7f02f07f75
Reviewed-by: rgiulietti
476 lines
20 KiB
Java
476 lines
20 KiB
Java
/*
|
|
* Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
import jdk.test.lib.RandomFactory;
|
|
import java.util.function.DoubleUnaryOperator;
|
|
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4851625 8301444
|
|
* @key randomness
|
|
* @library /test/lib
|
|
* @build jdk.test.lib.RandomFactory
|
|
* @build Tests
|
|
* @build FdlibmTranslit
|
|
* @build HyperbolicTests
|
|
* @run main HyperbolicTests
|
|
* @summary Tests for StrictMath.{sinh, cosh, tanh}
|
|
*/
|
|
|
|
/**
|
|
* The tests in ../Math/HyperbolicTests.java test properties that
|
|
* should hold for any implementation of the hyperbolic functions
|
|
* sinh, cosh, and tanh, including the FDLIBM-based ones required by
|
|
* the StrictMath class. Therefore, the test cases in
|
|
* ../Math/HyperbolicTests.java are run against both the Math and
|
|
* StrictMath versions of the hyperbolic methods. The role of this
|
|
* test is to verify that the FDLIBM algorithms are being used by
|
|
* running golden file tests on values that may vary from one
|
|
* conforming implementation of the hyperbolics to another.
|
|
*/
|
|
|
|
public class HyperbolicTests {
|
|
private HyperbolicTests(){}
|
|
|
|
public static void main(String... args) {
|
|
int failures = 0;
|
|
|
|
failures += testAgainstTranslitCommon();
|
|
|
|
failures += testAgainstTranslitSinh();
|
|
failures += testAgainstTranslitCosh();
|
|
failures += testAgainstTranslitTanh();
|
|
|
|
failures += testSinh();
|
|
failures += testCosh();
|
|
failures += testTanh();
|
|
|
|
if (failures > 0) {
|
|
System.err.println("Testing the hyperbolics incurred "
|
|
+ failures + " failures.");
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Bundle together groups of testing methods.
|
|
*/
|
|
private static enum HyperbolicTest {
|
|
SINH(HyperbolicTests::testSinhCase, FdlibmTranslit::sinh),
|
|
COSH(HyperbolicTests::testCoshCase, FdlibmTranslit::cosh),
|
|
TANH(HyperbolicTests::testTanhCase, FdlibmTranslit::tanh);
|
|
|
|
private DoubleDoubleToInt testCase;
|
|
private DoubleUnaryOperator transliteration;
|
|
|
|
HyperbolicTest(DoubleDoubleToInt testCase, DoubleUnaryOperator transliteration) {
|
|
this.testCase = testCase;
|
|
this.transliteration = transliteration;
|
|
}
|
|
|
|
public DoubleDoubleToInt testCase() {return testCase;}
|
|
public DoubleUnaryOperator transliteration() {return transliteration;}
|
|
}
|
|
|
|
// Initialize shared random number generator
|
|
private static java.util.Random random = RandomFactory.getRandom();
|
|
|
|
/**
|
|
* Test against shared points of interest.
|
|
*/
|
|
private static int testAgainstTranslitCommon() {
|
|
int failures = 0;
|
|
double[] pointsOfInterest = {
|
|
Double.MIN_NORMAL,
|
|
1.0,
|
|
Tests.createRandomDouble(random),
|
|
};
|
|
|
|
for (var testMethods : HyperbolicTest.values()) {
|
|
for (double testPoint : pointsOfInterest) {
|
|
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, testMethods);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test StrictMath.sinh against transliteration port of sinh.
|
|
*/
|
|
private static int testAgainstTranslitSinh() {
|
|
int failures = 0;
|
|
double x;
|
|
|
|
// Probe near decision points in the FDLIBM algorithm.
|
|
double[] decisionPoints = {
|
|
0.0,
|
|
|
|
22.0,
|
|
-22.0,
|
|
|
|
0x1.0p-28,
|
|
-0x1.0p-28,
|
|
|
|
// StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384
|
|
0x1.62e42fefa39efp9,
|
|
-0x1.62e42fefa39efp9,
|
|
|
|
// Largest argument with finite sinh, 710.4758600739439
|
|
0x1.633ce8fb9f87dp9,
|
|
-0x1.633ce8fb9f87dp9,
|
|
};
|
|
|
|
for (double testPoint : decisionPoints) {
|
|
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.SINH);
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test StrictMath.cosh against transliteration port of cosh.
