evolution, but that's the logic of the checking.) However, if a
|
|
// supposedly abstract class or method suddenly becomes concrete, a
|
|
// dependency on it must fail.
|
|
|
|
// Checking old assertions at run-time (in the VM only):
|
|
static Klass* check_evol_method(Method* m);
|
|
static Klass* check_leaf_type(Klass* ctxk);
|
|
static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
|
|
KlassDepChange* changes = NULL);
|
|
static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
|
|
static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
|
|
// A returned Klass* is NULL if the dependency assertion is still
|
|
// valid. A non-NULL Klass* is a 'witness' to the assertion
|
|
// failure, a point in the class hierarchy where the assertion has
|
|
// been proven false. For example, if check_leaf_type returns
|
|
// non-NULL, the value is a subtype of the supposed leaf type. This
|
|
// witness value may be useful for logging the dependency failure.
|
|
// Note that, when a dependency fails, there may be several possible
|
|
// witnesses to the failure. The value returned from the check_foo
|
|
// method is chosen arbitrarily.
|
|
|
|
// The 'changes' value, if non-null, requests a limited spot-check
|
|
// near the indicated recent changes in the class hierarchy.
|
|
// It is used by DepStream::spot_check_dependency_at.
|
|
|
|
// Detecting possible new assertions:
|
|
static Klass* find_unique_concrete_subtype(Klass* ctxk);
|
|
static Method* find_unique_concrete_method(Klass* ctxk, Method* m);
|
|
static int find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
|
|
|
|
// Create the encoding which will be stored in an nmethod.
|
|
void encode_content_bytes();
|
|
|
|
address content_bytes() {
|
|
assert(_content_bytes != NULL, "encode it first");
|
|
return _content_bytes;
|
|
}
|
|
size_t size_in_bytes() {
|
|
assert(_content_bytes != NULL, "encode it first");
|
|
return _size_in_bytes;
|
|
}
|
|
|
|
OopRecorder* oop_recorder() { return _oop_recorder; }
|
|
CompileLog* log() { return _log; }
|
|
|
|
void copy_to(nmethod* nm);
|
|
|
|
DepType validate_dependencies(CompileTask* task, bool counter_changed, char** failure_detail = NULL);
|
|
|
|
void log_all_dependencies();
|
|
|
|
void log_dependency(DepType dept, GrowableArray<ciBaseObject*>* args) {
|
|
ResourceMark rm;
|
|
int argslen = args->length();
|
|
write_dependency_to(log(), dept, args);
|
|
guarantee(argslen == args->length(),
|
|
"args array cannot grow inside nested ResoureMark scope");
|
|
}
|
|
|
|
void log_dependency(DepType dept,
|
|
ciBaseObject* x0,
|
|
ciBaseObject* x1 = NULL,
|
|
ciBaseObject* x2 = NULL) {
|
|
if (log() == NULL) {
|
|
return;
|
|
}
|
|
ResourceMark rm;
|
|
GrowableArray<ciBaseObject*>* ciargs =
|
|
new GrowableArray<ciBaseObject*>(dep_args(dept));
|
|
assert (x0 != NULL, "no log x0");
|
|
ciargs->push(x0);
|
|
|
|
if (x1 != NULL) {
|
|
ciargs->push(x1);
|
|
}
|
|
if (x2 != NULL) {
|
|
ciargs->push(x2);
|
|
}
|
|
assert(ciargs->length() == dep_args(dept), "");
|
|
log_dependency(dept, ciargs);
|
|
}
|
|
|
|
class DepArgument : public ResourceObj {
|
|
private:
|
|
bool _is_oop;
|
|
bool _valid;
|
|
void* _value;
|
|
public:
|
|
DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
|
|
DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
|
|
DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
|
|
|
|
bool is_null() const { return _value == NULL; }
|
|
bool is_oop() const { return _is_oop; }
|
|
bool is_metadata() const { return !_is_oop; }
|
|
bool is_klass() const { return is_metadata() && metadata_value()->is_klass(); }
|
|
bool is_method() const { return is_metadata() && metadata_value()->is_method(); }
|
|
|
|
oop oop_value() const { assert(_is_oop && _valid, "must be"); return (oop) _value; }
|
|
Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
|
|
};
|
|
|
|
static void print_dependency(DepType dept,
|
|
GrowableArray<DepArgument>* args,
|
|
Klass* witness = NULL, outputStream* st = tty);
|
|
|
|
private:
|
|
// helper for encoding common context types as zero:
|
|
static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
|
|
|
|
static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
|
|
|
|
static void write_dependency_to(CompileLog* log,
|
|
DepType dept,
|
|
GrowableArray<ciBaseObject*>* args,
|
|
Klass* witness = NULL);
|
|
static void write_dependency_to(CompileLog* log,
|
|
DepType dept,
|
|
GrowableArray<DepArgument>* args,
|
|
Klass* witness = NULL);
|
|
static void write_dependency_to(xmlStream* xtty,
|
|
DepType dept,
|
|
GrowableArray<DepArgument>* args,
|
|
Klass* witness = NULL);
|
|
public:
|
|
// Use this to iterate over an nmethod's dependency set.
