jdk-24/hotspot/src/share/vm/opto/library_call.cpp
Jesper Wilhelmsson 7078962b9c Merge
2015-10-15 13:28:22 +02:00

6329 lines
256 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callGenerator.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/countbitsnode.hpp"
#include "opto/intrinsicnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/mathexactnode.hpp"
#include "opto/movenode.hpp"
#include "opto/mulnode.hpp"
#include "opto/narrowptrnode.hpp"
#include "opto/opaquenode.hpp"
#include "opto/parse.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/sharedRuntime.hpp"
#include "trace/traceMacros.hpp"
class LibraryIntrinsic : public InlineCallGenerator {
// Extend the set of intrinsics known to the runtime:
public:
private:
bool _is_virtual;
bool _does_virtual_dispatch;
int8_t _predicates_count; // Intrinsic is predicated by several conditions
int8_t _last_predicate; // Last generated predicate
vmIntrinsics::ID _intrinsic_id;
public:
LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
: InlineCallGenerator(m),
_is_virtual(is_virtual),
_does_virtual_dispatch(does_virtual_dispatch),
_predicates_count((int8_t)predicates_count),
_last_predicate((int8_t)-1),
_intrinsic_id(id)
{
}
virtual bool is_intrinsic() const { return true; }
virtual bool is_virtual() const { return _is_virtual; }
virtual bool is_predicated() const { return _predicates_count > 0; }
virtual int predicates_count() const { return _predicates_count; }
virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; }
virtual JVMState* generate(JVMState* jvms);
virtual Node* generate_predicate(JVMState* jvms, int predicate);
vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
};
// Local helper class for LibraryIntrinsic:
class LibraryCallKit : public GraphKit {
private:
LibraryIntrinsic* _intrinsic; // the library intrinsic being called
Node* _result; // the result node, if any
int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
public:
LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
: GraphKit(jvms),
_intrinsic(intrinsic),
_result(NULL)
{
// Check if this is a root compile. In that case we don't have a caller.
if (!jvms->has_method()) {
_reexecute_sp = sp();
} else {
// Find out how many arguments the interpreter needs when deoptimizing
// and save the stack pointer value so it can used by uncommon_trap.
// We find the argument count by looking at the declared signature.
bool ignored_will_link;
ciSignature* declared_signature = NULL;
ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
_reexecute_sp = sp() + nargs; // "push" arguments back on stack
}
}
virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
ciMethod* caller() const { return jvms()->method(); }
int bci() const { return jvms()->bci(); }
LibraryIntrinsic* intrinsic() const { return _intrinsic; }
vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
ciMethod* callee() const { return _intrinsic->method(); }
bool try_to_inline(int predicate);
Node* try_to_predicate(int predicate);
void push_result() {
// Push the result onto the stack.
if (!stopped() && result() != NULL) {
BasicType bt = result()->bottom_type()->basic_type();
push_node(bt, result());
}
}
private:
void fatal_unexpected_iid(vmIntrinsics::ID iid) {
fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
}
void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
void set_result(RegionNode* region, PhiNode* value);
Node* result() { return _result; }
virtual int reexecute_sp() { return _reexecute_sp; }
// Helper functions to inline natives
Node* generate_guard(Node* test, RegionNode* region, float true_prob);
Node* generate_slow_guard(Node* test, RegionNode* region);
Node* generate_fair_guard(Node* test, RegionNode* region);
Node* generate_negative_guard(Node* index, RegionNode* region,
// resulting CastII of index:
Node* *pos_index = NULL);
Node* generate_limit_guard(Node* offset, Node* subseq_length,
Node* array_length,
RegionNode* region);
Node* generate_current_thread(Node* &tls_output);
Node* load_mirror_from_klass(Node* klass);
Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
RegionNode* region, int null_path,
int offset);
Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
RegionNode* region, int null_path) {
int offset = java_lang_Class::klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null,
region, null_path,
offset);
}
Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
RegionNode* region, int null_path) {
int offset = java_lang_Class::array_klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null,
region, null_path,
offset);
}
Node* generate_access_flags_guard(Node* kls,
int modifier_mask, int modifier_bits,
RegionNode* region);
Node* generate_interface_guard(Node* kls, RegionNode* region);
Node* generate_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, false);
}
Node* generate_non_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, true);
}
Node* generate_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, false);
}
Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, true);
}
Node* generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array);
Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
bool is_virtual = false, bool is_static = false);
CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, false, true);
}
CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, true, false);
}
Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
Node* make_string_method_node(int opcode, Node* str1, Node* str2);
bool inline_string_compareTo();
bool inline_string_indexOf();
Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
bool inline_string_equals();
Node* round_double_node(Node* n);
bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
bool inline_math_native(vmIntrinsics::ID id);
bool inline_trig(vmIntrinsics::ID id);
bool inline_math(vmIntrinsics::ID id);
template <typename OverflowOp>
bool inline_math_overflow(Node* arg1, Node* arg2);
void inline_math_mathExact(Node* math, Node* test);
bool inline_math_addExactI(bool is_increment);
bool inline_math_addExactL(bool is_increment);
bool inline_math_multiplyExactI();
bool inline_math_multiplyExactL();
bool inline_math_negateExactI();
bool inline_math_negateExactL();
bool inline_math_subtractExactI(bool is_decrement);
bool inline_math_subtractExactL(bool is_decrement);
bool inline_pow();
Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
bool inline_min_max(vmIntrinsics::ID id);
bool inline_notify(vmIntrinsics::ID id);
Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
// This returns Type::AnyPtr, RawPtr, or OopPtr.
int classify_unsafe_addr(Node* &base, Node* &offset);
Node* make_unsafe_address(Node* base, Node* offset);
// Helper for inline_unsafe_access.
// Generates the guards that check whether the result of
// Unsafe.getObject should be recorded in an SATB log buffer.
void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
static bool klass_needs_init_guard(Node* kls);
bool inline_unsafe_allocate();
bool inline_unsafe_copyMemory();
bool inline_native_currentThread();
#ifdef TRACE_HAVE_INTRINSICS
bool inline_native_classID();
bool inline_native_threadID();
#endif
bool inline_native_time_funcs(address method, const char* funcName);
bool inline_native_isInterrupted();
bool inline_native_Class_query(vmIntrinsics::ID id);
bool inline_native_subtype_check();
bool inline_native_newArray();
bool inline_native_getLength();
bool inline_array_copyOf(bool is_copyOfRange);
bool inline_array_equals();
void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
bool inline_native_clone(bool is_virtual);
bool inline_native_Reflection_getCallerClass();
// Helper function for inlining native object hash method
bool inline_native_hashcode(bool is_virtual, bool is_static);
bool inline_native_getClass();
// Helper functions for inlining arraycopy
bool inline_arraycopy();
AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region);
JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind);
bool inline_unsafe_ordered_store(BasicType type);
bool inline_unsafe_fence(vmIntrinsics::ID id);
bool inline_fp_conversions(vmIntrinsics::ID id);
bool inline_number_methods(vmIntrinsics::ID id);
bool inline_reference_get();
bool inline_Class_cast();
bool inline_aescrypt_Block(vmIntrinsics::ID id);
bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
bool inline_ghash_processBlocks();
bool inline_sha_implCompress(vmIntrinsics::ID id);
bool inline_digestBase_implCompressMB(int predicate);
bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
bool long_state, address stubAddr, const char *stubName,
Node* src_start, Node* ofs, Node* limit);
Node* get_state_from_sha_object(Node *sha_object);
Node* get_state_from_sha5_object(Node *sha_object);
Node* inline_digestBase_implCompressMB_predicate(int predicate);
bool inline_encodeISOArray();
bool inline_updateCRC32();
bool inline_updateBytesCRC32();
bool inline_updateByteBufferCRC32();
Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
bool inline_updateBytesCRC32C();
bool inline_updateDirectByteBufferCRC32C();
bool inline_updateBytesAdler32();
bool inline_updateByteBufferAdler32();
bool inline_multiplyToLen();
bool inline_squareToLen();
bool inline_mulAdd();
bool inline_montgomeryMultiply();
bool inline_montgomerySquare();
bool inline_profileBoolean();
bool inline_isCompileConstant();
};
//---------------------------make_vm_intrinsic----------------------------
CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (!m->is_loaded()) {
// Do not attempt to inline unloaded methods.
return NULL;
}
C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
bool is_available = false;
{
// For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
// the compiler must transition to '_thread_in_vm' state because both
// methods access VM-internal data.
VM_ENTRY_MARK;
methodHandle mh(THREAD, m->get_Method());
methodHandle ct(THREAD, method()->get_Method());
is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
!vmIntrinsics::is_disabled_by_flags(mh, ct);
}
if (is_available) {
assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
return new LibraryIntrinsic(m, is_virtual,
vmIntrinsics::predicates_needed(id),
vmIntrinsics::does_virtual_dispatch(id),
(vmIntrinsics::ID) id);
} else {
return NULL;
}
}
//----------------------register_library_intrinsics-----------------------
// Initialize this file's data structures, for each Compile instance.
void Compile::register_library_intrinsics() {
// Nothing to do here.
}
JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
LibraryCallKit kit(jvms, this);
Compile* C = kit.C;
int nodes = C->unique();
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
char buf[1000];
const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
tty->print_cr("Intrinsic %s", str);
}
#endif
ciMethod* callee = kit.callee();
const int bci = kit.bci();
// Try to inline the intrinsic.
if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
kit.try_to_inline(_last_predicate)) {
if (C->print_intrinsics() || C->print_inlining()) {
C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
if (C->log()) {
C->log()->elem("intrinsic id='%s'%s nodes='%d'",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " virtual='1'" : ""),
C->unique() - nodes);
}
// Push the result from the inlined method onto the stack.
kit.push_result();
C->print_inlining_update(this);
return kit.transfer_exceptions_into_jvms();
}
// The intrinsic bailed out
if (C->print_intrinsics() || C->print_inlining()) {
if (jvms->has_method()) {
// Not a root compile.
const char* msg;
if (callee->intrinsic_candidate()) {
msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
} else {
msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
: "failed to inline (intrinsic), method not annotated";
}
C->print_inlining(callee, jvms->depth() - 1, bci, msg);
} else {
// Root compile
tty->print("Did not generate intrinsic %s%s at bci:%d in",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " (virtual)" : ""), bci);
}
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
C->print_inlining_update(this);
return NULL;
}
Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
LibraryCallKit kit(jvms, this);
Compile* C = kit.C;
int nodes = C->unique();
_last_predicate = predicate;
#ifndef PRODUCT
assert(is_predicated() && predicate < predicates_count(), "sanity");
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
char buf[1000];
const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
tty->print_cr("Predicate for intrinsic %s", str);
}
#endif
ciMethod* callee = kit.callee();
const int bci = kit.bci();
Node* slow_ctl = kit.try_to_predicate(predicate);
if (!kit.failing()) {
if (C->print_intrinsics() || C->print_inlining()) {
C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
if (C->log()) {
C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " virtual='1'" : ""),
C->unique() - nodes);
}
return slow_ctl; // Could be NULL if the check folds.
}
// The intrinsic bailed out
if (C->print_intrinsics() || C->print_inlining()) {
if (jvms->has_method()) {
// Not a root compile.
const char* msg = "failed to generate predicate for intrinsic";
C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
} else {
// Root compile
C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " (virtual)" : ""), bci);
}
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
return NULL;
}
bool LibraryCallKit::try_to_inline(int predicate) {
// Handle symbolic names for otherwise undistinguished boolean switches:
const bool is_store = true;
const bool is_native_ptr = true;
const bool is_static = true;
const bool is_volatile = true;
if (!jvms()->has_method()) {
// Root JVMState has a null method.
assert(map()->memory()->Opcode() == Op_Parm, "");
// Insert the memory aliasing node
set_all_memory(reset_memory());
}
assert(merged_memory(), "");
switch (intrinsic_id()) {
case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
case vmIntrinsics::_getClass: return inline_native_getClass();
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dabs:
case vmIntrinsics::_datan2:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
case vmIntrinsics::_min:
case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
case vmIntrinsics::_notify:
case vmIntrinsics::_notifyAll:
if (InlineNotify) {
return inline_notify(intrinsic_id());
}
return false;
case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
case vmIntrinsics::_arraycopy: return inline_arraycopy();
case vmIntrinsics::_compareTo: return inline_string_compareTo();
case vmIntrinsics::_indexOf: return inline_string_indexOf();
case vmIntrinsics::_equals: return inline_string_equals();
case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, !is_volatile);
case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, !is_volatile);
case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);
case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, !is_volatile);
case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, !is_volatile);
case vmIntrinsics::_getByte_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE, !is_volatile);
case vmIntrinsics::_getShort_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_getChar_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_getInt_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_INT, !is_volatile);
case vmIntrinsics::_getLong_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_LONG, !is_volatile);
case vmIntrinsics::_getFloat_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT, !is_volatile);
case vmIntrinsics::_getDouble_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
case vmIntrinsics::_getAddress_raw: return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
case vmIntrinsics::_putByte_raw: return inline_unsafe_access( is_native_ptr, is_store, T_BYTE, !is_volatile);
case vmIntrinsics::_putShort_raw: return inline_unsafe_access( is_native_ptr, is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_putChar_raw: return inline_unsafe_access( is_native_ptr, is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_putInt_raw: return inline_unsafe_access( is_native_ptr, is_store, T_INT, !is_volatile);
case vmIntrinsics::_putLong_raw: return inline_unsafe_access( is_native_ptr, is_store, T_LONG, !is_volatile);
case vmIntrinsics::_putFloat_raw: return inline_unsafe_access( is_native_ptr, is_store, T_FLOAT, !is_volatile);
case vmIntrinsics::_putDouble_raw: return inline_unsafe_access( is_native_ptr, is_store, T_DOUBLE, !is_volatile);
case vmIntrinsics::_putAddress_raw: return inline_unsafe_access( is_native_ptr, is_store, T_ADDRESS, !is_volatile);
case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, is_volatile);
case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, is_volatile);
case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, is_volatile);
case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, is_volatile);
case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, is_volatile);
case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, is_volatile);
case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, is_volatile);
case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, is_volatile);
case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, is_volatile);
case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, is_volatile);
case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, is_volatile);
case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, is_volatile);
case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, is_volatile);
case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, is_volatile);
case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, is_volatile);
case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, is_volatile);
case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, is_volatile);
case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, is_volatile);
case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, !is_volatile);
case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, !is_volatile);
case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, !is_volatile);
case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, !is_volatile);
case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, !is_volatile);
case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_load_store(T_INT, LS_cmpxchg);
case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT);
case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT);
case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG);
case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_xadd);
case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_xadd);
case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_xchg);
case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_xchg);
case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_xchg);
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
case vmIntrinsics::_currentThread: return inline_native_currentThread();
case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID: return inline_native_classID();
case vmIntrinsics::_threadID: return inline_native_threadID();
case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
#endif
case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
case vmIntrinsics::_newArray: return inline_native_newArray();
case vmIntrinsics::_getLength: return inline_native_getLength();
case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
case vmIntrinsics::_equalsC: return inline_array_equals();
case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
case vmIntrinsics::_isInstance:
case vmIntrinsics::_getModifiers:
case vmIntrinsics::_isInterface:
case vmIntrinsics::_isArray:
case vmIntrinsics::_isPrimitive:
case vmIntrinsics::_getSuperclass:
case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_floatToIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_doubleToLongBits:
case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
case vmIntrinsics::_numberOfLeadingZeros_i:
case vmIntrinsics::_numberOfLeadingZeros_l:
case vmIntrinsics::_numberOfTrailingZeros_i:
case vmIntrinsics::_numberOfTrailingZeros_l:
case vmIntrinsics::_bitCount_i:
case vmIntrinsics::_bitCount_l:
case vmIntrinsics::_reverseBytes_i:
case vmIntrinsics::_reverseBytes_l:
case vmIntrinsics::_reverseBytes_s:
case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
case vmIntrinsics::_Reference_get: return inline_reference_get();
case vmIntrinsics::_Class_cast: return inline_Class_cast();
case vmIntrinsics::_aescrypt_encryptBlock:
case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
case vmIntrinsics::_sha_implCompress:
case vmIntrinsics::_sha2_implCompress:
case vmIntrinsics::_sha5_implCompress:
return inline_sha_implCompress(intrinsic_id());
case vmIntrinsics::_digestBase_implCompressMB:
return inline_digestBase_implCompressMB(predicate);
case vmIntrinsics::_multiplyToLen:
return inline_multiplyToLen();
case vmIntrinsics::_squareToLen:
return inline_squareToLen();
case vmIntrinsics::_mulAdd:
return inline_mulAdd();
case vmIntrinsics::_montgomeryMultiply:
return inline_montgomeryMultiply();
case vmIntrinsics::_montgomerySquare:
return inline_montgomerySquare();
case vmIntrinsics::_ghash_processBlocks:
return inline_ghash_processBlocks();
case vmIntrinsics::_encodeISOArray:
return inline_encodeISOArray();
case vmIntrinsics::_updateCRC32:
return inline_updateCRC32();
case vmIntrinsics::_updateBytesCRC32:
return inline_updateBytesCRC32();
case vmIntrinsics::_updateByteBufferCRC32:
return inline_updateByteBufferCRC32();
case vmIntrinsics::_updateBytesCRC32C:
return inline_updateBytesCRC32C();
case vmIntrinsics::_updateDirectByteBufferCRC32C:
return inline_updateDirectByteBufferCRC32C();
case vmIntrinsics::_updateBytesAdler32:
return inline_updateBytesAdler32();
case vmIntrinsics::_updateByteBufferAdler32:
return inline_updateByteBufferAdler32();
case vmIntrinsics::_profileBoolean:
return inline_profileBoolean();
case vmIntrinsics::_isCompileConstant:
return inline_isCompileConstant();
default:
// If you get here, it may be that someone has added a new intrinsic
// to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
}
#endif
return false;
}
}
Node* LibraryCallKit::try_to_predicate(int predicate) {
if (!jvms()->has_method()) {
// Root JVMState has a null method.
assert(map()->memory()->Opcode() == Op_Parm, "");
// Insert the memory aliasing node
set_all_memory(reset_memory());
}
assert(merged_memory(), "");
switch (intrinsic_id()) {
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt_predicate(false);
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
return inline_cipherBlockChaining_AESCrypt_predicate(true);
case vmIntrinsics::_digestBase_implCompressMB:
return inline_digestBase_implCompressMB_predicate(predicate);
default:
// If you get here, it may be that someone has added a new intrinsic
// to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
}
#endif
Node* slow_ctl = control();
set_control(top()); // No fast path instrinsic
return slow_ctl;
}
}
//------------------------------set_result-------------------------------
// Helper function for finishing intrinsics.
void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
record_for_igvn(region);
set_control(_gvn.transform(region));
set_result( _gvn.transform(value));
assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
}
//------------------------------generate_guard---------------------------
// Helper function for generating guarded fast-slow graph structures.