|
|
*/
|
|
private static int testAgainstTranslitCosh() {
|
|
int failures = 0;
|
|
double x;
|
|
|
|
// Probe near decision points in the FDLIBM algorithm.
|
|
double[] decisionPoints = {
|
|
0.0,
|
|
|
|
22.0,
|
|
-22.0,
|
|
|
|
// StrictMath.log(2)/2 ~= 0.34657359027997264
|
|
0x1.62e42fefa39efp-2,
|
|
-0x1.62e42fefa39efp-2,
|
|
|
|
0x1.0p-28,
|
|
-0x1.0p-28,
|
|
|
|
// StrictMath.log(Double.MAX_VALUE) ~= 709.782712893384
|
|
0x1.62e42fefa39efp9,
|
|
-0x1.62e42fefa39efp9,
|
|
|
|
// Largest argument with finite cosh, 710.4758600739439
|
|
0x1.633ce8fb9f87dp9,
|
|
-0x1.633ce8fb9f87dp9,
|
|
};
|
|
|
|
for (double testPoint : decisionPoints) {
|
|
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH);
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test StrictMath.tanh against transliteration port of tanh
|
|
*/
|
|
private static int testAgainstTranslitTanh() {
|
|
int failures = 0;
|
|
double x;
|
|
|
|
// Probe near decision points in the FDLIBM algorithm.
|
|
double[] decisionPoints = {
|
|
0.0,
|
|
|
|
0x1.0p-55,
|
|
-0x1.0p-55,
|
|
|
|
1.0,
|
|
-1.0,
|
|
|
|
22.0,
|
|
};
|
|
|
|
for (double testPoint : decisionPoints) {
|
|
failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000, HyperbolicTest.COSH);
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private interface DoubleDoubleToInt {
|
|
int apply(double x, double y);
|
|
}
|
|
|
|
private static int testRange(double start, double increment, int count,
|
|
HyperbolicTest testMethods) {
|
|
int failures = 0;
|
|
double x = start;
|
|
for (int i = 0; i < count; i++, x += increment) {
|
|
failures +=
|
|
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
private static int testRangeMidpoint(double midpoint, double increment, int count,
|
|
HyperbolicTest testMethods) {
|
|
int failures = 0;
|
|
double x = midpoint - increment*(count / 2) ;
|
|
for (int i = 0; i < count; i++, x += increment) {
|
|
failures +=
|
|
testMethods.testCase().apply(x, testMethods.transliteration().applyAsDouble(x));
|
|
}
|
|
return failures;
|
|
}
|
|
|
|
private static int testSinhCase(double input, double expected) {
|
|
return Tests.test("StrictMath.sinh(double)", input,
|
|
StrictMath::sinh, expected);
|
|
}
|
|
|
|
private static int testCoshCase(double input, double expected) {
|
|
return Tests.test("StrictMath.cosh(double)", input,
|
|
StrictMath::cosh, expected);
|
|
}
|
|
|
|
private static int testTanhCase(double input, double expected) {
|
|
return Tests.test("StrictMath.tanh(double)", input,