|
|
// Works on new and old dependency sets.
|
|
// Usage:
|
|
//
|
|
// ;
|
|
// Dependencies::DepType dept;
|
|
// for (Dependencies::DepStream deps(nm); deps.next(); ) {
|
|
// ...
|
|
// }
|
|
//
|
|
// The caller must be in the VM, since oops are not wrapped in handles.
|
|
class DepStream {
|
|
private:
|
|
nmethod* _code; // null if in a compiler thread
|
|
Dependencies* _deps; // null if not in a compiler thread
|
|
CompressedReadStream _bytes;
|
|
#ifdef ASSERT
|
|
size_t _byte_limit;
|
|
#endif
|
|
|
|
// iteration variables:
|
|
DepType _type;
|
|
int _xi[max_arg_count+1];
|
|
|
|
void initial_asserts(size_t byte_limit) NOT_DEBUG({});
|
|
|
|
inline Metadata* recorded_metadata_at(int i);
|
|
inline oop recorded_oop_at(int i);
|
|
|
|
Klass* check_klass_dependency(KlassDepChange* changes);
|
|
Klass* check_call_site_dependency(CallSiteDepChange* changes);
|
|
|
|
void trace_and_log_witness(Klass* witness);
|
|
|
|
public:
|
|
DepStream(Dependencies* deps)
|
|
: _deps(deps),
|
|
_code(NULL),
|
|
_bytes(deps->content_bytes())
|
|
{
|
|
initial_asserts(deps->size_in_bytes());
|
|
}
|
|
DepStream(nmethod* code)
|
|
: _deps(NULL),
|
|
_code(code),
|
|
_bytes(code->dependencies_begin())
|
|
{
|
|
initial_asserts(code->dependencies_size());
|
|
}
|
|
|
|
bool next();
|
|
|
|
DepType type() { return _type; }
|
|
bool is_oop_argument(int i) { return type() == call_site_target_value; }
|
|
uintptr_t get_identifier(int i);
|
|
|
|
int argument_count() { return dep_args(type()); }
|
|
int argument_index(int i) { assert(0 <= i && i < argument_count(), "oob");
|
|
return _xi[i]; }
|
|
Metadata* argument(int i); // => recorded_oop_at(argument_index(i))
|
|
oop argument_oop(int i); // => recorded_oop_at(argument_index(i))
|
|
Klass* context_type();
|
|
|
|
bool is_klass_type() { return Dependencies::is_klass_type(type()); }
|
|
|
|
Method* method_argument(int i) {
|
|
Metadata* x = argument(i);
|
|
assert(x->is_method(), "type");
|
|
return (Method*) x;
|
|
}
|
|
Klass* type_argument(int i) {
|
|
Metadata* x = argument(i);
|
|
assert(x->is_klass(), "type");
|
|
return (Klass*) x;
|
|
}
|
|
|
|
// The point of the whole exercise: Is this dep still OK?
|
|
Klass* check_dependency() {
|
|
Klass* result = check_klass_dependency(NULL);
|
|
if (result != NULL) return result;
|
|
return check_call_site_dependency(NULL);
|
|
}
|
|
|
|
// A lighter version: Checks only around recent changes in a class
|
|
// hierarchy. (See Universe::flush_dependents_on.)
|
|
Klass* spot_check_dependency_at(DepChange& changes);
|
|
|
|
// Log the current dependency to xtty or compilation log.
|
|
void log_dependency(Klass* witness = NULL);
|
|
|
|
// Print the current dependency to tty.
|
|
void print_dependency(Klass* witness = NULL, bool verbose = false, outputStream* st = tty);
|
|
};
|
|
friend class Dependencies::DepStream;
|
|
|
|
static void print_statistics() PRODUCT_RETURN;
|
|
};
|
|
|
|
|
|
class DependencySignature : public ResourceObj {
|
|
private:
|
|
int _args_count;
|
|
uintptr_t _argument_hash[Dependencies::max_arg_count];
|
|
Dependencies::DepType _type;
|
|
|
|
public:
|
|
DependencySignature(Dependencies::DepStream& dep) {
|
|
_args_count = dep.argument_count();
|
|
_type = dep.type();
|
|
for (int i = 0; i < _args_count; i++) {
|
|
_argument_hash[i] = dep.get_identifier(i);
|
|
}
|
|
}
|
|
|
|
static bool equals(DependencySignature const& s1, DependencySignature const& s2);
|
|
static unsigned hash (DependencySignature const& s1) { return s1.arg(0) >> 2; }
|
|
|
|
int args_count() const { return _args_count; }
|
|
uintptr_t arg(int idx) const { return _argument_hash[idx]; }
|
|
Dependencies::DepType type() const { return _type; }
|
|
|
|
};
|
|
|
|
|
|
// Every particular DepChange is a sub-class of this class.