// The given 'test', if true, guards a slow path. If the test fails
// then a fast path can be taken. (We generally hope it fails.)
// In all cases, GraphKit::control() is updated to the fast path.
// The returned value represents the control for the slow path.
// The return value is never 'top'; it is either a valid control
// or NULL if it is obvious that the slow path can never be taken.
// Also, if region and the slow control are not NULL, the slow edge
// is appended to the region.
Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
if (stopped()) {
// Already short circuited.
return NULL;
}
// Build an if node and its projections.
// If test is true we take the slow path, which we assume is uncommon.
if (_gvn.type(test) == TypeInt::ZERO) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
Node* if_slow = _gvn.transform(new IfTrueNode(iff));
if (if_slow == top()) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
if (region != NULL)
region->add_req(if_slow);
Node* if_fast = _gvn.transform(new IfFalseNode(iff));
set_control(if_fast);
return if_slow;
}
inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
}
inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_FAIR);
}
inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
Node* *pos_index) {
if (stopped())
return NULL; // already stopped
if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
return NULL; // index is already adequately typed
Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
if (is_neg != NULL && pos_index != NULL) {
// Emulate effect of Parse::adjust_map_after_if.
Node* ccast = new CastIINode(index, TypeInt::POS);
ccast->set_req(0, control());
(*pos_index) = _gvn.transform(ccast);
}
return is_neg;
}
// Make sure that 'position' is a valid limit index, in [0..length].
// There are two equivalent plans for checking this:
// A. (offset + copyLength) unsigned<= arrayLength
// B. offset <= (arrayLength - copyLength)
// We require that all of the values above, except for the sum and
// difference, are already known to be non-negative.
// Plan A is robust in the face of overflow, if offset and copyLength
// are both hugely positive.
//
// Plan B is less direct and intuitive, but it does not overflow at
// all, since the difference of two non-negatives is always
// representable. Whenever Java methods must perform the equivalent
// check they generally use Plan B instead of Plan A.
// For the moment we use Plan A.
inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
Node* subseq_length,
Node* array_length,
RegionNode* region) {
if (stopped())
return NULL; // already stopped
bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
if (zero_offset && subseq_length->eqv_uncast(array_length))
return NULL; // common case of whole-array copy
Node* last = subseq_length;
if (!zero_offset) // last += offset
last = _gvn.transform(new AddINode(last, offset));
Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
return is_over;
}
//--------------------------generate_current_thread--------------------
Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
ciKlass* thread_klass = env()->Thread_klass();
const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
Node* thread = _gvn.transform(new ThreadLocalNode());
Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
tls_output = thread;
return threadObj;
}
//------------------------------make_string_method_node------------------------
// Helper method for String intrinsic functions. This version is called
// with str1 and str2 pointing to String object nodes.
//
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
Node* no_ctrl = NULL;
// Get start addr of string
Node* str1_value = load_String_value(no_ctrl, str1);
Node* str1_offset = load_String_offset(no_ctrl, str1);
Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
// Get length of string 1
Node* str1_len = load_String_length(no_ctrl, str1);
Node* str2_value = load_String_value(no_ctrl, str2);
Node* str2_offset = load_String_offset(no_ctrl, str2);
Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
Node* str2_len = NULL;
Node* result = NULL;
switch (opcode) {
case Op_StrIndexOf:
// Get length of string 2
str2_len = load_String_length(no_ctrl, str2);
result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str1_len, str2_start, str2_len);
break;
case Op_StrComp:
// Get length of string 2
str2_len = load_String_length(no_ctrl, str2);
result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str1_len, str2_start, str2_len);
break;
case Op_StrEquals:
result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str2_start, str1_len);
break;
default:
ShouldNotReachHere();
return NULL;
}
// All these intrinsics have checks.
C->set_has_split_ifs(true); // Has chance for split-if optimization
return _gvn.transform(result);
}
// Helper method for String intrinsic functions. This version is called
// with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
// to Int nodes containing the lenghts of str1 and str2.
//
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
Node* result = NULL;
switch (opcode) {
case Op_StrIndexOf:
result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
str1_start, cnt1, str2_start, cnt2);
break;
case Op_StrComp:
result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
str1_start, cnt1, str2_start, cnt2);
break;
case Op_StrEquals:
result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str2_start, cnt1);
break;
default:
ShouldNotReachHere();
return NULL;
}
// All these intrinsics have checks.
C->set_has_split_ifs(true); // Has chance for split-if optimization
return _gvn.transform(result);
}
//------------------------------inline_string_compareTo------------------------
// public int java.lang.String.compareTo(String anotherString);
bool LibraryCallKit::inline_string_compareTo() {
Node* receiver = null_check(argument(0));
Node* arg = null_check(argument(1));
if (stopped()) {
return true;
}
set_result(make_string_method_node(Op_StrComp, receiver, arg));
return true;
}
//------------------------------inline_string_equals------------------------
bool LibraryCallKit::inline_string_equals() {
Node* receiver = null_check_receiver();
// NOTE: Do not null check argument for String.equals() because spec
// allows to specify NULL as argument.
Node* argument = this->argument(1);
if (stopped()) {
return true;
}
// paths (plus control) merge
RegionNode* region = new RegionNode(5);
Node* phi = new PhiNode(region, TypeInt::BOOL);
// does source == target string?
Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
Node* if_eq = generate_slow_guard(bol, NULL);
if (if_eq != NULL) {
// receiver == argument
phi->init_req(2, intcon(1));
region->init_req(2, if_eq);
}
// get String klass for instanceOf
ciInstanceKlass* klass = env()->String_klass();
if (!stopped()) {
Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
Node* cmp = _gvn.transform(new CmpINode(inst, intcon(1)));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
//instanceOf == true, fallthrough
if (inst_false != NULL) {
phi->init_req(3, intcon(0));
region->init_req(3, inst_false);
}
}
if (!stopped()) {
const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
// Properly cast the argument to String
argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
// This path is taken only when argument's type is String:NotNull.
argument = cast_not_null(argument, false);
Node* no_ctrl = NULL;
// Get start addr of receiver
Node* receiver_val = load_String_value(no_ctrl, receiver);
Node* receiver_offset = load_String_offset(no_ctrl, receiver);
Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
// Get length of receiver
Node* receiver_cnt = load_String_length(no_ctrl, receiver);
// Get start addr of argument
Node* argument_val = load_String_value(no_ctrl, argument);
Node* argument_offset = load_String_offset(no_ctrl, argument);
Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
// Get length of argument
Node* argument_cnt = load_String_length(no_ctrl, argument);
// Check for receiver count != argument count
Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
Node* if_ne = generate_slow_guard(bol, NULL);
if (if_ne != NULL) {
phi->init_req(4, intcon(0));
region->init_req(4, if_ne);
}
// Check for count == 0 is done by assembler code for StrEquals.
if (!stopped()) {
Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
phi->init_req(1, equals);
region->init_req(1, control());
}
}
// post merge
set_control(_gvn.transform(region));
record_for_igvn(region);
set_result(_gvn.transform(phi));
return true;
}
//------------------------------inline_array_equals----------------------------
bool LibraryCallKit::inline_array_equals() {
Node* arg1 = argument(0);
Node* arg2 = argument(1);
set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
return true;
}
// Java version of String.indexOf(constant string)
// class StringDecl {
// StringDecl(char[] ca) {
// offset = 0;
// count = ca.length;
// value = ca;
// }
// int offset;
// int count;
// char[] value;
// }
//
// static int string_indexOf_J(StringDecl string_object, char[] target_object,
// int targetOffset, int cache_i, int md2) {
// int cache = cache_i;
// int sourceOffset = string_object.offset;
// int sourceCount = string_object.count;
// int targetCount = target_object.length;
//
// int targetCountLess1 = targetCount - 1;
// int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
//
// char[] source = string_object.value;
// char[] target = target_object;
// int lastChar = target[targetCountLess1];
//
// outer_loop:
// for (int i = sourceOffset; i < sourceEnd; ) {
// int src = source[i + targetCountLess1];
// if (src == lastChar) {
// // With random strings and a 4-character alphabet,
// // reverse matching at this point sets up 0.8% fewer
// // frames, but (paradoxically) makes 0.3% more probes.
// // Since those probes are nearer the lastChar probe,
// // there is may be a net D$ win with reverse matching.
// // But, reversing loop inhibits unroll of inner loop
// // for unknown reason. So, does running outer loop from
// // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
// for (int j = 0; j < targetCountLess1; j++) {
// if (target[targetOffset + j] != source[i+j]) {
// if ((cache & (1 << source[i+j])) == 0) {
// if (md2 < j+1) {
// i += j+1;
// continue outer_loop;
// }
// }
// i += md2;
// continue outer_loop;
// }
// }
// return i - sourceOffset;
// }
// if ((cache & (1 << src)) == 0) {
// i += targetCountLess1;
// } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
// i++;
// }
// return -1;
// }
//------------------------------string_indexOf------------------------
Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
jint cache_i, jint md2_i) {
Node* no_ctrl = NULL;
float likely = PROB_LIKELY(0.9);
float unlikely = PROB_UNLIKELY(0.9);
const int nargs = 0; // no arguments to push back for uncommon trap in predicate
Node* source = load_String_value(no_ctrl, string_object);
Node* sourceOffset = load_String_offset(no_ctrl, string_object);
Node* sourceCount = load_String_length(no_ctrl, string_object);
Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
jint target_length = target_array->length();
const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
// String.value field is known to be @Stable.
if (UseImplicitStableValues) {
target = cast_array_to_stable(target, target_type);
}
IdealKit kit(this, false, true);
#define __ kit.
Node* zero = __ ConI(0);
Node* one = __ ConI(1);
Node* cache = __ ConI(cache_i);
Node* md2 = __ ConI(md2_i);
Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
Node* targetCountLess1 = __ ConI(target_length - 1);
Node* targetOffset = __ ConI(targetOffset_i);
Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
Node* outer_loop = __ make_label(2 /* goto */);
Node* return_ = __ make_label(1);
__ set(rtn,__ ConI(-1));
__ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
Node* i2 = __ AddI(__ value(i), targetCountLess1);
// pin to prohibit loading of "next iteration" value which may SEGV (rare)
Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
__ if_then(src, BoolTest::eq, lastChar, unlikely); {
__ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
Node* tpj = __ AddI(targetOffset, __ value(j));
Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
Node* ipj = __ AddI(__ value(i), __ value(j));
Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
__ if_then(targ, BoolTest::ne, src2); {
__ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
__ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
__ increment(i, __ AddI(__ value(j), one));
__ goto_(outer_loop);
} __ end_if(); __ dead(j);
}__ end_if(); __ dead(j);
__ increment(i, md2);
__ goto_(outer_loop);
}__ end_if();
__ increment(j, one);
}__ end_loop(); __ dead(j);
__ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
__ goto_(return_);
}__ end_if();
__ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
__ increment(i, targetCountLess1);
}__ end_if();
__ increment(i, one);
__ bind(outer_loop);
}__ end_loop(); __ dead(i);
__ bind(return_);
// Final sync IdealKit and GraphKit.
final_sync(kit);
Node* result = __ value(rtn);
#undef __
C->set_has_loops(true);
return result;
}
//------------------------------inline_string_indexOf------------------------
bool LibraryCallKit::inline_string_indexOf() {
Node* receiver = argument(0);
Node* arg = argument(1);
Node* result;
if (Matcher::has_match_rule(Op_StrIndexOf) &&
UseSSE42Intrinsics) {
// Generate SSE4.2 version of indexOf
// We currently only have match rules that use SSE4.2
receiver = null_check(receiver);
arg = null_check(arg);
if (stopped()) {
return true;
}
// Make the merge point
RegionNode* result_rgn = new RegionNode(4);
Node* result_phi = new PhiNode(result_rgn, TypeInt::INT);
Node* no_ctrl = NULL;
// Get start addr of source string
Node* source = load_String_value(no_ctrl, receiver);
Node* source_offset = load_String_offset(no_ctrl, receiver);
Node* source_start = array_element_address(source, source_offset, T_CHAR);
// Get length of source string
Node* source_cnt = load_String_length(no_ctrl, receiver);
// Get start addr of substring
Node* substr = load_String_value(no_ctrl, arg);
Node* substr_offset = load_String_offset(no_ctrl, arg);
Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
// Get length of source string
Node* substr_cnt = load_String_length(no_ctrl, arg);
// Check for substr count > string count
Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
Node* if_gt = generate_slow_guard(bol, NULL);
if (if_gt != NULL) {
result_phi->init_req(2, intcon(-1));
result_rgn->init_req(2, if_gt);
}
if (!stopped()) {
// Check for substr count == 0
cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
Node* if_zero = generate_slow_guard(bol, NULL);
if (if_zero != NULL) {
result_phi->init_req(3, intcon(0));
result_rgn->init_req(3, if_zero);
}
}
if (!stopped()) {
result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
result_phi->init_req(1, result);
result_rgn->init_req(1, control());
}
set_control(_gvn.transform(result_rgn));
record_for_igvn(result_rgn);
result = _gvn.transform(result_phi);
} else { // Use LibraryCallKit::string_indexOf
// don't intrinsify if argument isn't a constant string.
if (!arg->is_Con()) {
return false;
}
const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
if (str_type == NULL) {
return false;
}
ciInstanceKlass* klass = env()->String_klass();
ciObject* str_const = str_type->const_oop();
if (str_const == NULL || str_const->klass() != klass) {
return false;
}
ciInstance* str = str_const->as_instance();
assert(str != NULL, "must be instance");
ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
int o;
int c;
if (java_lang_String::has_offset_field()) {
o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
} else {
o = 0;
c = pat->length();
}
// constant strings have no offset and count == length which
// simplifies the resulting code somewhat so lets optimize for that.
if (o != 0 || c != pat->length()) {
return false;
}
receiver = null_check(receiver, T_OBJECT);
// NOTE: No null check on the argument is needed since it's a constant String oop.
if (stopped()) {
return true;
}
// The null string as a pattern always returns 0 (match at beginning of string)
if (c == 0) {
set_result(intcon(0));
return true;
}
// Generate default indexOf
jchar lastChar = pat->char_at(o + (c - 1));
int cache = 0;
int i;
for (i = 0; i < c - 1; i++) {
assert(i < pat->length(), "out of range");
cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
}
int md2 = c;
for (i = 0; i < c - 1; i++) {
assert(i < pat->length(), "out of range");
if (pat->char_at(o + i) == lastChar) {
md2 = (c - 1) - i;
}
}
result = string_indexOf(receiver, pat, o, cache, md2);
}
set_result(result);
return true;
}
//--------------------------round_double_node--------------------------------
// Round a double node if necessary.
Node* LibraryCallKit::round_double_node(Node* n) {
if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
n = _gvn.transform(new RoundDoubleNode(0, n));
return n;
}
//------------------------------inline_math-----------------------------------
// public static double Math.abs(double)
// public static double Math.sqrt(double)
// public static double Math.log(double)
// public static double Math.log10(double)
bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
Node* arg = round_double_node(argument(0));
Node* n;
switch (id) {
case vmIntrinsics::_dabs: n = new AbsDNode( arg); break;
case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break;
case vmIntrinsics::_dlog: n = new LogDNode(C, control(), arg); break;
case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg); break;
default: fatal_unexpected_iid(id); break;
}
set_result(_gvn.transform(n));
return true;
}
//------------------------------inline_trig----------------------------------
// Inline sin/cos/tan instructions, if possible. If rounding is required, do
// argument reduction which will turn into a fast/slow diamond.
bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
Node* arg = round_double_node(argument(0));
Node* n = NULL;
switch (id) {
case vmIntrinsics::_dsin: n = new SinDNode(C, control(), arg); break;
case vmIntrinsics::_dcos: n = new CosDNode(C, control(), arg); break;
case vmIntrinsics::_dtan: n = new TanDNode(C, control(), arg); break;
default: fatal_unexpected_iid(id); break;
}
n = _gvn.transform(n);
// Rounding required? Check for argument reduction!
if (Matcher::strict_fp_requires_explicit_rounding) {
static const double pi_4 = 0.7853981633974483;
static const double neg_pi_4 = -0.7853981633974483;
// pi/2 in 80-bit extended precision
// static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
// -pi/2 in 80-bit extended precision
// static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
// Cutoff value for using this argument reduction technique
//static const double pi_2_minus_epsilon = 1.564660403643354;
//static const double neg_pi_2_plus_epsilon = -1.564660403643354;
// Pseudocode for sin:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fsin(x);
// if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
// }
// return StrictMath.sin(x);
// Pseudocode for cos:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fcos(x);
// if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
// }
// return StrictMath.cos(x);
// Actually, sticking in an 80-bit Intel value into C2 will be tough; it
// requires a special machine instruction to load it. Instead we'll try
// the 'easy' case. If we really need the extra range +/- PI/2 we'll
// probably do the math inside the SIN encoding.
// Make the merge point
RegionNode* r = new RegionNode(3);
Node* phi = new PhiNode(r, Type::DOUBLE);
// Flatten arg so we need only 1 test
Node *abs = _gvn.transform(new AbsDNode(arg));
// Node for PI/4 constant
Node *pi4 = makecon(TypeD::make(pi_4));
// Check PI/4 : abs(arg)
Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
// Check: If PI/4 < abs(arg) then go slow
Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
// Branch either way
IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
set_control(opt_iff(r,iff));
// Set fast path result
phi->init_req(2, n);
// Slow path - non-blocking leaf call
Node* call = NULL;
switch (id) {
case vmIntrinsics::_dsin:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
"Sin", NULL, arg, top());
break;
case vmIntrinsics::_dcos:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
"Cos", NULL, arg, top());
break;
case vmIntrinsics::_dtan:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
"Tan", NULL, arg, top());
break;
}
assert(control()->in(0) == call, "");
Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
r->init_req(1, control());
phi->init_req(1, slow_result);
// Post-merge
set_control(_gvn.transform(r));
record_for_igvn(r);
n = _gvn.transform(phi);
C->set_has_split_ifs(true); // Has chance for split-if optimization
}
set_result(n);
return true;
}
Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
//-------------------
//result=(result.isNaN())? funcAddr():result;
// Check: If isNaN() by checking result!=result? then either trap
// or go to runtime
Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
// Build the boolean node
Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
{ BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
// The pow or exp intrinsic returned a NaN, which requires a call
// to the runtime. Recompile with the runtime call.