|
|
StrictMath::tanh, expected);
|
|
}
|
|
|
|
private static int testSinh() {
|
|
int failures = 0;
|
|
double [][] testCases = {
|
|
{0x1.5798ee2308c3ap-27, 0x1.5798ee2308c3bp-27},
|
|
{0x1.ffffffffffff8p-26, 0x1.ffffffffffffap-26},
|
|
{0x1.ffffffffffffep-26, 0x1.0p-25},
|
|
{0x1.ffffffffffff8p-25, 0x1.ffffffffffffep-25},
|
|
{0x1.ffffffffffffap-25, 0x1.0p-24},
|
|
{0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf53p-24},
|
|
{0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf54p-24},
|
|
{0x1.fffffffffffeap-24, 0x1.0p-23},
|
|
{0x1.ffffffffffff8p-24, 0x1.0000000000007p-23},
|
|
{0x1.fffffffffffaap-23, 0x1.0p-22},
|
|
{0x1.ffffffffffff8p-23, 0x1.0000000000027p-22},
|
|
{0x1.ffffffffffeaap-22, 0x1.0p-21},
|
|
{0x1.ffffffffffff8p-22, 0x1.00000000000a7p-21},
|
|
{0x1.ffffffffffaaap-21, 0x1.0p-20},
|
|
{0x1.ffffffffffff8p-21, 0x1.00000000002a7p-20},
|
|
{0x1.0c6f7a0b5ed8cp-20, 0x1.0c6f7a0b5f09fp-20},
|
|
{0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5f0ap-20},
|
|
{0x1.fffffffffeaaap-20, 0x1.0p-19},
|
|
{0x1.ffffffffffff8p-20, 0x1.0000000000aa7p-19},
|
|
{0x1.ffffffffffff8p-19, 0x1.0000000002aa7p-18},
|
|
{0x1.ffffffffffff7p-18, 0x1.000000000aaa6p-17},
|
|
{0x1.4f8b588e368d9p-17, 0x1.4f8b588e4e928p-17},
|
|
{0x1.ffffffffffffep-17, 0x1.000000002aaa9p-16},
|
|
{0x1.0p-16, 0x1.000000002aaaap-16},
|
|
{0x1.fffffffffffffp-16, 0x1.00000000aaaabp-15},
|
|
{0x1.fffffffffeaaap-15, 0x1.00000002aap-14},
|
|
{0x1.ffffffffffffep-15, 0x1.00000002aaaa9p-14},
|
|
{0x1.0p-14, 0x1.00000002aaaaap-14},
|
|
{0x1.a36e2eb1c3dd4p-14, 0x1.a36e2ebd7e43ap-14},
|
|
{0x1.a36e2eb1c3f8cp-14, 0x1.a36e2ebd7e5f1p-14},
|
|
{0x1.a36e2eb1c432cp-14, 0x1.a36e2ebd7e991p-14},
|
|
{0x1.fffffffffffffp-14, 0x1.0000000aaaaabp-13},
|
|
{0x1.ffffffffffffep-13, 0x1.0000002aaaaa9p-12},
|
|
{0x1.0p-12, 0x1.0000002aaaaaap-12},
|
|
{0x1.ffffffffff7f9p-12, 0x1.000000aaaa6a9p-11},
|
|
{0x1.fffffffffffffp-12, 0x1.000000aaaaaadp-11},
|
|
{0x1.ffffffffffffep-11, 0x1.000002aaaaacbp-10},
|
|
{0x1.0p-10, 0x1.000002aaaaaccp-10},
|
|
{0x1.0624dd2f1a79p-10, 0x1.0624e00c1c776p-10},
|
|
{0x1.0624dd2f1a8c9p-10, 0x1.0624e00c1c8bp-10},
|
|
{0x1.0624dd2f1a9fcp-10, 0x1.0624e00c1c9e3p-10},
|
|
{0x1.ffffffffffffep-10, 0x1.00000aaaaaccbp-9},
|
|
{0x1.0p-9, 0x1.00000aaaaacccp-9},
|
|
{0x1.ffffffffffe4ap-9, 0x1.00002aaaacbf2p-8},
|
|
{0x1.fffffffffffffp-9, 0x1.00002aaaacccdp-8},
|
|
{0x1.fffffffffff9dp-8, 0x1.0000aaaaccc9bp-7},
|
|
{0x1.ffffffffffffep-8, 0x1.0000aaaacccccp-7},