|
|
class DepChange : public StackObj {
|
|
public:
|
|
// What kind of DepChange is this?
|
|
virtual bool is_klass_change() const { return false; }
|
|
virtual bool is_call_site_change() const { return false; }
|
|
|
|
virtual void mark_for_deoptimization(nmethod* nm) = 0;
|
|
|
|
// Subclass casting with assertions.
|
|
KlassDepChange* as_klass_change() {
|
|
assert(is_klass_change(), "bad cast");
|
|
return (KlassDepChange*) this;
|
|
}
|
|
CallSiteDepChange* as_call_site_change() {
|
|
assert(is_call_site_change(), "bad cast");
|
|
return (CallSiteDepChange*) this;
|
|
}
|
|
|
|
void print();
|
|
|
|
public:
|
|
enum ChangeType {
|
|
NO_CHANGE = 0, // an uninvolved klass
|
|
Change_new_type, // a newly loaded type
|
|
Change_new_sub, // a super with a new subtype
|
|
Change_new_impl, // an interface with a new implementation
|
|
CHANGE_LIMIT,
|
|
Start_Klass = CHANGE_LIMIT // internal indicator for ContextStream
|
|
};
|
|
|
|
// Usage:
|
|
// for (DepChange::ContextStream str(changes); str.next(); ) {
|
|
// Klass* k = str.klass();
|
|
// switch (str.change_type()) {
|
|
// ...
|
|
// }
|
|
// }
|
|
class ContextStream : public StackObj {
|
|
private:
|
|
DepChange& _changes;
|
|
friend class DepChange;
|
|
|
|
// iteration variables:
|
|
ChangeType _change_type;
|
|
Klass* _klass;
|
|
Array<Klass*>* _ti_base; // i.e., transitive_interfaces
|
|
int _ti_index;
|
|
int _ti_limit;
|
|
|
|
// start at the beginning:
|
|
void start();
|
|
|
|
public:
|
|
ContextStream(DepChange& changes)
|
|
: _changes(changes)
|
|
{ start(); }
|
|
|
|
ContextStream(DepChange& changes, NoSafepointVerifier& nsv)
|
|
: _changes(changes)
|
|
// the nsv argument makes it safe to hold oops like _klass
|
|
{ start(); }
|
|
|
|
bool next();
|
|
|
|
ChangeType change_type() { return _change_type; }
|
|
Klass* klass() { return _klass; }
|
|
};
|
|
friend class DepChange::ContextStream;
|
|
};
|
|
|
|
|
|
// A class hierarchy change coming through the VM (under the Compile_lock).
|
|
// The change is structured as a single new type with any number of supers
|
|
// and implemented interface types. Other than the new type, any of the
|
|
// super types can be context types for a relevant dependency, which the
|
|
// new type could invalidate.
|
|
class KlassDepChange : public DepChange {
|
|
private:
|
|
// each change set is rooted in exactly one new type (at present):
|
|
Klass* _new_type;
|
|
|
|
void initialize();
|
|
|
|
public:
|
|
// notes the new type, marks it and all its super-types
|
|
KlassDepChange(Klass* new_type)
|
|
: _new_type(new_type)
|
|
{
|
|
initialize();
|
|
}
|
|
|
|
// cleans up the marks
|
|
~KlassDepChange();
|
|
|
|
// What kind of DepChange is this?
|
|
virtual bool is_klass_change() const { return true; }
|
|
|
|
virtual void mark_for_deoptimization(nmethod* nm) {
|
|
nm->mark_for_deoptimization(/*inc_recompile_counts=*/true);
|
|
}
|
|
|
|
Klass* new_type() { return _new_type; }
|
|
|
|
// involves_context(k) is true if k is new_type or any of the super types
|
|
bool involves_context(Klass* k);
|
|
};
|
|
|
|
|
|
// A CallSite has changed its target.
|
|
class CallSiteDepChange : public DepChange {
|
|
private:
|
|
Handle _call_site;
|
|
Handle _method_handle;
|
|
|
|
public:
|
|
CallSiteDepChange(Handle call_site, Handle method_handle);
|
|
|
|
// What kind of DepChange is this?
|
|
virtual bool is_call_site_change() const { return true; }
|
|
|
|
virtual void mark_for_deoptimization(nmethod* nm) {
|
|
nm->mark_for_deoptimization(/*inc_recompile_counts=*/false);
|
|
}
|
|
|
|
oop call_site() const { return _call_site(); }
|
|
oop method_handle() const { return _method_handle(); }
|
|
};
|
|
|
|
#endif // SHARE_VM_CODE_DEPENDENCIES_HPP
|