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
}
return result;
} else {
// If this inlining ever returned NaN in the past, we compile a call
// to the runtime to properly handle corner cases
IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node* if_slow = _gvn.transform(new IfFalseNode(iff));
Node* if_fast = _gvn.transform(new IfTrueNode(iff));
if (!if_slow->is_top()) {
RegionNode* result_region = new RegionNode(3);
PhiNode* result_val = new PhiNode(result_region, Type::DOUBLE);
result_region->init_req(1, if_fast);
result_val->init_req(1, result);
set_control(if_slow);
const TypePtr* no_memory_effects = NULL;
Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
no_memory_effects,
x, top(), y, y ? top() : NULL);
Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
result_region->init_req(2, control());
result_val->init_req(2, value);
set_control(_gvn.transform(result_region));
return _gvn.transform(result_val);
} else {
return result;
}
}
}
//------------------------------inline_pow-------------------------------------
// Inline power instructions, if possible.
bool LibraryCallKit::inline_pow() {
// Pseudocode for pow
// if (y == 2) {
// return x * x;
// } else {
// if (x <= 0.0) {
// long longy = (long)y;
// if ((double)longy == y) { // if y is long
// if (y + 1 == y) longy = 0; // huge number: even
// result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
// } else {
// result = NaN;
// }
// } else {
// result = DPow(x,y);
// }
// if (result != result)? {
// result = uncommon_trap() or runtime_call();
// }
// return result;
// }
Node* x = round_double_node(argument(0));
Node* y = round_double_node(argument(2));
Node* result = NULL;
Node* const_two_node = makecon(TypeD::make(2.0));
Node* cmp_node = _gvn.transform(new CmpDNode(y, const_two_node));
Node* bool_node = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
IfNode* if_node = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
Node* if_true = _gvn.transform(new IfTrueNode(if_node));
Node* if_false = _gvn.transform(new IfFalseNode(if_node));
RegionNode* region_node = new RegionNode(3);
region_node->init_req(1, if_true);
Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
// special case for x^y where y == 2, we can convert it to x * x
phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
// set control to if_false since we will now process the false branch
set_control(if_false);
if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
// Short form: skip the fancy tests and just check for NaN result.
result = _gvn.transform(new PowDNode(C, control(), x, y));
} else {
// If this inlining ever returned NaN in the past, include all
// checks + call to the runtime.
// Set the merge point for If node with condition of (x <= 0.0)
// There are four possible paths to region node and phi node
RegionNode *r = new RegionNode(4);
Node *phi = new PhiNode(r, Type::DOUBLE);
// Build the first if node: if (x <= 0.0)
// Node for 0 constant
Node *zeronode = makecon(TypeD::ZERO);
// Check x:0
Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
// Check: If (x<=0) then go complex path
Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
// Branch either way
IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
// Fast path taken; set region slot 3
Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
r->init_req(3,fast_taken); // Capture fast-control
// Fast path not-taken, i.e. slow path
Node *complex_path = _gvn.transform(new IfTrueNode(if1));
// Set fast path result
Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
phi->init_req(3, fast_result);
// Complex path
// Build the second if node (if y is long)
// Node for (long)y
Node *longy = _gvn.transform(new ConvD2LNode(y));
// Node for (double)((long) y)
Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
// Check (double)((long) y) : y
Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
// Check if (y isn't long) then go to slow path
Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
// Branch either way
IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
Node *slow_path = _gvn.transform(new IfTrueNode(if2));
// Calculate DPow(abs(x), y)*(1 & (long)y)
// Node for constant 1
Node *conone = longcon(1);
// 1& (long)y
Node *signnode= _gvn.transform(new AndLNode(conone, longy));
// A huge number is always even. Detect a huge number by checking
// if y + 1 == y and set integer to be tested for parity to 0.
// Required for corner case:
// (long)9.223372036854776E18 = max_jlong
// (double)(long)9.223372036854776E18 = 9.223372036854776E18
// max_jlong is odd but 9.223372036854776E18 is even
Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
Node* correctedsign = NULL;
if (ConditionalMoveLimit != 0) {
correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
} else {
IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, TypeLong::LONG);
r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
phi->init_req(1, signnode);
phi->init_req(2, longcon(0));
correctedsign = _gvn.transform(phi);
ylong_path = _gvn.transform(r);
record_for_igvn(r);
}
// zero node
Node *conzero = longcon(0);
// Check (1&(long)y)==0?
Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
// Check if (1&(long)y)!=0?, if so the result is negative
Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
// abs(x)
Node *absx=_gvn.transform(new AbsDNode(x));
// abs(x)^y
Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
// -abs(x)^y
Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
// (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
Node *signresult = NULL;
if (ConditionalMoveLimit != 0) {
signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
} else {
IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, Type::DOUBLE);
r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
phi->init_req(1, absxpowy);
phi->init_req(2, negabsxpowy);
signresult = _gvn.transform(phi);
ylong_path = _gvn.transform(r);
record_for_igvn(r);
}
// Set complex path fast result
r->init_req(2, ylong_path);
phi->init_req(2, signresult);
static const jlong nan_bits = CONST64(0x7ff8000000000000);
Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
r->init_req(1,slow_path);
phi->init_req(1,slow_result);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
result = _gvn.transform(phi);
}
result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
// control from finish_pow_exp is now input to the region node
region_node->set_req(2, control());
// the result from finish_pow_exp is now input to the phi node
phi_node->init_req(2, result);
set_control(_gvn.transform(region_node));
record_for_igvn(region_node);
set_result(_gvn.transform(phi_node));
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//------------------------------runtime_math-----------------------------
bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
"must be (DD)D or (D)D type");
// Inputs
Node* a = round_double_node(argument(0));
Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
const TypePtr* no_memory_effects = NULL;
Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
no_memory_effects,
a, top(), b, b ? top() : NULL);
Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
set_result(value);
return true;
}
//------------------------------inline_math_native-----------------------------
bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
switch (id) {
// These intrinsics are not properly supported on all hardware
case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_math(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
// These intrinsics are supported on all hardware
case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false;
case vmIntrinsics::_dexp:
return (UseSSE >= 2) ? runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") :
runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
case vmIntrinsics::_dpow: return Matcher::has_match_rule(Op_PowD) ? inline_pow() :
runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
#undef FN_PTR
// These intrinsics are not yet correctly implemented
case vmIntrinsics::_datan2:
return false;
default:
fatal_unexpected_iid(id);
return false;
}
}
static bool is_simple_name(Node* n) {
return (n->req() == 1 // constant
|| (n->is_Type() && n->as_Type()->type()->singleton())
|| n->is_Proj() // parameter or return value
|| n->is_Phi() // local of some sort
);
}
//----------------------------inline_notify-----------------------------------*
bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
address func;
if (id == vmIntrinsics::_notify) {
func = OptoRuntime::monitor_notify_Java();
} else {
func = OptoRuntime::monitor_notifyAll_Java();
}
Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
make_slow_call_ex(call, env()->Throwable_klass(), false);
return true;
}
//----------------------------inline_min_max-----------------------------------
bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
set_result(generate_min_max(id, argument(0), argument(1)));
return true;
}
void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
Node* fast_path = _gvn.transform( new IfFalseNode(check));
Node* slow_path = _gvn.transform( new IfTrueNode(check) );
{
PreserveJVMState pjvms(this);
PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
set_control(slow_path);
set_i_o(i_o());
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_none);
}
set_control(fast_path);
set_result(math);
}
template <typename OverflowOp>
bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
typedef typename OverflowOp::MathOp MathOp;
MathOp* mathOp = new MathOp(arg1, arg2);
Node* operation = _gvn.transform( mathOp );
Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
inline_math_mathExact(operation, ofcheck);
return true;
}
bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
}
bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
}
bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
}
bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
}
bool LibraryCallKit::inline_math_negateExactI() {
return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
}
bool LibraryCallKit::inline_math_negateExactL() {
return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
}
bool LibraryCallKit::inline_math_multiplyExactI() {
return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
}
bool LibraryCallKit::inline_math_multiplyExactL() {
return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
}
Node*
LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
// These are the candidate return value:
Node* xvalue = x0;
Node* yvalue = y0;
if (xvalue == yvalue) {
return xvalue;
}
bool want_max = (id == vmIntrinsics::_max);
const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
if (txvalue == NULL || tyvalue == NULL) return top();
// This is not really necessary, but it is consistent with a
// hypothetical MaxINode::Value method:
int widen = MAX2(txvalue->_widen, tyvalue->_widen);
// %%% This folding logic should (ideally) be in a different place.
// Some should be inside IfNode, and there to be a more reliable
// transformation of ?: style patterns into cmoves. We also want
// more powerful optimizations around cmove and min/max.
// Try to find a dominating comparison of these guys.
// It can simplify the index computation for Arrays.copyOf
// and similar uses of System.arraycopy.
// First, compute the normalized version of CmpI(x, y).
int cmp_op = Op_CmpI;
Node* xkey = xvalue;
Node* ykey = yvalue;
Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
if (ideal_cmpxy->is_Cmp()) {
// E.g., if we have CmpI(length - offset, count),
// it might idealize to CmpI(length, count + offset)
cmp_op = ideal_cmpxy->Opcode();
xkey = ideal_cmpxy->in(1);
ykey = ideal_cmpxy->in(2);
}
// Start by locating any relevant comparisons.
Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
Node* cmpxy = NULL;
Node* cmpyx = NULL;
for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
Node* cmp = start_from->fast_out(k);
if (cmp->outcnt() > 0 && // must have prior uses
cmp->in(0) == NULL && // must be context-independent
cmp->Opcode() == cmp_op) { // right kind of compare
if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
}
}
const int NCMPS = 2;
Node* cmps[NCMPS] = { cmpxy, cmpyx };
int cmpn;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
if (cmps[cmpn] != NULL) break; // find a result
}
if (cmpn < NCMPS) {
// Look for a dominating test that tells us the min and max.
int depth = 0; // Limit search depth for speed
Node* dom = control();
for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
if (++depth >= 100) break;
Node* ifproj = dom;
if (!ifproj->is_Proj()) continue;
Node* iff = ifproj->in(0);
if (!iff->is_If()) continue;
Node* bol = iff->in(1);
if (!bol->is_Bool()) continue;
Node* cmp = bol->in(1);
if (cmp == NULL) continue;
for (cmpn = 0; cmpn < NCMPS; cmpn++)
if (cmps[cmpn] == cmp) break;
if (cmpn == NCMPS) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
// At this point, we know that 'x btest y' is true.
switch (btest) {
case BoolTest::eq:
// They are proven equal, so we can collapse the min/max.
// Either value is the answer. Choose the simpler.
if (is_simple_name(yvalue) && !is_simple_name(xvalue))
return yvalue;
return xvalue;
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
return (want_max ? yvalue : xvalue);
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
return (want_max ? xvalue : yvalue);
}
}
}
// We failed to find a dominating test.
// Let's pick a test that might GVN with prior tests.
Node* best_bol = NULL;
BoolTest::mask best_btest = BoolTest::illegal;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
Node* cmp = cmps[cmpn];
if (cmp == NULL) continue;
for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
Node* bol = cmp->fast_out(j);
if (!bol->is_Bool()) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
best_bol = bol->as_Bool();
best_btest = btest;
}
}
}
Node* answer_if_true = NULL;
Node* answer_if_false = NULL;
switch (best_btest) {
default:
if (cmpxy == NULL)
cmpxy = ideal_cmpxy;
best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
// and fall through:
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
answer_if_true = (want_max ? yvalue : xvalue);
answer_if_false = (want_max ? xvalue : yvalue);
break;
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
answer_if_true = (want_max ? xvalue : yvalue);
answer_if_false = (want_max ? yvalue : xvalue);
break;
}
jint hi, lo;
if (want_max) {
// We can sharpen the minimum.
hi = MAX2(txvalue->_hi, tyvalue->_hi);
lo = MAX2(txvalue->_lo, tyvalue->_lo);
} else {
// We can sharpen the maximum.
hi = MIN2(txvalue->_hi, tyvalue->_hi);
lo = MIN2(txvalue->_lo, tyvalue->_lo);
}
// Use a flow-free graph structure, to avoid creating excess control edges
// which could hinder other optimizations.
// Since Math.min/max is often used with arraycopy, we want
// tightly_coupled_allocation to be able to see beyond min/max expressions.
Node* cmov = CMoveNode::make(NULL, best_bol,
answer_if_false, answer_if_true,
TypeInt::make(lo, hi, widen));
return _gvn.transform(cmov);
/*
// This is not as desirable as it may seem, since Min and Max
// nodes do not have a full set of optimizations.
// And they would interfere, anyway, with 'if' optimizations
// and with CMoveI canonical forms.
switch (id) {
case vmIntrinsics::_min:
result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
case vmIntrinsics::_max:
result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
default:
ShouldNotReachHere();
}
*/
}
inline int
LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
const TypePtr* base_type = TypePtr::NULL_PTR;
if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
if (base_type == NULL) {
// Unknown type.
return Type::AnyPtr;
} else if (base_type == TypePtr::NULL_PTR) {
// Since this is a NULL+long form, we have to switch to a rawptr.
base = _gvn.transform(new CastX2PNode(offset));
offset = MakeConX(0);
return Type::RawPtr;
} else if (base_type->base() == Type::RawPtr) {
return Type::RawPtr;
} else if (base_type->isa_oopptr()) {
// Base is never null => always a heap address.
if (base_type->ptr() == TypePtr::NotNull) {
return Type::OopPtr;
}
// Offset is small => always a heap address.
const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
if (offset_type != NULL &&
base_type->offset() == 0 && // (should always be?)
offset_type->_lo >= 0 &&
!MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
return Type::OopPtr;
}
// Otherwise, it might either be oop+off or NULL+addr.
return Type::AnyPtr;
} else {
// No information:
return Type::AnyPtr;
}
}
inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
int kind = classify_unsafe_addr(base, offset);
if (kind == Type::RawPtr) {
return basic_plus_adr(top(), base, offset);
} else {
return basic_plus_adr(base, offset);
}
}
//--------------------------inline_number_methods-----------------------------
// inline int Integer.numberOfLeadingZeros(int)
// inline int Long.numberOfLeadingZeros(long)
//
// inline int Integer.numberOfTrailingZeros(int)
// inline int Long.numberOfTrailingZeros(long)
//
// inline int Integer.bitCount(int)
// inline int Long.bitCount(long)
//
// inline char Character.reverseBytes(char)
// inline short Short.reverseBytes(short)
// inline int Integer.reverseBytes(int)
// inline long Long.reverseBytes(long)
bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
Node* arg = argument(0);
Node* n;
switch (id) {
case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break;
case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break;
case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break;
case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break;
case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break;
case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break;
case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break;
case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break;
case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break;
case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break;
default: fatal_unexpected_iid(id); break;
}
set_result(_gvn.transform(n));
return true;
}
//----------------------------inline_unsafe_access----------------------------
const static BasicType T_ADDRESS_HOLDER = T_LONG;
// Helper that guards and inserts a pre-barrier.
void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
Node* pre_val, bool need_mem_bar) {
// We could be accessing the referent field of a reference object. If so, when G1
// is enabled, we need to log the value in the referent field in an SATB buffer.
// This routine performs some compile time filters and generates suitable
// runtime filters that guard the pre-barrier code.
// Also add memory barrier for non volatile load from the referent field
// to prevent commoning of loads across safepoint.
if (!UseG1GC && !need_mem_bar)
return;
// Some compile time checks.
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
const TypeX* otype = offset->find_intptr_t_type();
if (otype != NULL && otype->is_con() &&
otype->get_con() != java_lang_ref_Reference::referent_offset) {
// Constant offset but not the reference_offset so just return
return;
}
// We only need to generate the runtime guards for instances.
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
if (btype != NULL) {
if (btype->isa_aryptr()) {
// Array type so nothing to do
return;
}
const TypeInstPtr* itype = btype->isa_instptr();
if (itype != NULL) {
// Can the klass of base_oop be statically determined to be
// _not_ a sub-class of Reference and _not_ Object?
ciKlass* klass = itype->klass();
if ( klass->is_loaded() &&
!klass->is_subtype_of(env()->Reference_klass()) &&
!env()->Object_klass()->is_subtype_of(klass)) {
return;
}
}
}
// The compile time filters did not reject base_oop/offset so
// we need to generate the following runtime filters
//
// if (offset == java_lang_ref_Reference::_reference_offset) {
// if (instance_of(base, java.lang.ref.Reference)) {
// pre_barrier(_, pre_val, ...);
// }
// }
float likely = PROB_LIKELY( 0.999);
float unlikely = PROB_UNLIKELY(0.999);
IdealKit ideal(this);
#define __ ideal.
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
Node* one = __ ConI(1);
// is_instof == 0 if base_oop == NULL
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
// Update graphKit from IdeakKit.
sync_kit(ideal);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
__ ctrl(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
pre_val /* pre_val */,
T_OBJECT);
if (need_mem_bar) {
// Add memory barrier to prevent commoning reads from this field
// across safepoint since GC can change its value.
insert_mem_bar(Op_MemBarCPUOrder);
}
// Update IdealKit from graphKit.
__ sync_kit(this);
} __ end_if(); // _ref_type != ref_none
} __ end_if(); // offset == referent_offset
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
}
// Interpret Unsafe.fieldOffset cookies correctly:
extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
// Attempt to infer a sharper value type from the offset and base type.
ciKlass* sharpened_klass = NULL;
// See if it is an instance field, with an object type.
if (alias_type->field() != NULL) {
assert(!is_native_ptr, "native pointer op cannot use a java address");
if (alias_type->field()->type()->is_klass()) {
sharpened_klass = alias_type->field()->type()->as_klass();
}
}
// See if it is a narrow oop array.
if (adr_type->isa_aryptr()) {
if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
if (elem_type != NULL) {
sharpened_klass = elem_type->klass();
}
}
}
// The sharpened class might be unloaded if there is no class loader
// contraint in place.
if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
#ifndef PRODUCT
if (C->print_intrinsics() || C->print_inlining()) {
tty->print(" from base type: "); adr_type->dump();
tty->print(" sharpened value: "); tjp->dump();
}
#endif
// Sharpen the value type.
return tjp;
}
return NULL;
}
bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
#ifdef ASSERT
if (!is_store) {
// Object getObject(Object base, int/long offset), etc.