|
|
{0x1.0p-7, 0x1.0000aaaaccccdp-7},
|
|
{0x1.47ae147ae146fp-7, 0x1.47af7a654e9e2p-7},
|
|
{0x1.47ae147ae147ap-7, 0x1.47af7a654e9eep-7},
|
|
{0x1.47ae147ae147bp-7, 0x1.47af7a654e9efp-7},
|
|
{0x1.fffffffffffb6p-7, 0x1.0002aaaccccb4p-6},
|
|
{0x1.fffffffffffcap-7, 0x1.0002aaaccccbep-6},
|
|
{0x1.ffffffffffff7p-7, 0x1.0002aaaccccd5p-6},
|
|
{0x1.fffffffffffe9p-6, 0x1.000aaacccd001p-5},
|
|
{0x1.ffffffffffff7p-6, 0x1.000aaacccd008p-5},
|
|
{0x1.fffffffffffffp-6, 0x1.000aaacccd00dp-5},
|
|
{0x1.ffffffffffff6p-5, 0x1.002aacccd9cd7p-4},
|
|
{0x1.ffffffffffff8p-5, 0x1.002aacccd9cd9p-4},
|
|
{0x1.0p-4, 0x1.002aacccd9cddp-4},
|
|
{0x1.9999999999995p-4, 0x1.9a487337b59afp-4},
|
|
{0x1.9999999999996p-4, 0x1.9a487337b59afp-4},
|
|
{0x1.9999999999998p-4, 0x1.9a487337b59b1p-4},
|
|
{0x1.ffffffffffffap-4, 0x1.00aaccd00d2edp-3},
|
|
{0x1.ffffffffffffcp-4, 0x1.00aaccd00d2efp-3},
|
|
{0x1.ffffffffffff3p-3, 0x1.02accd9d080fbp-2},
|
|
{0x1.ffffffffffffdp-3, 0x1.02accd9d08101p-2},
|
|
{0x1.fffffffffffffp-3, 0x1.02accd9d08101p-2},
|
|
{0x1.fffffffffffecp-2, 0x1.0acd00fe63b8cp-1},
|
|
{0x1.ffffffffffffcp-2, 0x1.0acd00fe63b94p-1},
|
|
{0x1.0p-1, 0x1.0acd00fe63b97p-1},
|
|
{0x1.ffffffffffff6p-1, 0x1.2cd9fc44eb97ap0},
|
|
{0x1.ffffffffffffep-1, 0x1.2cd9fc44eb981p0},
|
|
{0x1.fffffffffffffp0, 0x1.d03cf63b6e19ep1},
|
|
{0x1.0p1, 0x1.d03cf63b6e1ap1},
|
|
{0x1.fffffffffffffp1, 0x1.b4a380370362dp4},
|
|
{0x1.0p2, 0x1.b4a380370363p4},
|
|
{0x1.ffffffffffffcp2, 0x1.749ea514eca4ep10},
|
|
{0x1.0p3, 0x1.749ea514eca66p10},
|
|
{0x1.fffffffffffffp3, 0x1.0f2ebd0a7ffdcp22},
|
|
{0x1.0p4, 0x1.0f2ebd0a7ffe4p22},
|
|
{0x1.fffffffffff68p4, 0x1.1f43fcc4b5b83p45},
|
|
{0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45},
|
|
{0x1.0p5, 0x1.1f43fcc4b662cp45},
|
|
// Empirical worst-case points in other libraries with
|
|
// larger worst-case errors than FDLIBM
|
|
{-0x1.633c654fee2bap+9, -0x1.fdf25fc26e7cp1023},
|
|
{-0x1.633cae1335f26p+9, -0x1.ff149489e50a1p1023},
|
|
{ 0x1.9fcba01feb507p-2, 0x1.ab50d8e4d8c56p-2},
|
|
};
|
|
|
|
for (double[] testCase: testCases)
|
|
failures += testSinhCase(testCase[0], testCase[1]);
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int testCosh() {
|
|
int failures = 0;
|
|
double [][] testCases = {
|
|
{0x1.fffffffffb49fp-8, 0x1.00020000aaaabp0},
|
|
{0x1.47ae147ae0e45p-7, 0x1.000346de27853p0},
|
|
{0x1.fffffffffd9f3p-7, 0x1.0008000aaab05p0},
|
|
{0x1.ffffffffff9f1p-7, 0x1.0008000aaab05p0},
|
|
{0x1.fffffffffe27dp-6, 0x1.002000aaac169p0},