BasicType rtype = sig->return_type()->basic_type();
if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
rtype = T_ADDRESS; // it is really a C void*
assert(rtype == type, "getter must return the expected value");
if (!is_native_ptr) {
assert(sig->count() == 2, "oop getter has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
} else {
assert(sig->count() == 1, "native getter has 1 argument");
assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
}
} else {
// void putObject(Object base, int/long offset, Object x), etc.
assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
if (!is_native_ptr) {
assert(sig->count() == 3, "oop putter has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
} else {
assert(sig->count() == 2, "native putter has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
}
BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
vtype = T_ADDRESS; // it is really a C void*
assert(vtype == type, "putter must accept the expected value");
}
#endif // ASSERT
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
Node* receiver = argument(0); // type: oop
// Build address expression.
Node* adr;
Node* heap_base_oop = top();
Node* offset = top();
Node* val;
if (!is_native_ptr) {
// The base is either a Java object or a value produced by Unsafe.staticFieldBase
Node* base = argument(1); // type: oop
// The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
offset = argument(2); // type: long
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half!
offset = ConvL2X(offset);
adr = make_unsafe_address(base, offset);
heap_base_oop = base;
val = is_store ? argument(4) : NULL;
} else {
Node* ptr = argument(1); // type: long
ptr = ConvL2X(ptr); // adjust Java long to machine word
adr = make_unsafe_address(NULL, ptr);
val = is_store ? argument(3) : NULL;
}
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
// First guess at the value type.
const Type *value_type = Type::get_const_basic_type(type);
// Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
// there was not enough information to nail it down.
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
// We will need memory barriers unless we can determine a unique
// alias category for this reference. (Note: If for some reason
// the barriers get omitted and the unsafe reference begins to "pollute"
// the alias analysis of the rest of the graph, either Compile::can_alias
// or Compile::must_alias will throw a diagnostic assert.)
bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
// If we are reading the value of the referent field of a Reference
// object (either by using Unsafe directly or through reflection)
// then, if G1 is enabled, we need to record the referent in an
// SATB log buffer using the pre-barrier mechanism.
// Also we need to add memory barrier to prevent commoning reads
// from this field across safepoint since GC can change its value.
bool need_read_barrier = !is_native_ptr && !is_store &&
offset != top() && heap_base_oop != top();
if (!is_store && type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
if (tjp != NULL) {
value_type = tjp;
}
}
receiver = null_check(receiver);
if (stopped()) {
return true;
}
// Heap pointers get a null-check from the interpreter,
// as a courtesy. However, this is not guaranteed by Unsafe,
// and it is not possible to fully distinguish unintended nulls
// from intended ones in this API.
if (is_volatile) {
// We need to emit leading and trailing CPU membars (see below) in
// addition to memory membars when is_volatile. This is a little
// too strong, but avoids the need to insert per-alias-type
// volatile membars (for stores; compare Parse::do_put_xxx), which
// we cannot do effectively here because we probably only have a
// rough approximation of type.
need_mem_bar = true;
// For Stores, place a memory ordering barrier now.
if (is_store) {
insert_mem_bar(Op_MemBarRelease);
} else {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
}
// Memory barrier to prevent normal and 'unsafe' accesses from
// bypassing each other. Happens after null checks, so the
// exception paths do not take memory state from the memory barrier,
// so there's no problems making a strong assert about mixing users
// of safe & unsafe memory.
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
if (!is_store) {
Node* p = NULL;
// Try to constant fold a load from a constant field
ciField* field = alias_type->field();
if (heap_base_oop != top() &&
field != NULL && field->is_constant() && field->layout_type() == type) {
// final or stable field
const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
if (con_type != NULL) {
p = makecon(con_type);
}
}
if (p == NULL) {
MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
// To be valid, unsafe loads may depend on other conditions than
// the one that guards them: pin the Load node
p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
// load value
switch (type) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_LONG:
case T_FLOAT:
case T_DOUBLE:
break;
case T_OBJECT:
if (need_read_barrier) {
insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
}
break;
case T_ADDRESS:
// Cast to an int type.
p = _gvn.transform(new CastP2XNode(NULL, p));
p = ConvX2UL(p);
break;
default:
fatal("unexpected type %d: %s", type, type2name(type));
break;
}
}
// The load node has the control of the preceding MemBarCPUOrder. All
// following nodes will have the control of the MemBarCPUOrder inserted at
// the end of this method. So, pushing the load onto the stack at a later
// point is fine.
set_result(p);
} else {
// place effect of store into memory
switch (type) {
case T_DOUBLE:
val = dstore_rounding(val);
break;
case T_ADDRESS:
// Repackage the long as a pointer.
val = ConvL2X(val);
val = _gvn.transform(new CastX2PNode(val));
break;
}
MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
if (type != T_OBJECT ) {
(void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
} else {
// Possibly an oop being stored to Java heap or native memory
if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
// oop to Java heap.
(void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
} else {
// We can't tell at compile time if we are storing in the Java heap or outside
// of it. So we need to emit code to conditionally do the proper type of
// store.
IdealKit ideal(this);
#define __ ideal.
// QQQ who knows what probability is here??
__ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
// Sync IdealKit and graphKit.
sync_kit(ideal);
Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
// Update IdealKit memory.
__ sync_kit(this);
} __ else_(); {
__ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
} __ end_if();
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
}
}
}
if (is_volatile) {
if (!is_store) {
insert_mem_bar(Op_MemBarAcquire);
} else {
if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
insert_mem_bar(Op_MemBarVolatile);
}
}
}
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//----------------------------inline_unsafe_load_store----------------------------
// This method serves a couple of different customers (depending on LoadStoreKind):
//
// LS_cmpxchg:
// public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
// public final native boolean compareAndSwapInt( Object o, long offset, int expected, int x);
// public final native boolean compareAndSwapLong( Object o, long offset, long expected, long x);
//
// LS_xadd:
// public int getAndAddInt( Object o, long offset, int delta)
// public long getAndAddLong(Object o, long offset, long delta)
//
// LS_xchg:
// int getAndSet(Object o, long offset, int newValue)
// long getAndSet(Object o, long offset, long newValue)
// Object getAndSet(Object o, long offset, Object newValue)
//
bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
// This basic scheme here is the same as inline_unsafe_access, but
// differs in enough details that combining them would make the code
// overly confusing. (This is a true fact! I originally combined
// them, but even I was confused by it!) As much code/comments as
// possible are retained from inline_unsafe_access though to make
// the correspondences clearer. - dl
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
BasicType rtype;
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
rtype = sig->return_type()->basic_type();
if (kind == LS_xadd || kind == LS_xchg) {
// Check the signatures.
#ifdef ASSERT
assert(rtype == type, "get and set must return the expected type");
assert(sig->count() == 3, "get and set has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
#endif // ASSERT
} else if (kind == LS_cmpxchg) {
// Check the signatures.
#ifdef ASSERT
assert(rtype == T_BOOLEAN, "CAS must return boolean");
assert(sig->count() == 4, "CAS has 4 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
} else {
ShouldNotReachHere();
}
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Get arguments:
Node* receiver = NULL;
Node* base = NULL;
Node* offset = NULL;
Node* oldval = NULL;
Node* newval = NULL;
if (kind == LS_cmpxchg) {
const bool two_slot_type = type2size[type] == 2;
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = argument(4); // type: oop, int, or long
newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
} else if (kind == LS_xadd || kind == LS_xchg){
receiver = argument(0); // type: oop
base = argument(1); // type: oop
offset = argument(2); // type: long
oldval = NULL;
newval = argument(4); // type: oop, int, or long
}
// Null check receiver.
receiver = null_check(receiver);
if (stopped()) {
return true;
}
// Build field offset expression.
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
// For CAS, unlike inline_unsafe_access, there seems no point in
// trying to refine types. Just use the coarse types here.
const Type *value_type = Type::get_const_basic_type(type);
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
if (kind == LS_xchg && type == T_OBJECT) {
const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
if (tjp != NULL) {
value_type = tjp;
}
}
int alias_idx = C->get_alias_index(adr_type);
// Memory-model-wise, a LoadStore acts like a little synchronized
// block, so needs barriers on each side. These don't translate
// into actual barriers on most machines, but we still need rest of
// compiler to respect ordering.
insert_mem_bar(Op_MemBarRelease);
insert_mem_bar(Op_MemBarCPUOrder);
// 4984716: MemBars must be inserted before this
// memory node in order to avoid a false
// dependency which will confuse the scheduler.
Node *mem = memory(alias_idx);
// For now, we handle only those cases that actually exist: ints,
// longs, and Object. Adding others should be straightforward.
Node* load_store;
switch(type) {
case T_INT:
if (kind == LS_xadd) {
load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_cmpxchg) {
load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
} else {
ShouldNotReachHere();
}
break;
case T_LONG:
if (kind == LS_xadd) {
load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
} else if (kind == LS_cmpxchg) {
load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
} else {
ShouldNotReachHere();
}
break;
case T_OBJECT:
// Transformation of a value which could be NULL pointer (CastPP #NULL)
// could be delayed during Parse (for example, in adjust_map_after_if()).
// Execute transformation here to avoid barrier generation in such case.
if (_gvn.type(newval) == TypePtr::NULL_PTR)
newval = _gvn.makecon(TypePtr::NULL_PTR);
// Reference stores need a store barrier.
if (kind == LS_xchg) {
// If pre-barrier must execute before the oop store, old value will require do_load here.
if (!can_move_pre_barrier()) {
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
} // Else move pre_barrier to use load_store value, see below.
} else if (kind == LS_cmpxchg) {
// Same as for newval above:
if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
oldval = _gvn.makecon(TypePtr::NULL_PTR);
}
// The only known value which might get overwritten is oldval.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
oldval /* pre_val */,
T_OBJECT);
} else {
ShouldNotReachHere();
}
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
newval_enc, adr_type, value_type->make_narrowoop()));
} else {
assert(kind == LS_cmpxchg, "wrong LoadStore operation");
Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
newval_enc, oldval_enc));
}
} else
#endif
{
if (kind == LS_xchg) {
load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
} else {
assert(kind == LS_cmpxchg, "wrong LoadStore operation");
load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
}
}
if (kind == LS_cmpxchg) {
// Emit the post barrier only when the actual store happened.
// This makes sense to check only for compareAndSet that can fail to set the value.
// CAS success path is marked more likely since we anticipate this is a performance
// critical path, while CAS failure path can use the penalty for going through unlikely
// path as backoff. Which is still better than doing a store barrier there.
IdealKit ideal(this);
ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
sync_kit(ideal);
post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
ideal.sync_kit(this);
} ideal.end_if();
final_sync(ideal);
} else {
post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
}
break;
default:
fatal("unexpected type %d: %s", type, type2name(type));
break;
}
// SCMemProjNodes represent the memory state of a LoadStore. Their
// main role is to prevent LoadStore nodes from being optimized away
// when their results aren't used.
Node* proj = _gvn.transform(new SCMemProjNode(load_store));
set_memory(proj, alias_idx);
if (type == T_OBJECT && kind == LS_xchg) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
if (can_move_pre_barrier()) {
// Don't need to load pre_val. The old value is returned by load_store.
// The pre_barrier can execute after the xchg as long as no safepoint
// gets inserted between them.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
load_store /* pre_val */,
T_OBJECT);
}
}
// Add the trailing membar surrounding the access
insert_mem_bar(Op_MemBarCPUOrder);
insert_mem_bar(Op_MemBarAcquire);
assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
set_result(load_store);
return true;
}
//----------------------------inline_unsafe_ordered_store----------------------
// public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
// public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
// public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
// This is another variant of inline_unsafe_access, differing in
// that it always issues store-store ("release") barrier and ensures
// store-atomicity (which only matters for "long").
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = callee()->signature();
#ifdef ASSERT
BasicType rtype = sig->return_type()->basic_type();
assert(rtype == T_VOID, "must return void");
assert(sig->count() == 3, "has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
#endif // ASSERT
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Get arguments:
Node* receiver = argument(0); // type: oop
Node* base = argument(1); // type: oop
Node* offset = argument(2); // type: long
Node* val = argument(4); // type: oop, int, or long
// Null check receiver.
receiver = null_check(receiver);
if (stopped()) {
return true;
}
// Build field offset expression.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
const Type *value_type = Type::get_const_basic_type(type);
Compile::AliasType* alias_type = C->alias_type(adr_type);
insert_mem_bar(Op_MemBarRelease);
insert_mem_bar(Op_MemBarCPUOrder);
// Ensure that the store is atomic for longs:
const bool require_atomic_access = true;
Node* store;
if (type == T_OBJECT) // reference stores need a store barrier.
store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
else {
store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
}
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
// Regardless of form, don't allow previous ld/st to move down,
// then issue acquire, release, or volatile mem_bar.
insert_mem_bar(Op_MemBarCPUOrder);
switch(id) {
case vmIntrinsics::_loadFence:
insert_mem_bar(Op_LoadFence);
return true;
case vmIntrinsics::_storeFence:
insert_mem_bar(Op_StoreFence);
return true;
case vmIntrinsics::_fullFence:
insert_mem_bar(Op_MemBarVolatile);
return true;
default:
fatal_unexpected_iid(id);
return false;
}
}
bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
if (!kls->is_Con()) {
return true;
}
const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
if (klsptr == NULL) {
return true;
}
ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
// don't need a guard for a klass that is already initialized
return !ik->is_initialized();
}
//----------------------------inline_unsafe_allocate---------------------------
// public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
bool LibraryCallKit::inline_unsafe_allocate() {
if (callee()->is_static()) return false; // caller must have the capability!
null_check_receiver(); // null-check, then ignore
Node* cls = null_check(argument(1));
if (stopped()) return true;
Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
kls = null_check(kls);
if (stopped()) return true; // argument was like int.class
Node* test = NULL;
if (LibraryCallKit::klass_needs_init_guard(kls)) {
// Note: The argument might still be an illegal value like
// Serializable.class or Object[].class. The runtime will handle it.
// But we must make an explicit check for initialization.
Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
// Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
// can generate code to load it as unsigned byte.
Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
Node* bits = intcon(InstanceKlass::fully_initialized);
test = _gvn.transform(new SubINode(inst, bits));
// The 'test' is non-zero if we need to take a slow path.
}
Node* obj = new_instance(kls, test);
set_result(obj);
return true;
}
#ifdef TRACE_HAVE_INTRINSICS
/*
* oop -> myklass
* myklass->trace_id |= USED
* return myklass->trace_id & ~0x3
*/
bool LibraryCallKit::inline_native_classID() {
null_check_receiver(); // null-check, then ignore
Node* cls = null_check(argument(1), T_OBJECT);
Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
kls = null_check(kls, T_OBJECT);
ByteSize offset = TRACE_ID_OFFSET;
Node* insp = basic_plus_adr(kls, in_bytes(offset));
Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
Node* bits = longcon(~0x03l); // ignore bit 0 & 1
Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
Node* clsused = longcon(0x01l); // set the class bit
Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
set_result(andl);
return true;
}
bool LibraryCallKit::inline_native_threadID() {
Node* tls_ptr = NULL;
Node* cur_thr = generate_current_thread(tls_ptr);
Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
Node* threadid = NULL;
size_t thread_id_size = OSThread::thread_id_size();
if (thread_id_size == (size_t) BytesPerLong) {
threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
} else if (thread_id_size == (size_t) BytesPerInt) {
threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
} else {
ShouldNotReachHere();
}
set_result(threadid);
return true;
}
#endif
//------------------------inline_native_time_funcs--------------
// inline code for System.currentTimeMillis() and System.nanoTime()
// these have the same type and signature
bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
const TypeFunc* tf = OptoRuntime::void_long_Type();
const TypePtr* no_memory_effects = NULL;
Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
set_result(value);
return true;
}
//------------------------inline_native_currentThread------------------
bool LibraryCallKit::inline_native_currentThread() {
Node* junk = NULL;
set_result(generate_current_thread(junk));
return true;
}
//------------------------inline_native_isInterrupted------------------
// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
bool LibraryCallKit::inline_native_isInterrupted() {
// Add a fast path to t.isInterrupted(clear_int):
// (t == Thread.current() &&
// (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
// ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
// So, in the common case that the interrupt bit is false,
// we avoid making a call into the VM. Even if the interrupt bit
// is true, if the clear_int argument is false, we avoid the VM call.
// However, if the receiver is not currentThread, we must call the VM,
// because there must be some locking done around the operation.
// We only go to the fast case code if we pass two guards.
// Paths which do not pass are accumulated in the slow_region.
enum {
no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
PATH_LIMIT
};
// Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
// out of the function.
insert_mem_bar(Op_MemBarCPUOrder);
RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL);
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// (a) Receiving thread must be the current thread.
Node* rec_thr = argument(0);
Node* tls_ptr = NULL;
Node* cur_thr = generate_current_thread(tls_ptr);
Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
generate_slow_guard(bol_thr, slow_region);
// (b) Interrupt bit on TLS must be false.
Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
// Set the control input on the field _interrupted read to prevent it floating up.
Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
// First fast path: if (!TLS._interrupted) return false;
Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
result_rgn->init_req(no_int_result_path, false_bit);
result_val->init_req(no_int_result_path, intcon(0));
// drop through to next case
set_control( _gvn.transform(new IfTrueNode(iff_bit)));
#ifndef TARGET_OS_FAMILY_windows
// (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
Node* clr_arg = argument(1);
Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
// Second fast path: ... else if (!clear_int) return true;
Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
result_rgn->init_req(no_clear_result_path, false_arg);
result_val->init_req(no_clear_result_path, intcon(1));
// drop through to next case
set_control( _gvn.transform(new IfTrueNode(iff_arg)));
#else
// To return true on Windows you must read the _interrupted field
// and check the the event state i.e. take the slow path.
#endif // TARGET_OS_FAMILY_windows
// (d) Otherwise, go to the slow path.
slow_region->add_req(control());
set_control( _gvn.transform(slow_region));
if (stopped()) {
// There is no slow path.
result_rgn->init_req(slow_result_path, top());
result_val->init_req(slow_result_path, top());
} else {
// non-virtual because it is a private non-static
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
Node* slow_val = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
Node* fast_io = slow_call->in(TypeFunc::I_O);
Node* fast_mem = slow_call->in(TypeFunc::Memory);
// These two phis are pre-filled with copies of of the fast IO and Memory
PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
result_rgn->init_req(slow_result_path, control());
result_io ->init_req(slow_result_path, i_o());
result_mem->init_req(slow_result_path, reset_memory());
result_val->init_req(slow_result_path, slow_val);
set_all_memory(_gvn.transform(result_mem));
set_i_o( _gvn.transform(result_io));
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result_rgn, result_val);
return true;
}
//---------------------------load_mirror_from_klass----------------------------
// Given a klass oop, load its java mirror (a java.lang.Class oop).
Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
}
//-----------------------load_klass_from_mirror_common-------------------------
// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
// and branch to the given path on the region.
// If never_see_null, take an uncommon trap on null, so we can optimistically
// compile for the non-null case.
// If the region is NULL, force never_see_null = true.
Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
bool never_see_null,
RegionNode* region,
int null_path,
int offset) {
if (region == NULL) never_see_null = true;
Node* p = basic_plus_adr(mirror, offset);
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
Node* null_ctl = top();
kls = null_check_oop(kls, &null_ctl, never_see_null);
if (region != NULL) {
// Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
region->init_req(null_path, null_ctl);
} else {
assert(null_ctl == top(), "no loose ends");
}
return kls;
}
//--------------------(inline_native_Class_query helpers)---------------------
// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
// Fall through if (mods & mask) == bits, take the guard otherwise.
Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
// Branch around if the given klass has the given modifier bit set.
// Like generate_guard, adds a new path onto the region.
Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
Node* mask = intcon(modifier_mask);
Node* bits = intcon(modifier_bits);
Node* mbit = _gvn.transform(new AndINode(mods, mask));
Node* cmp = _gvn.transform(new CmpINode(mbit, bits));
Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
return generate_fair_guard(bol, region);
}
Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
}
//-------------------------inline_native_Class_query-------------------
bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
const Type* return_type = TypeInt::BOOL;
Node* prim_return_value = top(); // what happens if it's a primitive class?
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
bool expect_prim = false; // most of these guys expect to work on refs
enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
Node* mirror = argument(0);
Node* obj = top();
switch (id) {
case vmIntrinsics::_isInstance:
// nothing is an instance of a primitive type
prim_return_value = intcon(0);
obj = argument(1);
break;
case vmIntrinsics::_getModifiers:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
break;
case vmIntrinsics::_isInterface:
prim_return_value = intcon(0);
break;
case vmIntrinsics::_isArray:
prim_return_value = intcon(0);
expect_prim = true; // cf. ObjectStreamClass.getClassSignature
break;
case vmIntrinsics::_isPrimitive:
prim_return_value = intcon(1);
expect_prim = true; // obviously
break;
case vmIntrinsics::_getSuperclass:
prim_return_value = null();
return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
break;
case vmIntrinsics::_getClassAccessFlags:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
return_type = TypeInt::INT; // not bool! 6297094
break;
default:
fatal_unexpected_iid(id);
break;
}
const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
if (mirror_con == NULL) return false; // cannot happen?
#ifndef PRODUCT
if (C->print_intrinsics() || C->print_inlining()) {
ciType* k = mirror_con->java_mirror_type();
if (k) {
tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
k->print_name();
tty->cr();
}
}
#endif
// Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
RegionNode* region = new RegionNode(PATH_LIMIT);
record_for_igvn(region);
PhiNode* phi = new PhiNode(region, return_type);
// The mirror will never be null of Reflection.getClassAccessFlags, however
// it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
// if it is. See bug 4774291.
// For Reflection.getClassAccessFlags(), the null check occurs in
// the wrong place; see inline_unsafe_access(), above, for a similar
// situation.
mirror = null_check(mirror);
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
// Now load the mirror's klass metaobject, and null-check it.
// Side-effects region with the control path if the klass is null.
Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
// If kls is null, we have a primitive mirror.
phi->init_req(_prim_path, prim_return_value);
if (stopped()) { set_result(region, phi); return true; }
bool safe_for_replace = (region->in(_prim_path) == top());
Node* p; // handy temp
Node* null_ctl;
// Now that we have the non-null klass, we can perform the real query.
// For constant classes, the query will constant-fold in LoadNode::Value.
Node* query_value = top();
switch (id) {
case vmIntrinsics::_isInstance:
// nothing is an instance of a primitive type
query_value = gen_instanceof(obj, kls, safe_for_replace);
break;
case vmIntrinsics::_getModifiers:
p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
break;
case vmIntrinsics::_isInterface:
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isArray:
// (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isPrimitive:
query_value = intcon(0); // "normal" path produces false
break;
case vmIntrinsics::_getSuperclass:
// The rules here are somewhat unfortunate, but we can still do better
// with random logic than with a JNI call.
// Interfaces store null or Object as _super, but must report null.
// Arrays store an intermediate super as _super, but must report Object.
// Other types can report the actual _super.
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(null());
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
// If we fall through, it's a plain class. Get its _super.
p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
null_ctl = top();
kls = null_check_oop(kls, &null_ctl);
if (null_ctl != top()) {
// If the guard is taken, Object.superClass is null (both klass and mirror).
region->add_req(null_ctl);
phi ->add_req(null());
}
if (!stopped()) {
query_value = load_mirror_from_klass(kls);
}
break;
case vmIntrinsics::_getClassAccessFlags:
p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
break;
default:
fatal_unexpected_iid(id);
break;
}
// Fall-through is the normal case of a query to a real class.
phi->init_req(1, query_value);
region->init_req(1, control());
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(region, phi);
return true;
}
//-------------------------inline_Class_cast-------------------
bool LibraryCallKit::inline_Class_cast() {
Node* mirror = argument(0); // Class
Node* obj = argument(1);
const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
if (mirror_con == NULL) {
return false; // dead path (mirror->is_top()).
}
if (obj == NULL || obj->is_top()) {
return false; // dead path
}
const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
// First, see if Class.cast() can be folded statically.
// java_mirror_type() returns non-null for compile-time Class constants.
ciType* tm = mirror_con->java_mirror_type();
if (tm != NULL && tm->is_klass() &&
tp != NULL && tp->klass() != NULL) {
if (!tp->klass()->is_loaded()) {
// Don't use intrinsic when class is not loaded.
return false;
} else {
int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
if (static_res == Compile::SSC_always_true) {
// isInstance() is true - fold the code.
set_result(obj);
return true;
} else if (static_res == Compile::SSC_always_false) {
// Don't use intrinsic, have to throw ClassCastException.
// If the reference is null, the non-intrinsic bytecode will
// be optimized appropriately.
return false;
}
}
}
// Bailout intrinsic and do normal inlining if exception path is frequent.
if (too_many_traps(Deoptimization::Reason_intrinsic)) {
return false;
}
// Generate dynamic checks.
// Class.cast() is java implementation of _checkcast bytecode.
// Do checkcast (Parse::do_checkcast()) optimizations here.
mirror = null_check(mirror);
// If mirror is dead, only null-path is taken.
if (stopped()) {
return true;
}
// Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
RegionNode* region = new RegionNode(PATH_LIMIT);
record_for_igvn(region);
// Now load the mirror's klass metaobject, and null-check it.
// If kls is null, we have a primitive mirror and
// nothing is an instance of a primitive type.
Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
Node* res = top();
if (!stopped()) {
Node* bad_type_ctrl = top();
// Do checkcast optimizations.
res = gen_checkcast(obj, kls, &bad_type_ctrl);
region->init_req(_bad_type_path, bad_type_ctrl);
}
if (region->in(_prim_path) != top() ||
region->in(_bad_type_path) != top()) {
// Let Interpreter throw ClassCastException.
PreserveJVMState pjvms(this);
set_control(_gvn.transform(region));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (!stopped()) {
set_result(res);
}
return true;
}
//--------------------------inline_native_subtype_check------------------------
// This intrinsic takes the JNI calls out of the heart of
// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
bool LibraryCallKit::inline_native_subtype_check() {
// Pull both arguments off the stack.
Node* args[2]; // two java.lang.Class mirrors: superc, subc
args[0] = argument(0);
args[1] = argument(1);
Node* klasses[2]; // corresponding Klasses: superk, subk
klasses[0] = klasses[1] = top();
enum {
// A full decision tree on {superc is prim, subc is prim}:
_prim_0_path = 1, // {P,N} => false
// {P,P} & superc!=subc => false
_prim_same_path, // {P,P} & superc==subc => true
_prim_1_path, // {N,P} => false
_ref_subtype_path, // {N,N} & subtype check wins => true
_both_ref_path, // {N,N} & subtype check loses => false
PATH_LIMIT
};
RegionNode* region = new RegionNode(PATH_LIMIT);
Node* phi = new PhiNode(region, TypeInt::BOOL);
record_for_igvn(region);
const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
// First null-check both mirrors and load each mirror's klass metaobject.
int which_arg;
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* arg = args[which_arg];
arg = null_check(arg);
if (stopped()) break;
args[which_arg] = arg;
Node* p = basic_plus_adr(arg, class_klass_offset);
Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
klasses[which_arg] = _gvn.transform(kls);
}
// Having loaded both klasses, test each for null.
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* kls = klasses[which_arg];
Node* null_ctl = top();
kls = null_check_oop(kls, &null_ctl, never_see_null);
int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
region->init_req(prim_path, null_ctl);
if (stopped()) break;
klasses[which_arg] = kls;
}
if (!stopped()) {
// now we have two reference types, in klasses[0..1]
Node* subk = klasses[1]; // the argument to isAssignableFrom
Node* superk = klasses[0]; // the receiver
region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
// now we have a successful reference subtype check
region->set_req(_ref_subtype_path, control());
}
// If both operands are primitive (both klasses null), then
// we must return true when they are identical primitives.
// It is convenient to test this after the first null klass check.
set_control(region->in(_prim_0_path)); // go back to first null check
if (!stopped()) {
// Since superc is primitive, make a guard for the superc==subc case.
Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
generate_guard(bol_eq, region, PROB_FAIR);
if (region->req() == PATH_LIMIT+1) {
// A guard was added. If the added guard is taken, superc==subc.
region->swap_edges(PATH_LIMIT, _prim_same_path);
region->del_req(PATH_LIMIT);
}
region->set_req(_prim_0_path, control()); // Not equal after all.
}
// these are the only paths that produce 'true':
phi->set_req(_prim_same_path, intcon(1));
phi->set_req(_ref_subtype_path, intcon(1));
// pull together the cases:
assert(region->req() == PATH_LIMIT, "sane region");
for (uint i = 1; i < region->req(); i++) {
Node* ctl = region->in(i);
if (ctl == NULL || ctl == top()) {
region->set_req(i, top());
phi ->set_req(i, top());
} else if (phi->in(i) == NULL) {
phi->set_req(i, intcon(0)); // all other paths produce 'false'
}
}
set_control(_gvn.transform(region));
set_result(_gvn.transform(phi));
return true;
}
//---------------------generate_array_guard_common------------------------
Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array) {
if (stopped()) {
return NULL;
}
// If obj_array/non_array==false/false:
// Branch around if the given klass is in fact an array (either obj or prim).
// If obj_array/non_array==false/true:
// Branch around if the given klass is not an array klass of any kind.
// If obj_array/non_array==true/true:
// Branch around if the kls is not an oop array (kls is int[], String, etc.)
// If obj_array/non_array==true/false:
// Branch around if the kls is an oop array (Object[] or subtype)
//
// Like generate_guard, adds a new path onto the region.
jint layout_con = 0;
Node* layout_val = get_layout_helper(kls, layout_con);
if (layout_val == NULL) {
bool query = (obj_array
? Klass::layout_helper_is_objArray(layout_con)
: Klass::layout_helper_is_array(layout_con));
if (query == not_array) {
return NULL; // never a branch
} else { // always a branch
Node* always_branch = control();
if (region != NULL)
region->add_req(always_branch);
set_control(top());
return always_branch;
}
}
// Now test the correct condition.
jint nval = (obj_array
? ((jint)Klass::_lh_array_tag_type_value
<< Klass::_lh_array_tag_shift)
: Klass::_lh_neutral_value);
Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
// invert the test if we are looking for a non-array
if (not_array) btest = BoolTest(btest).negate();
Node* bol = _gvn.transform(new BoolNode(cmp, btest));
return generate_fair_guard(bol, region);
}
//-----------------------inline_native_newArray--------------------------
// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
bool LibraryCallKit::inline_native_newArray() {
Node* mirror = argument(0);
Node* count_val = argument(1);
mirror = null_check(mirror);
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
result_reg, _slow_path);
Node* normal_ctl = control();
Node* no_array_ctl = result_reg->in(_slow_path);
// Generate code for the slow case. We make a call to newArray().
set_control(no_array_ctl);
if (!stopped()) {
// Either the input type is void.class, or else the
// array klass has not yet been cached. Either the
// ensuing call will throw an exception, or else it
// will cache the array klass for next time.
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->set_req(_slow_path, control());
result_val->set_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem->set_req(_slow_path, reset_memory());
}
set_control(normal_ctl);
if (!stopped()) {
// Normal case: The array type has been cached in the java.lang.Class.
// The following call works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
result_reg->init_req(_normal_path, control());
result_val->init_req(_normal_path, obj);
result_io ->init_req(_normal_path, i_o());
result_mem->init_req(_normal_path, reset_memory());
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem));
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result_reg, result_val);
return true;
}
//----------------------inline_native_getLength--------------------------
// public static native int java.lang.reflect.Array.getLength(Object array);
bool LibraryCallKit::inline_native_getLength() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
Node* array = null_check(argument(0));
// If array is dead, only null-path is taken.
if (stopped()) return true;
// Deoptimize if it is a non-array.
Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
if (non_array != NULL) {
PreserveJVMState pjvms(this);
set_control(non_array);
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
// If control is dead, only non-array-path is taken.
if (stopped()) return true;
// The works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
Node* result = load_array_length(array);
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(result);
return true;
}
//------------------------inline_array_copyOf----------------------------
// public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
// Get the arguments.
Node* original = argument(0);
Node* start = is_copyOfRange? argument(1): intcon(0);
Node* end = is_copyOfRange? argument(2): argument(1);
Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
Node* newcopy;
// Set the original stack and the reexecute bit for the interpreter to reexecute
// the bytecode that invokes Arrays.copyOf if deoptimization happens.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
array_type_mirror = null_check(array_type_mirror);
original = null_check(original);
// Check if a null path was taken unconditionally.
if (stopped()) return true;
Node* orig_length = load_array_length(original);
Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
klass_node = null_check(klass_node);
RegionNode* bailout = new RegionNode(1);
record_for_igvn(bailout);
// Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
// Bail out if that is so.
Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
if (not_objArray != NULL) {
// Improve the klass node's type from the new optimistic assumption:
ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
Node* cast = new CastPPNode(klass_node, akls);
cast->init_req(0, control());
klass_node = _gvn.transform(cast);
}
// Bail out if either start or end is negative.
generate_negative_guard(start, bailout, &start);
generate_negative_guard(end, bailout, &end);
Node* length = end;
if (_gvn.type(start) != TypeInt::ZERO) {
length = _gvn.transform(new SubINode(end, start));
}
// Bail out if length is negative.
// Without this the new_array would throw
// NegativeArraySizeException but IllegalArgumentException is what
// should be thrown
generate_negative_guard(length, bailout, &length);
if (bailout->req() > 1) {
PreserveJVMState pjvms(this);
set_control(_gvn.transform(bailout));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (!stopped()) {
// How many elements will we copy from the original?
// The answer is MinI(orig_length - start, length).
Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
// Generate a direct call to the right arraycopy function(s).
// We know the copy is disjoint but we might not know if the
// oop stores need checking.
// Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
// This will fail a store-check if x contains any non-nulls.
// ArrayCopyNode:Ideal may transform the ArrayCopyNode to
// loads/stores but it is legal only if we're sure the
// Arrays.copyOf would succeed. So we need all input arguments
// to the copyOf to be validated, including that the copy to the
// new array won't trigger an ArrayStoreException. That subtype
// check can be optimized if we know something on the type of
// the input array from type speculation.
if (_gvn.type(klass_node)->singleton()) {
ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
int test = C->static_subtype_check(superk, subk);
if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
if (t_original->speculative_type() != NULL) {
original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
}
}
}
bool validated = false;
// Reason_class_check rather than Reason_intrinsic because we
// want to intrinsify even if this traps.
if (!too_many_traps(Deoptimization::Reason_class_check)) {
Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
klass_node);
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
uncommon_trap(Deoptimization::Reason_class_check,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
validated = true;
}
if (!stopped()) {
newcopy = new_array(klass_node, length, 0); // no arguments to push
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
load_object_klass(original), klass_node);
if (!is_copyOfRange) {
ac->set_copyof(validated);
} else {
ac->set_copyofrange(validated);
}
Node* n = _gvn.transform(ac);
if (n == ac) {
ac->connect_outputs(this);
} else {
assert(validated, "shouldn't transform if all arguments not validated");
set_all_memory(n);
}
}
}
} // original reexecute is set back here
C->set_has_split_ifs(true); // Has chance for split-if optimization
if (!stopped()) {
set_result(newcopy);
}
return true;
}
//----------------------generate_virtual_guard---------------------------
// Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
RegionNode* slow_region) {
ciMethod* method = callee();
int vtable_index = method->vtable_index();
assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
"bad index %d", vtable_index);
// Get the Method* out of the appropriate vtable entry.
int entry_offset = (InstanceKlass::vtable_start_offset() +
vtable_index*vtableEntry::size()) * wordSize +
vtableEntry::method_offset_in_bytes();
Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
// Compare the target method with the expected method (e.g., Object.hashCode).
const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
Node* native_call = makecon(native_call_addr);
Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call));
Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
return generate_slow_guard(test_native, slow_region);
}
//-----------------------generate_method_call----------------------------
// Use generate_method_call to make a slow-call to the real
// method if the fast path fails. An alternative would be to
// use a stub like OptoRuntime::slow_arraycopy_Java.
// This only works for expanding the current library call,
// not another intrinsic. (E.g., don't use this for making an
// arraycopy call inside of the copyOf intrinsic.)
CallJavaNode*
LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
// When compiling the intrinsic method itself, do not use this technique.
guarantee(callee() != C->method(), "cannot make slow-call to self");
ciMethod* method = callee();
// ensure the JVMS we have will be correct for this call
guarantee(method_id == method->intrinsic_id(), "must match");
const TypeFunc* tf = TypeFunc::make(method);
CallJavaNode* slow_call;
if (is_static) {
assert(!is_virtual, "");
slow_call = new CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_static_call_stub(),
method, bci());
} else if (is_virtual) {
null_check_receiver();
int vtable_index = Method::invalid_vtable_index;
if (UseInlineCaches) {
// Suppress the vtable call
} else {
// hashCode and clone are not a miranda methods,
// so the vtable index is fixed.