|
|
{0x1.ffffffffff27bp-6, 0x1.002000aaac16bp0},
|
|
{0x1.ffffffffffb9cp-5, 0x1.00800aab05b1ep0},
|
|
{0x1.ffffffffffd9dp-5, 0x1.00800aab05b1fp0},
|
|
{0x1.9999999999368p-4, 0x1.0147f40224b2ep0},
|
|
{0x1.9999999999727p-4, 0x1.0147f40224b35p0},
|
|
{0x1.ffffffffffed1p-4, 0x1.0200aac16db6cp0},
|
|
{0x1.fffffffffffd1p-4, 0x1.0200aac16db6ep0},
|
|
{0x1.ffffffffffeb4p-3, 0x1.080ab05ca613bp0},
|
|
{0x1.ffffffffffff2p-3, 0x1.080ab05ca6146p0},
|
|
{0x1.ffffffffffff3p-2, 0x1.20ac1862ae8cep0},
|
|
{0x1.ffffffffffff9p-2, 0x1.20ac1862ae8dp0},
|
|
{0x1.0p0, 0x1.8b07551d9f551p0},
|
|
{0x1.ffffffffffffbp0, 0x1.e18fa0df2d9b3p1},
|
|
{0x1.ffffffffffffep0, 0x1.e18fa0df2d9b8p1},
|
|
{0x1.fffffffffffffp0, 0x1.e18fa0df2d9bap1},
|
|
{0x1.ffffffffffff9p1, 0x1.b4ee858de3e68p4},
|
|
{0x1.ffffffffffffep1, 0x1.b4ee858de3e7ap4},
|
|
{0x1.fffffffffffffp1, 0x1.b4ee858de3e7dp4},
|
|
{0x1.ffffffffffffcp2, 0x1.749eaa93f4e5ep10},
|
|
{0x1.ffffffffffffdp2, 0x1.749eaa93f4e64p10},
|
|
{0x1.0p3, 0x1.749eaa93f4e76p10},
|
|
{0x1.fffffffffff6fp3, 0x1.0f2ebd0a7fb9p22},
|
|
{0x1.0p4, 0x1.0f2ebd0a8005cp22},
|
|
{0x1.fffffffffffd4p4, 0x1.1f43fcc4b6316p45},
|
|
{0x1.0p5, 0x1.1f43fcc4b662cp45},
|
|
// Empirical worst-case points in other libraries with
|
|
// larger worst-case errors than FDLIBM
|
|
{-0x1.633c654fee2bap+9, 0x1.fdf25fc26e7cp1023},
|
|
{ 0x1.ff76fb3f476d5p+0, 0x1.e0976c8f0ebdfp1},
|
|
{ 0x1.633cc2ae1c934p+9, 0x1.ff66e0de4dc6fp1023},
|
|
{-0x1.1ff088806d82ep+3, 0x1.f97ccb0aef314p11},
|
|
{-0x1.628af341989dap+9, 0x1.fdf28623ef923p1021},
|
|
};
|
|
|
|
for (double[] testCase: testCases)
|
|
failures += testCoshCase(testCase[0], testCase[1]);
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int testTanh() {
|
|
int failures = 0;
|
|
double [][] testCases = {
|
|
{0x1.5798ee2308c36p-27, 0x1.5798ee2308c36p-27},
|
|
{0x1.ffffffffffffep-26, 0x1.ffffffffffffbp-26},
|
|
{0x1.ffffffffffffep-25, 0x1.ffffffffffff3p-25},
|
|
{0x1.ad7f29abcaf47p-24, 0x1.ad7f29abcaf2dp-24},
|
|
{0x1.ad7f29abcaf48p-24, 0x1.ad7f29abcaf2ep-24},
|
|
{0x1.ffffffffffffep-24, 0x1.fffffffffffd3p-24},
|
|
{0x1.ffffffffffffep-23, 0x1.fffffffffff53p-23},
|
|
{0x1.ffffffffffffep-22, 0x1.ffffffffffd53p-22},
|
|
{0x1.ffffffffffffep-21, 0x1.ffffffffff553p-21},
|
|
{0x1.0c6f7a0b5ed8dp-20, 0x1.0c6f7a0b5e767p-20},
|
|
{0x1.ffffffffffffep-20, 0x1.fffffffffd553p-20},
|
|
{0x1.ffffffffffffep-19, 0x1.fffffffff5553p-19},
|
|
{0x1.fffffffffffffp-18, 0x1.ffffffffd5555p-18},
|
|
{0x1.0p-17, 0x1.ffffffffd5556p-18},