// No need to use the linkResolver to get it.
vtable_index = method->vtable_index();
assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
"bad index %d", vtable_index);
}
slow_call = new CallDynamicJavaNode(tf,
SharedRuntime::get_resolve_virtual_call_stub(),
method, vtable_index, bci());
} else { // neither virtual nor static: opt_virtual
null_check_receiver();
slow_call = new CallStaticJavaNode(C, tf,
SharedRuntime::get_resolve_opt_virtual_call_stub(),
method, bci());
slow_call->set_optimized_virtual(true);
}
set_arguments_for_java_call(slow_call);
set_edges_for_java_call(slow_call);
return slow_call;
}
/**
* Build special case code for calls to hashCode on an object. This call may
* be virtual (invokevirtual) or bound (invokespecial). For each case we generate
* slightly different code.
*/
bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
assert(is_static == callee()->is_static(), "correct intrinsic selection");
assert(!(is_virtual && is_static), "either virtual, special, or static");
enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT);
PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
Node* obj = NULL;
if (!is_static) {
// Check for hashing null object
obj = null_check_receiver();
if (stopped()) return true; // unconditionally null
result_reg->init_req(_null_path, top());
result_val->init_req(_null_path, top());
} else {
// Do a null check, and return zero if null.
// System.identityHashCode(null) == 0
obj = argument(0);
Node* null_ctl = top();
obj = null_check_oop(obj, &null_ctl);
result_reg->init_req(_null_path, null_ctl);
result_val->init_req(_null_path, _gvn.intcon(0));
}
// Unconditionally null? Then return right away.
if (stopped()) {
set_control( result_reg->in(_null_path));
if (!stopped())
set_result(result_val->in(_null_path));
return true;
}
// We only go to the fast case code if we pass a number of guards. The
// paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// If this is a virtual call, we generate a funny guard. We pull out
// the vtable entry corresponding to hashCode() from the target object.
// If the target method which we are calling happens to be the native
// Object hashCode() method, we pass the guard. We do not need this
// guard for non-virtual calls -- the caller is known to be the native
// Object hashCode().
if (is_virtual) {
// After null check, get the object's klass.
Node* obj_klass = load_object_klass(obj);
generate_virtual_guard(obj_klass, slow_region);
}
// Get the header out of the object, use LoadMarkNode when available
Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
// The control of the load must be NULL. Otherwise, the load can move before
// the null check after castPP removal.
Node* no_ctrl = NULL;
Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
// Test the header to see if it is unlocked.
Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
generate_slow_guard(test_unlocked, slow_region);
// Get the hash value and check to see that it has been properly assigned.
// We depend on hash_mask being at most 32 bits and avoid the use of
// hash_mask_in_place because it could be larger than 32 bits in a 64-bit
// vm: see markOop.hpp.
Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
// This hack lets the hash bits live anywhere in the mark object now, as long
// as the shift drops the relevant bits into the low 32 bits. Note that
// Java spec says that HashCode is an int so there's no point in capturing
// an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
hshifted_header = ConvX2I(hshifted_header);
Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask));
Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val));
Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
generate_slow_guard(test_assigned, slow_region);
Node* init_mem = reset_memory();
// fill in the rest of the null path:
result_io ->init_req(_null_path, i_o());
result_mem->init_req(_null_path, init_mem);
result_val->init_req(_fast_path, hash_val);
result_reg->init_req(_fast_path, control());
result_io ->init_req(_fast_path, i_o());
result_mem->init_req(_fast_path, init_mem);
// Generate code for the slow case. We make a call to hashCode().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
// No need for PreserveJVMState, because we're using up the present state.
set_all_memory(init_mem);
vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem));
set_result(result_reg, result_val);
return true;
}
//---------------------------inline_native_getClass----------------------------
// public final native Class<?> java.lang.Object.getClass();
//
// Build special case code for calls to getClass on an object.
bool LibraryCallKit::inline_native_getClass() {
Node* obj = null_check_receiver();
if (stopped()) return true;
set_result(load_mirror_from_klass(load_object_klass(obj)));
return true;
}
//-----------------inline_native_Reflection_getCallerClass---------------------
// public static native Class<?> sun.reflect.Reflection.getCallerClass();
//
// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
//
// NOTE: This code must perform the same logic as JVM_GetCallerClass
// in that it must skip particular security frames and checks for
// caller sensitive methods.
bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
}
#endif
if (!jvms()->has_method()) {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out because intrinsic was inlined at top level");
}
#endif
return false;
}
// Walk back up the JVM state to find the caller at the required
// depth.
JVMState* caller_jvms = jvms();
// Cf. JVM_GetCallerClass
// NOTE: Start the loop at depth 1 because the current JVM state does
// not include the Reflection.getCallerClass() frame.
for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
ciMethod* m = caller_jvms->method();
switch (n) {
case 0:
fatal("current JVM state does not include the Reflection.getCallerClass frame");
break;
case 1:
// Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
if (!m->caller_sensitive()) {
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
}
#endif
return false; // bail-out; let JVM_GetCallerClass do the work
}
break;
default:
if (!m->is_ignored_by_security_stack_walk()) {
// We have reached the desired frame; return the holder class.
// Acquire method holder as java.lang.Class and push as constant.
ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
ciInstance* caller_mirror = caller_klass->java_mirror();
set_result(makecon(TypeInstPtr::make(caller_mirror)));
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
tty->print_cr(" JVM state at this point:");
for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
ciMethod* m = jvms()->of_depth(i)->method();
tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
}
}
#endif
return true;
}
break;
}
}
#ifndef PRODUCT
if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
tty->print_cr(" JVM state at this point:");
for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
ciMethod* m = jvms()->of_depth(i)->method();
tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
}
}
#endif
return false; // bail-out; let JVM_GetCallerClass do the work
}
bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
Node* arg = argument(0);
Node* result;
switch (id) {
case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break;
case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break;
case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break;
case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break;
case vmIntrinsics::_doubleToLongBits: {
// two paths (plus control) merge in a wood
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, TypeLong::LONG);
Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
// Build the boolean node
Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
set_control(iftrue);
static const jlong nan_bits = CONST64(0x7ff8000000000000);
Node *slow_result = longcon(nan_bits); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
set_control(iffalse);
phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
C->set_has_split_ifs(true); // Has chance for split-if optimization
result = phi;
assert(result->bottom_type()->isa_long(), "must be");
break;
}
case vmIntrinsics::_floatToIntBits: {
// two paths (plus control) merge in a wood
RegionNode *r = new RegionNode(3);
Node *phi = new PhiNode(r, TypeInt::INT);
Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
// Build the boolean node
Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
set_control(iftrue);
static const jint nan_bits = 0x7fc00000;
Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
set_control(iffalse);
phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
C->set_has_split_ifs(true); // Has chance for split-if optimization
result = phi;
assert(result->bottom_type()->isa_int(), "must be");
break;
}
default:
fatal_unexpected_iid(id);
break;
}
set_result(_gvn.transform(result));
return true;
}
#ifdef _LP64
#define XTOP ,top() /*additional argument*/
#else //_LP64
#define XTOP /*no additional argument*/
#endif //_LP64
//----------------------inline_unsafe_copyMemory-------------------------
// public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
bool LibraryCallKit::inline_unsafe_copyMemory() {
if (callee()->is_static()) return false; // caller must have the capability!
null_check_receiver(); // null-check receiver
if (stopped()) return true;
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
Node* src_ptr = argument(1); // type: oop
Node* src_off = ConvL2X(argument(2)); // type: long
Node* dst_ptr = argument(4); // type: oop
Node* dst_off = ConvL2X(argument(5)); // type: long
Node* size = ConvL2X(argument(7)); // type: long
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
Node* src = make_unsafe_address(src_ptr, src_off);
Node* dst = make_unsafe_address(dst_ptr, dst_off);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes of the copy source or destination float below the copy.
insert_mem_bar(Op_MemBarCPUOrder);
// Call it. Note that the length argument is not scaled.
make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
StubRoutines::unsafe_arraycopy(),
"unsafe_arraycopy",
TypeRawPtr::BOTTOM,
src, dst, size XTOP);
// Do not let reads of the copy destination float above the copy.
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//------------------------clone_coping-----------------------------------
// Helper function for inline_native_clone.
void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
assert(obj_size != NULL, "");
Node* raw_obj = alloc_obj->in(1);
assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
AllocateNode* alloc = NULL;
if (ReduceBulkZeroing) {
// We will be completely responsible for initializing this object -
// mark Initialize node as complete.
alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
// The object was just allocated - there should be no any stores!
guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
// Mark as complete_with_arraycopy so that on AllocateNode
// expansion, we know this AllocateNode is initialized by an array
// copy and a StoreStore barrier exists after the array copy.
alloc->initialization()->set_complete_with_arraycopy();
}
// Copy the fastest available way.
// TODO: generate fields copies for small objects instead.
Node* src = obj;
Node* dest = alloc_obj;
Node* size = _gvn.transform(obj_size);
// Exclude the header but include array length to copy by 8 bytes words.
// Can't use base_offset_in_bytes(bt) since basic type is unknown.
int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
instanceOopDesc::base_offset_in_bytes();
// base_off:
// 8 - 32-bit VM
// 12 - 64-bit VM, compressed klass
// 16 - 64-bit VM, normal klass
if (base_off % BytesPerLong != 0) {
assert(UseCompressedClassPointers, "");
if (is_array) {
// Exclude length to copy by 8 bytes words.
base_off += sizeof(int);
} else {
// Include klass to copy by 8 bytes words.
base_off = instanceOopDesc::klass_offset_in_bytes();
}
assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
}
src = basic_plus_adr(src, base_off);
dest = basic_plus_adr(dest, base_off);
// Compute the length also, if needed:
Node* countx = size;
countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
ac->set_clonebasic();
Node* n = _gvn.transform(ac);
if (n == ac) {
set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
} else {
set_all_memory(n);
}
// If necessary, emit some card marks afterwards. (Non-arrays only.)
if (card_mark) {
assert(!is_array, "");
// Put in store barrier for any and all oops we are sticking
// into this object. (We could avoid this if we could prove
// that the object type contains no oop fields at all.)
Node* no_particular_value = NULL;
Node* no_particular_field = NULL;
int raw_adr_idx = Compile::AliasIdxRaw;
post_barrier(control(),
memory(raw_adr_type),
alloc_obj,
no_particular_field,
raw_adr_idx,
no_particular_value,
T_OBJECT,
false);
}
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else {
insert_mem_bar(Op_MemBarCPUOrder);
}
}
//------------------------inline_native_clone----------------------------
// protected native Object java.lang.Object.clone();
//
// Here are the simple edge cases:
// null receiver => normal trap
// virtual and clone was overridden => slow path to out-of-line clone
// not cloneable or finalizer => slow path to out-of-line Object.clone
//
// The general case has two steps, allocation and copying.
// Allocation has two cases, and uses GraphKit::new_instance or new_array.
//
// Copying also has two cases, oop arrays and everything else.
// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
// Everything else uses the tight inline loop supplied by CopyArrayNode.
//
// These steps fold up nicely if and when the cloned object's klass
// can be sharply typed as an object array, a type array, or an instance.
//
bool LibraryCallKit::inline_native_clone(bool is_virtual) {
PhiNode* result_val;
// Set the reexecute bit for the interpreter to reexecute
// the bytecode that invokes Object.clone if deoptimization happens.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
Node* obj = null_check_receiver();
if (stopped()) return true;
const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
// If we are going to clone an instance, we need its exact type to
// know the number and types of fields to convert the clone to
// loads/stores. Maybe a speculative type can help us.
if (!obj_type->klass_is_exact() &&
obj_type->speculative_type() != NULL &&
obj_type->speculative_type()->is_instance_klass()) {
ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
!spec_ik->has_injected_fields()) {
ciKlass* k = obj_type->klass();
if (!k->is_instance_klass() ||
k->as_instance_klass()->is_interface() ||
k->as_instance_klass()->has_subklass()) {
obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
}
}
}
Node* obj_klass = load_object_klass(obj);
const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
const TypeOopPtr* toop = ((tklass != NULL)
? tklass->as_instance_type()
: TypeInstPtr::NOTNULL);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes into the original float below the clone.
insert_mem_bar(Op_MemBarCPUOrder);
// paths into result_reg:
enum {
_slow_path = 1, // out-of-line call to clone method (virtual or not)
_objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
_array_path, // plain array allocation, plus arrayof_long_arraycopy
_instance_path, // plain instance allocation, plus arrayof_long_arraycopy
PATH_LIMIT
};
RegionNode* result_reg = new RegionNode(PATH_LIMIT);
result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
record_for_igvn(result_reg);
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
int raw_adr_idx = Compile::AliasIdxRaw;
Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
if (array_ctl != NULL) {
// It's an array.
PreserveJVMState pjvms(this);
set_control(array_ctl);
Node* obj_length = load_array_length(obj);
Node* obj_size = NULL;
Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
if (!use_ReduceInitialCardMarks()) {
// If it is an oop array, it requires very special treatment,
// because card marking is required on each card of the array.
Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
if (is_obja != NULL) {
PreserveJVMState pjvms2(this);
set_control(is_obja);
// Generate a direct call to the right arraycopy function(s).
Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
ac->set_cloneoop();
Node* n = _gvn.transform(ac);
assert(n == ac, "cannot disappear");
ac->connect_outputs(this);
result_reg->init_req(_objArray_path, control());
result_val->init_req(_objArray_path, alloc_obj);
result_i_o ->set_req(_objArray_path, i_o());
result_mem ->set_req(_objArray_path, reset_memory());
}
}
// Otherwise, there are no card marks to worry about.
// (We can dispense with card marks if we know the allocation
// comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
// causes the non-eden paths to take compensating steps to
// simulate a fresh allocation, so that no further
// card marks are required in compiled code to initialize
// the object.)
if (!stopped()) {
copy_to_clone(obj, alloc_obj, obj_size, true, false);
// Present the results of the copy.
result_reg->init_req(_array_path, control());
result_val->init_req(_array_path, alloc_obj);
result_i_o ->set_req(_array_path, i_o());
result_mem ->set_req(_array_path, reset_memory());
}
}
// We only go to the instance fast case code if we pass a number of guards.
// The paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
if (!stopped()) {
// It's an instance (we did array above). Make the slow-path tests.
// If this is a virtual call, we generate a funny guard. We grab
// the vtable entry corresponding to clone() from the target object.
// If the target method which we are calling happens to be the
// Object clone() method, we pass the guard. We do not need this
// guard for non-virtual calls; the caller is known to be the native
// Object clone().
if (is_virtual) {
generate_virtual_guard(obj_klass, slow_region);
}
// The object must be cloneable and must not have a finalizer.
// Both of these conditions may be checked in a single test.
// We could optimize the cloneable test further, but we don't care.
generate_access_flags_guard(obj_klass,
// Test both conditions:
JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
// Must be cloneable but not finalizer:
JVM_ACC_IS_CLONEABLE,
slow_region);
}
if (!stopped()) {
// It's an instance, and it passed the slow-path tests.
PreserveJVMState pjvms(this);
Node* obj_size = NULL;
// Need to deoptimize on exception from allocation since Object.clone intrinsic
// is reexecuted if deoptimization occurs and there could be problems when merging
// exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
// Present the results of the slow call.
result_reg->init_req(_instance_path, control());
result_val->init_req(_instance_path, alloc_obj);
result_i_o ->set_req(_instance_path, i_o());
result_mem ->set_req(_instance_path, reset_memory());
}
// Generate code for the slow case. We make a call to clone().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_i_o ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_control( _gvn.transform(result_reg));
set_i_o( _gvn.transform(result_i_o));
set_all_memory( _gvn.transform(result_mem));
} // original reexecute is set back here
set_result(_gvn.transform(result_val));
return true;
}
// If we have a tighly coupled allocation, the arraycopy may take care
// of the array initialization. If one of the guards we insert between
// the allocation and the arraycopy causes a deoptimization, an
// unitialized array will escape the compiled method. To prevent that
// we set the JVM state for uncommon traps between the allocation and
// the arraycopy to the state before the allocation so, in case of
// deoptimization, we'll reexecute the allocation and the
// initialization.
JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
if (alloc != NULL) {
ciMethod* trap_method = alloc->jvms()->method();
int trap_bci = alloc->jvms()->bci();
if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
// Make sure there's no store between the allocation and the
// arraycopy otherwise visible side effects could be rexecuted
// in case of deoptimization and cause incorrect execution.
bool no_interfering_store = true;
Node* mem = alloc->in(TypeFunc::Memory);
if (mem->is_MergeMem()) {
for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
Node* n = mms.memory();
if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
assert(n->is_Store(), "what else?");
no_interfering_store = false;
break;
}
}
} else {
for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
Node* n = mms.memory();
if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
assert(n->is_Store(), "what else?");
no_interfering_store = false;
break;
}
}
}
if (no_interfering_store) {
JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
uint size = alloc->req();
SafePointNode* sfpt = new SafePointNode(size, old_jvms);
old_jvms->set_map(sfpt);
for (uint i = 0; i < size; i++) {
sfpt->init_req(i, alloc->in(i));
}
// re-push array length for deoptimization
sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
old_jvms->set_sp(old_jvms->sp()+1);
old_jvms->set_monoff(old_jvms->monoff()+1);
old_jvms->set_scloff(old_jvms->scloff()+1);
old_jvms->set_endoff(old_jvms->endoff()+1);
old_jvms->set_should_reexecute(true);
sfpt->set_i_o(map()->i_o());
sfpt->set_memory(map()->memory());
sfpt->set_control(map()->control());
JVMState* saved_jvms = jvms();
saved_reexecute_sp = _reexecute_sp;
set_jvms(sfpt->jvms());
_reexecute_sp = jvms()->sp();
return saved_jvms;
}
}
}
return NULL;
}
// In case of a deoptimization, we restart execution at the
// allocation, allocating a new array. We would leave an uninitialized
// array in the heap that GCs wouldn't expect. Move the allocation
// after the traps so we don't allocate the array if we
// deoptimize. This is possible because tightly_coupled_allocation()
// guarantees there's no observer of the allocated array at this point
// and the control flow is simple enough.
void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
if (saved_jvms != NULL && !stopped()) {
assert(alloc != NULL, "only with a tightly coupled allocation");
// restore JVM state to the state at the arraycopy
saved_jvms->map()->set_control(map()->control());
assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
// If we've improved the types of some nodes (null check) while
// emitting the guards, propagate them to the current state
map()->replaced_nodes().apply(saved_jvms->map());
set_jvms(saved_jvms);
_reexecute_sp = saved_reexecute_sp;
// Remove the allocation from above the guards
CallProjections callprojs;
alloc->extract_projections(&callprojs, true);
InitializeNode* init = alloc->initialization();
Node* alloc_mem = alloc->in(TypeFunc::Memory);
C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
// move the allocation here (after the guards)
_gvn.hash_delete(alloc);
alloc->set_req(TypeFunc::Control, control());
alloc->set_req(TypeFunc::I_O, i_o());
Node *mem = reset_memory();
set_all_memory(mem);
alloc->set_req(TypeFunc::Memory, mem);
set_control(init->proj_out(TypeFunc::Control));
set_i_o(callprojs.fallthrough_ioproj);
// Update memory as done in GraphKit::set_output_for_allocation()
const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
if (ary_type->isa_aryptr() && length_type != NULL) {
ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
}
const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
int elemidx = C->get_alias_index(telemref);
set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
set_memory(init->proj_out(TypeFunc::Memory), elemidx);
Node* allocx = _gvn.transform(alloc);
assert(allocx == alloc, "where has the allocation gone?");
assert(dest->is_CheckCastPP(), "not an allocation result?");
_gvn.hash_delete(dest);
dest->set_req(0, control());
Node* destx = _gvn.transform(dest);
assert(destx == dest, "where has the allocation result gone?");
}
}
//------------------------------inline_arraycopy-----------------------
// public static native void java.lang.System.arraycopy(Object src, int srcPos,
// Object dest, int destPos,
// int length);
bool LibraryCallKit::inline_arraycopy() {
// Get the arguments.
Node* src = argument(0); // type: oop
Node* src_offset = argument(1); // type: int
Node* dest = argument(2); // type: oop
Node* dest_offset = argument(3); // type: int
Node* length = argument(4); // type: int
// Check for allocation before we add nodes that would confuse
// tightly_coupled_allocation()
AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
int saved_reexecute_sp = -1;
JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
// See arraycopy_restore_alloc_state() comment
// if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
// if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
// if saved_jvms == NULL and alloc != NULL, we cant emit any guards
bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
// The following tests must be performed
// (1) src and dest are arrays.
// (2) src and dest arrays must have elements of the same BasicType
// (3) src and dest must not be null.
// (4) src_offset must not be negative.
// (5) dest_offset must not be negative.
// (6) length must not be negative.
// (7) src_offset + length must not exceed length of src.
// (8) dest_offset + length must not exceed length of dest.
// (9) each element of an oop array must be assignable
// (3) src and dest must not be null.
// always do this here because we need the JVM state for uncommon traps
Node* null_ctl = top();
src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
assert(null_ctl->is_top(), "no null control here");
dest = null_check(dest, T_ARRAY);
if (!can_emit_guards) {
// if saved_jvms == NULL and alloc != NULL, we don't emit any
// guards but the arraycopy node could still take advantage of a
// tightly allocated allocation. tightly_coupled_allocation() is
// called again to make sure it takes the null check above into
// account: the null check is mandatory and if it caused an
// uncommon trap to be emitted then the allocation can't be
// considered tightly coupled in this context.
alloc = tightly_coupled_allocation(dest, NULL);
}
bool validated = false;
const Type* src_type = _gvn.type(src);
const Type* dest_type = _gvn.type(dest);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
// Do we have the type of src?
bool has_src = (top_src != NULL && top_src->klass() != NULL);
// Do we have the type of dest?
bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
// Is the type for src from speculation?
bool src_spec = false;
// Is the type for dest from speculation?
bool dest_spec = false;
if ((!has_src || !has_dest) && can_emit_guards) {
// We don't have sufficient type information, let's see if
// speculative types can help. We need to have types for both src
// and dest so that it pays off.
// Do we already have or could we have type information for src
bool could_have_src = has_src;
// Do we already have or could we have type information for dest
bool could_have_dest = has_dest;
ciKlass* src_k = NULL;
if (!has_src) {
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
}
ciKlass* dest_k = NULL;
if (!has_dest) {
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}
}
if (could_have_src && could_have_dest) {
// This is going to pay off so emit the required guards
if (!has_src) {
src = maybe_cast_profiled_obj(src, src_k, true);
src_type = _gvn.type(src);
top_src = src_type->isa_aryptr();
has_src = (top_src != NULL && top_src->klass() != NULL);
src_spec = true;
}
if (!has_dest) {
dest = maybe_cast_profiled_obj(dest, dest_k, true);
dest_type = _gvn.type(dest);
top_dest = dest_type->isa_aryptr();
has_dest = (top_dest != NULL && top_dest->klass() != NULL);
dest_spec = true;
}
}
}
if (has_src && has_dest && can_emit_guards) {
BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem == T_ARRAY) src_elem = T_OBJECT;
if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
if (src_elem == dest_elem && src_elem == T_OBJECT) {
// If both arrays are object arrays then having the exact types
// for both will remove the need for a subtype check at runtime
// before the call and may make it possible to pick a faster copy
// routine (without a subtype check on every element)
// Do we have the exact type of src?
bool could_have_src = src_spec;
// Do we have the exact type of dest?
bool could_have_dest = dest_spec;
ciKlass* src_k = top_src->klass();
ciKlass* dest_k = top_dest->klass();
if (!src_spec) {
src_k = src_type->speculative_type_not_null();
if (src_k != NULL && src_k->is_array_klass()) {
could_have_src = true;
}
}
if (!dest_spec) {
dest_k = dest_type->speculative_type_not_null();
if (dest_k != NULL && dest_k->is_array_klass()) {
could_have_dest = true;
}
}
if (could_have_src && could_have_dest) {
// If we can have both exact types, emit the missing guards
if (could_have_src && !src_spec) {
src = maybe_cast_profiled_obj(src, src_k, true);
}
if (could_have_dest && !dest_spec) {
dest = maybe_cast_profiled_obj(dest, dest_k, true);
}
}
}
}
ciMethod* trap_method = method();
int trap_bci = bci();
if (saved_jvms != NULL) {
trap_method = alloc->jvms()->method();
trap_bci = alloc->jvms()->bci();
}
if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
can_emit_guards &&
!src->is_top() && !dest->is_top()) {
// validate arguments: enables transformation the ArrayCopyNode
validated = true;
RegionNode* slow_region = new RegionNode(1);
record_for_igvn(slow_region);
// (1) src and dest are arrays.
generate_non_array_guard(load_object_klass(src), slow_region);
generate_non_array_guard(load_object_klass(dest), slow_region);
// (2) src and dest arrays must have elements of the same BasicType
// done at macro expansion or at Ideal transformation time
// (4) src_offset must not be negative.
generate_negative_guard(src_offset, slow_region);
// (5) dest_offset must not be negative.
generate_negative_guard(dest_offset, slow_region);
// (7) src_offset + length must not exceed length of src.
generate_limit_guard(src_offset, length,
load_array_length(src),
slow_region);
// (8) dest_offset + length must not exceed length of dest.
generate_limit_guard(dest_offset, length,
load_array_length(dest),
slow_region);
// (9) each element of an oop array must be assignable
Node* src_klass = load_object_klass(src);
Node* dest_klass = load_object_klass(dest);
Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
{
PreserveJVMState pjvms(this);
set_control(_gvn.transform(slow_region));
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
assert(stopped(), "Should be stopped");
}
}
arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
if (stopped()) {
return true;
}
ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
// Create LoadRange and LoadKlass nodes for use during macro expansion here
// so the compiler has a chance to eliminate them: during macro expansion,
// we have to set their control (CastPP nodes are eliminated).
load_object_klass(src), load_object_klass(dest),
load_array_length(src), load_array_length(dest));
ac->set_arraycopy(validated);
Node* n = _gvn.transform(ac);
if (n == ac) {
ac->connect_outputs(this);
} else {
assert(validated, "shouldn't transform if all arguments not validated");
set_all_memory(n);
}
return true;
}
// Helper function which determines if an arraycopy immediately follows
// an allocation, with no intervening tests or other escapes for the object.
AllocateArrayNode*
LibraryCallKit::tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region) {
if (stopped()) return NULL; // no fast path
if (C->AliasLevel() == 0) return NULL; // no MergeMems around
AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
if (alloc == NULL) return NULL;
Node* rawmem = memory(Compile::AliasIdxRaw);
// Is the allocation's memory state untouched?
if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
// Bail out if there have been raw-memory effects since the allocation.
// (Example: There might have been a call or safepoint.)
return NULL;
}
rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
return NULL;
}
// There must be no unexpected observers of this allocation.
for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
Node* obs = ptr->fast_out(i);
if (obs != this->map()) {
return NULL;
}
}
// This arraycopy must unconditionally follow the allocation of the ptr.
Node* alloc_ctl = ptr->in(0);
assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
Node* ctl = control();
while (ctl != alloc_ctl) {
// There may be guards which feed into the slow_region.
// Any other control flow means that we might not get a chance
// to finish initializing the allocated object.
if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
IfNode* iff = ctl->in(0)->as_If();
Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
ctl = iff->in(0); // This test feeds the known slow_region.
continue;
}
// One more try: Various low-level checks bottom out in
// uncommon traps. If the debug-info of the trap omits
// any reference to the allocation, as we've already
// observed, then there can be no objection to the trap.
bool found_trap = false;
for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
Node* obs = not_ctl->fast_out(j);
if (obs->in(0) == not_ctl && obs->is_Call() &&
(obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
found_trap = true; break;
}
}
if (found_trap) {
ctl = iff->in(0); // This test feeds a harmless uncommon trap.
continue;
}
}
return NULL;
}
// If we get this far, we have an allocation which immediately
// precedes the arraycopy, and we can take over zeroing the new object.
// The arraycopy will finish the initialization, and provide
// a new control state to which we will anchor the destination pointer.
return alloc;
}
//-------------inline_encodeISOArray-----------------------------------
// encode char[] to byte[] in ISO_8859_1
bool LibraryCallKit::inline_encodeISOArray() {
assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
// no receiver since it is static method
Node *src = argument(0);
Node *src_offset = argument(1);
Node *dst = argument(2);
Node *dst_offset = argument(3);
Node *length = argument(4);
const Type* src_type = src->Value(&_gvn);
const Type* dst_type = dst->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dst_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL ||
top_dest == NULL || top_dest->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_CHAR || dst_elem != T_BYTE) {
return false;
}
Node* src_start = array_element_address(src, src_offset, src_elem);
Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
// 'src_start' points to src array + scaled offset
// 'dst_start' points to dst array + scaled offset
const TypeAryPtr* mtype = TypeAryPtr::BYTES;
Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
enc = _gvn.transform(enc);
Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
set_memory(res_mem, mtype);
set_result(enc);
return true;
}
//-------------inline_multiplyToLen-----------------------------------
bool LibraryCallKit::inline_multiplyToLen() {
assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
address stubAddr = StubRoutines::multiplyToLen();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "multiplyToLen";
assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
// no receiver because it is a static method
Node* x = argument(0);
Node* xlen = argument(1);
Node* y = argument(2);
Node* ylen = argument(3);
Node* z = argument(4);
const Type* x_type = x->Value(&_gvn);
const Type* y_type = y->Value(&_gvn);
const TypeAryPtr* top_x = x_type->isa_aryptr();
const TypeAryPtr* top_y = y_type->isa_aryptr();
if (top_x == NULL || top_x->klass() == NULL ||
top_y == NULL || top_y->klass() == NULL) {
// failed array check
return false;
}
BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (x_elem != T_INT || y_elem != T_INT) {
return false;
}
// Set the original stack and the reexecute bit for the interpreter to reexecute
// the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
// on the return from z array allocation in runtime.
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
Node* x_start = array_element_address(x, intcon(0), x_elem);
Node* y_start = array_element_address(y, intcon(0), y_elem);
// 'x_start' points to x array + scaled xlen
// 'y_start' points to y array + scaled ylen
// Allocate the result array
Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
ciKlass* klass = ciTypeArrayKlass::make(T_INT);
Node* klass_node = makecon(TypeKlassPtr::make(klass));
IdealKit ideal(this);
#define __ ideal.
Node* one = __ ConI(1);
Node* zero = __ ConI(0);
IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done();
__ set(need_alloc, zero);
__ set(z_alloc, z);
__ if_then(z, BoolTest::eq, null()); {
__ increment (need_alloc, one);
} __ else_(); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node* zlen_arg = load_array_length(z);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
__ if_then(zlen_arg, BoolTest::lt, zlen); {
__ increment (need_alloc, one);
} __ end_if();
} __ end_if();
__ if_then(__ value(need_alloc), BoolTest::ne, zero); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node * narr = new_array(klass_node, zlen, 1);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
__ set(z_alloc, narr);
} __ end_if();
sync_kit(ideal);
z = __ value(z_alloc);
// Can't use TypeAryPtr::INTS which uses Bottom offset.
_gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
Node* z_start = array_element_address(z, intcon(0), T_INT);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::multiplyToLen_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
x_start, xlen, y_start, ylen, z_start, zlen);
} // original reexecute is set back here
C->set_has_split_ifs(true); // Has chance for split-if optimization
set_result(z);
return true;
}
//-------------inline_squareToLen------------------------------------
bool LibraryCallKit::inline_squareToLen() {
assert(UseSquareToLenIntrinsic, "not implementated on this platform");
address stubAddr = StubRoutines::squareToLen();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "squareToLen";
assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
Node* x = argument(0);
Node* len = argument(1);
Node* z = argument(2);
Node* zlen = argument(3);
const Type* x_type = x->Value(&_gvn);
const Type* z_type = z->Value(&_gvn);
const TypeAryPtr* top_x = x_type->isa_aryptr();
const TypeAryPtr* top_z = z_type->isa_aryptr();
if (top_x == NULL || top_x->klass() == NULL ||
top_z == NULL || top_z->klass() == NULL) {
// failed array check
return false;
}
BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (x_elem != T_INT || z_elem != T_INT) {
return false;
}
Node* x_start = array_element_address(x, intcon(0), x_elem);
Node* z_start = array_element_address(z, intcon(0), z_elem);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::squareToLen_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
x_start, len, z_start, zlen);
set_result(z);
return true;
}
//-------------inline_mulAdd------------------------------------------
bool LibraryCallKit::inline_mulAdd() {
assert(UseMulAddIntrinsic, "not implementated on this platform");
address stubAddr = StubRoutines::mulAdd();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
const char* stubName = "mulAdd";
assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
Node* out = argument(0);
Node* in = argument(1);
Node* offset = argument(2);
Node* len = argument(3);
Node* k = argument(4);
const Type* out_type = out->Value(&_gvn);
const Type* in_type = in->Value(&_gvn);
const TypeAryPtr* top_out = out_type->isa_aryptr();
const TypeAryPtr* top_in = in_type->isa_aryptr();
if (top_out == NULL || top_out->klass() == NULL ||
top_in == NULL || top_in->klass() == NULL) {
// failed array check
return false;
}
BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (out_elem != T_INT || in_elem != T_INT) {
return false;
}
Node* outlen = load_array_length(out);
Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
Node* out_start = array_element_address(out, intcon(0), out_elem);
Node* in_start = array_element_address(in, intcon(0), in_elem);
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::mulAdd_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
out_start,in_start, new_offset, len, k);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//-------------inline_montgomeryMultiply-----------------------------------
bool LibraryCallKit::inline_montgomeryMultiply() {
address stubAddr = StubRoutines::montgomeryMultiply();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
const char* stubName = "montgomery_square";
assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
Node* a = argument(0);
Node* b = argument(1);
Node* n = argument(2);
Node* len = argument(3);
Node* inv = argument(4);
Node* m = argument(6);
const Type* a_type = a->Value(&_gvn);
const TypeAryPtr* top_a = a_type->isa_aryptr();
const Type* b_type = b->Value(&_gvn);
const TypeAryPtr* top_b = b_type->isa_aryptr();
const Type* n_type = a->Value(&_gvn);
const TypeAryPtr* top_n = n_type->isa_aryptr();
const Type* m_type = a->Value(&_gvn);
const TypeAryPtr* top_m = m_type->isa_aryptr();
if (top_a == NULL || top_a->klass() == NULL ||
top_b == NULL || top_b->klass() == NULL ||
top_n == NULL || top_n->klass() == NULL ||
top_m == NULL || top_m->klass() == NULL) {
// failed array check
return false;
}
BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
return false;
}
// Make the call
{
Node* a_start = array_element_address(a, intcon(0), a_elem);
Node* b_start = array_element_address(b, intcon(0), b_elem);
Node* n_start = array_element_address(n, intcon(0), n_elem);
Node* m_start = array_element_address(m, intcon(0), m_elem);
Node* call = make_runtime_call(RC_LEAF,
OptoRuntime::montgomeryMultiply_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
a_start, b_start, n_start, len, inv, top(),
m_start);
set_result(m);
}
return true;
}
bool LibraryCallKit::inline_montgomerySquare() {
address stubAddr = StubRoutines::montgomerySquare();
if (stubAddr == NULL) {
return false; // Intrinsic's stub is not implemented on this platform
}
assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
const char* stubName = "montgomery_square";
assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
Node* a = argument(0);
Node* n = argument(1);
Node* len = argument(2);
Node* inv = argument(3);
Node* m = argument(5);
const Type* a_type = a->Value(&_gvn);
const TypeAryPtr* top_a = a_type->isa_aryptr();
const Type* n_type = a->Value(&_gvn);
const TypeAryPtr* top_n = n_type->isa_aryptr();
const Type* m_type = a->Value(&_gvn);
const TypeAryPtr* top_m = m_type->isa_aryptr();
if (top_a == NULL || top_a->klass() == NULL ||
top_n == NULL || top_n->klass() == NULL ||
top_m == NULL || top_m->klass() == NULL) {
// failed array check
return false;
}
BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
return false;
}
// Make the call
{
Node* a_start = array_element_address(a, intcon(0), a_elem);
Node* n_start = array_element_address(n, intcon(0), n_elem);
Node* m_start = array_element_address(m, intcon(0), m_elem);
Node* call = make_runtime_call(RC_LEAF,
OptoRuntime::montgomerySquare_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
a_start, n_start, len, inv, top(),
m_start);
set_result(m);
}
return true;
}
/**
* Calculate CRC32 for byte.