|
|
{0x1.4f8b588e368edp-17, 0x1.4f8b588e0685p-17},
|
|
{0x1.fffffffffffffp-17, 0x1.ffffffff55554p-17},
|
|
{0x1.fffffffffffffp-16, 0x1.fffffffd55555p-16},
|
|
{0x1.0p-15, 0x1.fffffffd55556p-16},
|
|
{0x1.fffffffffe5ddp-15, 0x1.fffffff553b33p-15},
|
|
{0x1.fffffffffffffp-15, 0x1.fffffff555554p-15},
|
|
{0x1.a36e2eb1c432dp-14, 0x1.a36e2e9a4f663p-14},
|
|
{0x1.ffffffffffffep-14, 0x1.ffffffd555553p-14},
|
|
{0x1.0p-13, 0x1.ffffffd555555p-14},
|
|
{0x1.ffffffffffd51p-13, 0x1.ffffff55552aap-13},
|
|
{0x1.fffffffffffffp-13, 0x1.ffffff5555559p-13},
|
|
{0x1.ffffffffffffep-12, 0x1.fffffd5555597p-12},
|
|
{0x1.0p-11, 0x1.fffffd5555599p-12},
|
|
{0x1.fffffffffff1p-11, 0x1.fffff555558a9p-11},
|
|
{0x1.0p-10, 0x1.fffff5555599ap-11},
|
|
{0x1.0624dd2f1a9c6p-10, 0x1.0624d77516cabp-10},
|
|
{0x1.0624dd2f1a9f8p-10, 0x1.0624d77516cdep-10},
|
|
{0x1.fffffffffffddp-10, 0x1.ffffd55559976p-10},
|
|
{0x1.fffffffffffffp-10, 0x1.ffffd55559999p-10},
|
|
{0x1.ffffffffffffcp-9, 0x1.ffff555599993p-9},
|
|
{0x1.ffffffffffffep-9, 0x1.ffff555599996p-9},
|
|
{0x1.ffffffffffff8p-8, 0x1.fffd555999924p-8},
|
|
{0x1.ffffffffffffep-8, 0x1.fffd555999929p-8},
|
|
{0x1.47ae147ae1458p-7, 0x1.47ab48ae4593cp-7},
|
|
{0x1.47ae147ae1464p-7, 0x1.47ab48ae45947p-7},
|
|
{0x1.ffffffffffffep-7, 0x1.fff5559997df6p-7},
|
|
{0x1.fffffffffffffp-7, 0x1.fff5559997df8p-7},
|
|
{0x1.ffffffffffff9p-6, 0x1.ffd559992b1d8p-6},
|
|
{0x1.ffffffffffffep-6, 0x1.ffd559992b1dcp-6},
|
|
{0x1.ffffffffffff9p-5, 0x1.ff55997e030d1p-5},
|
|
{0x1.fffffffffffffp-5, 0x1.ff55997e030d6p-5},
|
|
{0x1.9999999999996p-4, 0x1.983d7795f4137p-4},
|
|
{0x1.9999999999997p-4, 0x1.983d7795f4137p-4},
|
|
{0x1.fffffffffffffp-4, 0x1.fd5992bc4b834p-4},
|
|
{0x1.0p-3, 0x1.fd5992bc4b834p-4},
|
|
{0x1.fffffffffffffp-3, 0x1.f597ea69a1c86p-3},
|
|
{0x1.ffffffffffffcp-2, 0x1.d9353d7568aefp-2},
|
|
{0x1.ffffffffffffep-2, 0x1.d9353d7568af3p-2},
|
|
{0x1.ffffffffffffbp-1, 0x1.85efab514f393p-1},
|
|
{0x1.ffffffffffffep-1, 0x1.85efab514f393p-1},
|
|
{0x1.fffffffffffd3p0, 0x1.ed9505e1bc3cep-1},
|
|
{0x1.fffffffffffe1p0, 0x1.ed9505e1bc3cfp-1},
|
|
{0x1.ffffffffffed8p1, 0x1.ffa81708a0b4p-1},
|
|
{0x1.fffffffffff92p1, 0x1.ffa81708a0b41p-1},
|
|
// Empirical worst-case points in other libraries with
|
|
// larger worst-case errors than FDLIBM
|
|
{-0x1.c41e527b70f43p-3, -0x1.bcea047cc736cp-3},
|
|
};
|
|
|
|
for (double[] testCase: testCases)
|
|
failures += testTanhCase(testCase[0], testCase[1]);
|
|
|
|
return failures;
|
|
}
|
|
}
|