* int java.util.zip.CRC32.update(int crc, int b)
*/
bool LibraryCallKit::inline_updateCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 2, "update has 2 parameters");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* b = argument(1); // type: int
/*
* int c = ~ crc;
* b = timesXtoThe32[(b ^ c) & 0xFF];
* b = b ^ (c >>> 8);
* crc = ~b;
*/
Node* M1 = intcon(-1);
crc = _gvn.transform(new XorINode(crc, M1));
Node* result = _gvn.transform(new XorINode(crc, b));
result = _gvn.transform(new AndINode(result, intcon(0xFF)));
Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
result = _gvn.transform(new XorINode(crc, result));
result = _gvn.transform(new XorINode(result, M1));
set_result(result);
return true;
}
/**
* Calculate CRC32 for byte[] array.
* int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
*/
bool LibraryCallKit::inline_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* length = argument(3); // type: int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32();
const char *stubName = "updateBytesCRC32";
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
/**
* Calculate CRC32 for ByteBuffer.
* int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
*/
bool LibraryCallKit::inline_updateByteBufferCRC32() {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* length = argument(4); // type: int
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32();
const char *stubName = "updateBytesCRC32";
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------get_table_from_crc32c_class-----------------------
Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
assert (table != NULL, "wrong version of java.util.zip.CRC32C");
return table;
}
//------------------------------inline_updateBytesCRC32C-----------------------
//
// Calculate CRC32C for byte[] array.
// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
//
bool LibraryCallKit::inline_updateBytesCRC32C() {
assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
// no receiver since it is a static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* end = argument(3); // type: int
Node* length = _gvn.transform(new SubINode(end, offset));
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// static final int[] byteTable in class CRC32C
Node* table = get_table_from_crc32c_class(callee()->holder());
Node* table_start = array_element_address(table, intcon(0), T_INT);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32C();
const char *stubName = "updateBytesCRC32C";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length, table_start);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
//
// Calculate CRC32C for DirectByteBuffer.
// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
//
bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
// no receiver since it is a static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* end = argument(4); // type: int
Node* length = _gvn.transform(new SubINode(end, offset));
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// static final int[] byteTable in class CRC32C
Node* table = get_table_from_crc32c_class(callee()->holder());
Node* table_start = array_element_address(table, intcon(0), T_INT);
// Call the stub.
address stubAddr = StubRoutines::updateBytesCRC32C();
const char *stubName = "updateBytesCRC32C";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length, table_start);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateBytesAdler32----------------------
//
// Calculate Adler32 checksum for byte[] array.
// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
//
bool LibraryCallKit::inline_updateBytesAdler32() {
assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: oop
Node* offset = argument(2); // type: int
Node* length = argument(3); // type: int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + scaled offset
Node* src_start = array_element_address(src, offset, src_elem);
// We assume that range check is done by caller.
// TODO: generate range check (offset+length < src.length) in debug VM.
// Call the stub.
address stubAddr = StubRoutines::updateBytesAdler32();
const char *stubName = "updateBytesAdler32";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------inline_updateByteBufferAdler32---------------
//
// Calculate Adler32 checksum for DirectByteBuffer.
// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
//
bool LibraryCallKit::inline_updateByteBufferAdler32() {
assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
// no receiver since it is static method
Node* crc = argument(0); // type: int
Node* src = argument(1); // type: long
Node* offset = argument(3); // type: int
Node* length = argument(4); // type: int
src = ConvL2X(src); // adjust Java long to machine word
Node* base = _gvn.transform(new CastX2PNode(src));
offset = ConvI2X(offset);
// 'src_start' points to src array + scaled offset
Node* src_start = basic_plus_adr(top(), base, offset);
// Call the stub.
address stubAddr = StubRoutines::updateBytesAdler32();
const char *stubName = "updateBytesAdler32";
Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
crc, src_start, length);
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//----------------------------inline_reference_get----------------------------
// public T java.lang.ref.Reference.get();
bool LibraryCallKit::inline_reference_get() {
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "should have already been set");
// Get the argument:
Node* reference_obj = null_check_receiver();
if (stopped()) return true;
Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
ciInstanceKlass* klass = env()->Object_klass();
const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
Node* no_ctrl = NULL;
Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
control(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
result /* pre_val */,
T_OBJECT);
// Add memory barrier to prevent commoning reads from this field
// across safepoint since GC can change its value.
insert_mem_bar(Op_MemBarCPUOrder);
set_result(result);
return true;
}
Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
bool is_exact=true, bool is_static=false,
ciInstanceKlass * fromKls=NULL) {
if (fromKls == NULL) {
const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
assert(tinst != NULL, "obj is null");
assert(tinst->klass()->is_loaded(), "obj is not loaded");
assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
fromKls = tinst->klass()->as_instance_klass();
} else {
assert(is_static, "only for static field access");
}
ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
ciSymbol::make(fieldTypeString),
is_static);
assert (field != NULL, "undefined field");
if (field == NULL) return (Node *) NULL;
if (is_static) {
const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
fromObj = makecon(tip);
}
// Next code copied from Parse::do_get_xxx():
// Compute address and memory type.
int offset = field->offset_in_bytes();
bool is_vol = field->is_volatile();
ciType* field_klass = field->type();
assert(field_klass->is_loaded(), "should be loaded");
const TypePtr* adr_type = C->alias_type(field)->adr_type();
Node *adr = basic_plus_adr(fromObj, fromObj, offset);
BasicType bt = field->layout_type();
// Build the resultant type of the load
const Type *type;
if (bt == T_OBJECT) {
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
} else {
type = Type::get_const_basic_type(bt);
}
if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier
}
// Build the load.
MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
// If reference is volatile, prevent following memory ops from
// floating up past the volatile read. Also prevents commoning
// another volatile read.
if (is_vol) {
// Memory barrier includes bogus read of value to force load BEFORE membar
insert_mem_bar(Op_MemBarAcquire, loadedField);
}
return loadedField;
}
//------------------------------inline_aescrypt_Block-----------------------
bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
address stubAddr;
const char *stubName;
assert(UseAES, "need AES instruction support");
switch(id) {
case vmIntrinsics::_aescrypt_encryptBlock:
stubAddr = StubRoutines::aescrypt_encryptBlock();
stubName = "aescrypt_encryptBlock";
break;
case vmIntrinsics::_aescrypt_decryptBlock:
stubAddr = StubRoutines::aescrypt_decryptBlock();
stubName = "aescrypt_decryptBlock";
break;
}
if (stubAddr == NULL) return false;
Node* aescrypt_object = argument(0);
Node* src = argument(1);
Node* src_offset = argument(2);
Node* dest = argument(3);
Node* dest_offset = argument(4);
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
// for the quick and dirty code we will skip all the checks.
// we are just trying to get the call to be generated.
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, T_BYTE);
dest_start = array_element_address(dest, dest_offset, T_BYTE);
}
// now need to get the start of its expanded key array
// this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
if (k_start == NULL) return false;
if (Matcher::pass_original_key_for_aes()) {
// on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
// compatibility issues between Java key expansion and SPARC crypto instructions
Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
if (original_k_start == NULL) return false;
// Call the stub.
make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, original_k_start);
} else {
// Call the stub.
make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start);
}
return true;
}
//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
address stubAddr;
const char *stubName;
assert(UseAES, "need AES instruction support");
switch(id) {
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
stubName = "cipherBlockChaining_encryptAESCrypt";
break;
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
stubName = "cipherBlockChaining_decryptAESCrypt";
break;
}
if (stubAddr == NULL) return false;
Node* cipherBlockChaining_object = argument(0);
Node* src = argument(1);
Node* src_offset = argument(2);
Node* len = argument(3);
Node* dest = argument(4);
Node* dest_offset = argument(5);
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
assert (top_src != NULL && top_src->klass() != NULL
&& top_dest != NULL && top_dest->klass() != NULL, "args are strange");
// checks are the responsibility of the caller
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, T_BYTE);
dest_start = array_element_address(dest, dest_offset, T_BYTE);
}
// if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
// (because of the predicated logic executed earlier).
// so we cast it here safely.
// this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
if (embeddedCipherObj == NULL) return false;
// cast it to what we know it will be at runtime
const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
assert(tinst != NULL, "CBC obj is null");
assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
const TypeOopPtr* xtype = aklass->as_instance_type();
Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
aescrypt_object = _gvn.transform(aescrypt_object);
// we need to get the start of the aescrypt_object's expanded key array
Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
if (k_start == NULL) return false;
// similarly, get the start address of the r vector
Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
if (objRvec == NULL) return false;
Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
Node* cbcCrypt;
if (Matcher::pass_original_key_for_aes()) {
// on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
// compatibility issues between Java key expansion and SPARC crypto instructions
Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
if (original_k_start == NULL) return false;
// Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::cipherBlockChaining_aescrypt_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, r_start, len, original_k_start);
} else {
// Call the stub, passing src_start, dest_start, k_start, r_start and src_len
cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::cipherBlockChaining_aescrypt_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, dest_start, k_start, r_start, len);
}
// return cipher length (int)
Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
set_result(retvalue);
return true;
}
//------------------------------get_key_start_from_aescrypt_object-----------------------
Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objAESCryptKey == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the K array
Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
return k_start;
}
//------------------------------get_original_key_start_from_aescrypt_object-----------------------
Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
if (objAESCryptKey == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the lastKey array
Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
return original_k_start;
}
//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
// Return node representing slow path of predicate check.
// the pseudo code we want to emulate with this predicate is:
// for encryption:
// if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
// for decryption:
// if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
// note cipher==plain is more conservative than the original java code but that's OK
//
Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
// The receiver was checked for NULL already.
Node* objCBC = argument(0);
// Load embeddedCipher field of CipherBlockChaining object.
Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
// get AESCrypt klass for instanceOf check
// AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
// will have same classloader as CipherBlockChaining object
const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
assert(tinst != NULL, "CBCobj is null");
assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
// we want to do an instanceof comparison against the AESCrypt class
ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
if (!klass_AESCrypt->is_loaded()) {
// if AESCrypt is not even loaded, we never take the intrinsic fast path
Node* ctrl = control();
set_control(top()); // no regular fast path
return ctrl;
}
ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
// for encryption, we are done
if (!decrypting)
return instof_false; // even if it is NULL
// for decryption, we need to add a further check to avoid
// taking the intrinsic path when cipher and plain are the same
// see the original java code for why.
RegionNode* region = new RegionNode(3);
region->init_req(1, instof_false);
Node* src = argument(1);
Node* dest = argument(4);
Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
region->init_req(2, src_dest_conjoint);
record_for_igvn(region);
return _gvn.transform(region);
}
//------------------------------inline_ghash_processBlocks
bool LibraryCallKit::inline_ghash_processBlocks() {
address stubAddr;
const char *stubName;
assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
stubAddr = StubRoutines::ghash_processBlocks();
stubName = "ghash_processBlocks";
Node* data = argument(0);
Node* offset = argument(1);
Node* len = argument(2);
Node* state = argument(3);
Node* subkeyH = argument(4);
Node* state_start = array_element_address(state, intcon(0), T_LONG);
assert(state_start, "state is NULL");
Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG);
assert(subkeyH_start, "subkeyH is NULL");
Node* data_start = array_element_address(data, offset, T_BYTE);
assert(data_start, "data is NULL");
Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::ghash_processBlocks_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
state_start, subkeyH_start, data_start, len);
return true;
}
//------------------------------inline_sha_implCompress-----------------------
//
// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
//
// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
//
// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
//
bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
Node* sha_obj = argument(0);
Node* src = argument(1); // type oop
Node* ofs = argument(2); // type int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + offset
Node* src_start = array_element_address(src, ofs, src_elem);
Node* state = NULL;
address stubAddr;
const char *stubName;
switch(id) {
case vmIntrinsics::_sha_implCompress:
assert(UseSHA1Intrinsics, "need SHA1 instruction support");
state = get_state_from_sha_object(sha_obj);
stubAddr = StubRoutines::sha1_implCompress();
stubName = "sha1_implCompress";
break;
case vmIntrinsics::_sha2_implCompress:
assert(UseSHA256Intrinsics, "need SHA256 instruction support");
state = get_state_from_sha_object(sha_obj);
stubAddr = StubRoutines::sha256_implCompress();
stubName = "sha256_implCompress";
break;
case vmIntrinsics::_sha5_implCompress:
assert(UseSHA512Intrinsics, "need SHA512 instruction support");
state = get_state_from_sha5_object(sha_obj);
stubAddr = StubRoutines::sha512_implCompress();
stubName = "sha512_implCompress";
break;
default:
fatal_unexpected_iid(id);
return false;
}
if (state == NULL) return false;
// Call the stub.
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, state);
return true;
}
//------------------------------inline_digestBase_implCompressMB-----------------------
//
// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
//
bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
"need SHA1/SHA256/SHA512 instruction support");
assert((uint)predicate < 3, "sanity");
assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
Node* src = argument(1); // byte[] array
Node* ofs = argument(2); // type int
Node* limit = argument(3); // type int
const Type* src_type = src->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL) {
// failed array check
return false;
}
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem != T_BYTE) {
return false;
}
// 'src_start' points to src array + offset
Node* src_start = array_element_address(src, ofs, src_elem);
const char* klass_SHA_name = NULL;
const char* stub_name = NULL;
address stub_addr = NULL;
bool long_state = false;
switch (predicate) {
case 0:
if (UseSHA1Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA";
stub_name = "sha1_implCompressMB";
stub_addr = StubRoutines::sha1_implCompressMB();
}
break;
case 1:
if (UseSHA256Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA2";
stub_name = "sha256_implCompressMB";
stub_addr = StubRoutines::sha256_implCompressMB();
}
break;
case 2:
if (UseSHA512Intrinsics) {
klass_SHA_name = "sun/security/provider/SHA5";
stub_name = "sha512_implCompressMB";
stub_addr = StubRoutines::sha512_implCompressMB();
long_state = true;
}
break;
default:
fatal("unknown SHA intrinsic predicate: %d", predicate);
}
if (klass_SHA_name != NULL) {
// get DigestBase klass to lookup for SHA klass
const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
assert(tinst != NULL, "digestBase_obj is not instance???");
assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
}
return false;
}
//------------------------------inline_sha_implCompressMB-----------------------
bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
bool long_state, address stubAddr, const char *stubName,
Node* src_start, Node* ofs, Node* limit) {
const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
const TypeOopPtr* xtype = aklass->as_instance_type();
Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
sha_obj = _gvn.transform(sha_obj);
Node* state;
if (long_state) {
state = get_state_from_sha5_object(sha_obj);
} else {
state = get_state_from_sha_object(sha_obj);
}
if (state == NULL) return false;
// Call the stub.
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::digestBase_implCompressMB_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
src_start, state, ofs, limit);
// return ofs (int)
Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
set_result(result);
return true;
}
//------------------------------get_state_from_sha_object-----------------------
Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
if (sha_state == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the state array
Node* state = array_element_address(sha_state, intcon(0), T_INT);
return state;
}
//------------------------------get_state_from_sha5_object-----------------------
Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
if (sha_state == NULL) return (Node *) NULL;
// now have the array, need to get the start address of the state array
Node* state = array_element_address(sha_state, intcon(0), T_LONG);
return state;
}
//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
// Return node representing slow path of predicate check.
// the pseudo code we want to emulate with this predicate is:
// if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
//
Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
"need SHA1/SHA256/SHA512 instruction support");
assert((uint)predicate < 3, "sanity");
// The receiver was checked for NULL already.
Node* digestBaseObj = argument(0);
// get DigestBase klass for instanceOf check
const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
assert(tinst != NULL, "digestBaseObj is null");
assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
const char* klass_SHA_name = NULL;
switch (predicate) {
case 0:
if (UseSHA1Intrinsics) {
// we want to do an instanceof comparison against the SHA class
klass_SHA_name = "sun/security/provider/SHA";
}
break;
case 1:
if (UseSHA256Intrinsics) {
// we want to do an instanceof comparison against the SHA2 class
klass_SHA_name = "sun/security/provider/SHA2";
}
break;
case 2:
if (UseSHA512Intrinsics) {
// we want to do an instanceof comparison against the SHA5 class
klass_SHA_name = "sun/security/provider/SHA5";
}
break;
default:
fatal("unknown SHA intrinsic predicate: %d", predicate);
}
ciKlass* klass_SHA = NULL;
if (klass_SHA_name != NULL) {
klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
}
if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
// if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
Node* ctrl = control();
set_control(top()); // no intrinsic path
return ctrl;
}
ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
return instof_false; // even if it is NULL
}
bool LibraryCallKit::inline_profileBoolean() {
Node* counts = argument(1);
const TypeAryPtr* ary = NULL;
ciArray* aobj = NULL;
if (counts->is_Con()
&& (ary = counts->bottom_type()->isa_aryptr()) != NULL
&& (aobj = ary->const_oop()->as_array()) != NULL
&& (aobj->length() == 2)) {
// Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
jint false_cnt = aobj->element_value(0).as_int();
jint true_cnt = aobj->element_value(1).as_int();
if (C->log() != NULL) {
C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
false_cnt, true_cnt);
}
if (false_cnt + true_cnt == 0) {
// According to profile, never executed.
uncommon_trap_exact(Deoptimization::Reason_intrinsic,
Deoptimization::Action_reinterpret);
return true;
}
// result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
// is a number of each value occurrences.
Node* result = argument(0);
if (false_cnt == 0 || true_cnt == 0) {
// According to profile, one value has been never seen.
int expected_val = (false_cnt == 0) ? 1 : 0;
Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val)));
Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
Node* fast_path = _gvn.transform(new IfTrueNode(check));
Node* slow_path = _gvn.transform(new IfFalseNode(check));
{ // Slow path: uncommon trap for never seen value and then reexecute
// MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
// the value has been seen at least once.
PreserveJVMState pjvms(this);
PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
set_control(slow_path);
set_i_o(i_o());
uncommon_trap_exact(Deoptimization::Reason_intrinsic,
Deoptimization::Action_reinterpret);
}
// The guard for never seen value enables sharpening of the result and
// returning a constant. It allows to eliminate branches on the same value
// later on.
set_control(fast_path);
result = intcon(expected_val);
}
// Stop profiling.
// MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
// By replacing method body with profile data (represented as ProfileBooleanNode
// on IR level) we effectively disable profiling.
// It enables full speed execution once optimized code is generated.
Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
C->record_for_igvn(profile);
set_result(profile);
return true;
} else {
// Continue profiling.
// Profile data isn't available at the moment. So, execute method's bytecode version.
// Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
// is compiled and counters aren't available since corresponding MethodHandle
// isn't a compile-time constant.
return false;
}
}
bool LibraryCallKit::inline_isCompileConstant() {
Node* n = argument(0);
set_result(n->is_Con() ? intcon(1) : intcon(0));
return true;
}