jdk-24/hotspot/src/cpu/x86/vm/assembler_x86.cpp
Igor Veresov 72f3f7db44 7119294: Two command line options cause JVM to crash
Setup thread register in MacroAssembler::incr_allocated_bytes() on x64

Reviewed-by: kvn
2012-01-05 17:25:58 -08:00

10175 lines
298 KiB
C++

/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "assembler_x86.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#ifndef SERIALGC
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#endif
// Implementation of AddressLiteral
AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
_is_lval = false;
_target = target;
switch (rtype) {
case relocInfo::oop_type:
// Oops are a special case. Normally they would be their own section
// but in cases like icBuffer they are literals in the code stream that
// we don't have a section for. We use none so that we get a literal address
// which is always patchable.
break;
case relocInfo::external_word_type:
_rspec = external_word_Relocation::spec(target);
break;
case relocInfo::internal_word_type:
_rspec = internal_word_Relocation::spec(target);
break;
case relocInfo::opt_virtual_call_type:
_rspec = opt_virtual_call_Relocation::spec();
break;
case relocInfo::static_call_type:
_rspec = static_call_Relocation::spec();
break;
case relocInfo::runtime_call_type:
_rspec = runtime_call_Relocation::spec();
break;
case relocInfo::poll_type:
case relocInfo::poll_return_type:
_rspec = Relocation::spec_simple(rtype);
break;
case relocInfo::none:
break;
default:
ShouldNotReachHere();
break;
}
}
// Implementation of Address
#ifdef _LP64
Address Address::make_array(ArrayAddress adr) {
// Not implementable on 64bit machines
// Should have been handled higher up the call chain.
ShouldNotReachHere();
return Address();
}
// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
_base = noreg;
_index = noreg;
_scale = no_scale;
_disp = disp;
switch (rtype) {
case relocInfo::external_word_type:
_rspec = external_word_Relocation::spec(loc);
break;
case relocInfo::internal_word_type:
_rspec = internal_word_Relocation::spec(loc);
break;
case relocInfo::runtime_call_type:
// HMM
_rspec = runtime_call_Relocation::spec();
break;
case relocInfo::poll_type:
case relocInfo::poll_return_type:
_rspec = Relocation::spec_simple(rtype);
break;
case relocInfo::none:
break;
default:
ShouldNotReachHere();
}
}
#else // LP64
Address Address::make_array(ArrayAddress adr) {
AddressLiteral base = adr.base();
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(index._base, index._index, index._scale, (intptr_t) base.target());
array._rspec = base._rspec;
return array;
}
// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
_base = noreg;
_index = noreg;
_scale = no_scale;
_disp = (intptr_t) loc;
_rspec = spec;
}
#endif // _LP64
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
RelocationHolder rspec;
if (disp_is_oop) {
rspec = Relocation::spec_simple(relocInfo::oop_type);
}
bool valid_index = index != rsp->encoding();
if (valid_index) {
Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
madr._rspec = rspec;
return madr;
} else {
Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
madr._rspec = rspec;
return madr;
}
}
// Implementation of Assembler
int AbstractAssembler::code_fill_byte() {
return (u_char)'\xF4'; // hlt
}
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
if (rtype == relocInfo::none)
emit_long(data);
else emit_data(data, Relocation::spec_simple(rtype), format);
}
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
assert(imm_operand == 0, "default format must be immediate in this file");
assert(inst_mark() != NULL, "must be inside InstructionMark");
if (rspec.type() != relocInfo::none) {
#ifdef ASSERT
check_relocation(rspec, format);
#endif
// Do not use AbstractAssembler::relocate, which is not intended for
// embedded words. Instead, relocate to the enclosing instruction.
// hack. call32 is too wide for mask so use disp32
if (format == call32_operand)
code_section()->relocate(inst_mark(), rspec, disp32_operand);
else
code_section()->relocate(inst_mark(), rspec, format);
}
emit_long(data);
}
static int encode(Register r) {
int enc = r->encoding();
if (enc >= 8) {
enc -= 8;
}
return enc;
}
static int encode(XMMRegister r) {
int enc = r->encoding();
if (enc >= 8) {
enc -= 8;
}
return enc;
}
void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
assert(dst->has_byte_register(), "must have byte register");
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert(isByte(imm8), "not a byte");
assert((op1 & 0x01) == 0, "should be 8bit operation");
emit_byte(op1);
emit_byte(op2 | encode(dst));
emit_byte(imm8);
}
void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_byte(op1 | 0x02); // set sign bit
emit_byte(op2 | encode(dst));
emit_byte(imm32 & 0xFF);
} else {
emit_byte(op1);
emit_byte(op2 | encode(dst));
emit_long(imm32);
}
}
// immediate-to-memory forms
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_byte(op1 | 0x02); // set sign bit
emit_operand(rm, adr, 1);
emit_byte(imm32 & 0xFF);
} else {
emit_byte(op1);
emit_operand(rm, adr, 4);
emit_long(imm32);
}
}
void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
LP64_ONLY(ShouldNotReachHere());
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
InstructionMark im(this);
emit_byte(op1);
emit_byte(op2 | encode(dst));
emit_data((intptr_t)obj, relocInfo::oop_type, 0);
}
void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
emit_byte(op1);
emit_byte(op2 | encode(dst) << 3 | encode(src));
}
void Assembler::emit_operand(Register reg, Register base, Register index,
Address::ScaleFactor scale, int disp,
RelocationHolder const& rspec,
int rip_relative_correction) {
relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
// Encode the registers as needed in the fields they are used in
int regenc = encode(reg) << 3;
int indexenc = index->is_valid() ? encode(index) << 3 : 0;
int baseenc = base->is_valid() ? encode(base) : 0;
if (base->is_valid()) {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [base + index*scale + disp]
if (disp == 0 && rtype == relocInfo::none &&
base != rbp LP64_ONLY(&& base != r13)) {
// [base + index*scale]
// [00 reg 100][ss index base]
assert(index != rsp, "illegal addressing mode");
emit_byte(0x04 | regenc);
emit_byte(scale << 6 | indexenc | baseenc);
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [base + index*scale + imm8]
// [01 reg 100][ss index base] imm8
assert(index != rsp, "illegal addressing mode");
emit_byte(0x44 | regenc);
emit_byte(scale << 6 | indexenc | baseenc);
emit_byte(disp & 0xFF);
} else {
// [base + index*scale + disp32]
// [10 reg 100][ss index base] disp32
assert(index != rsp, "illegal addressing mode");
emit_byte(0x84 | regenc);
emit_byte(scale << 6 | indexenc | baseenc);
emit_data(disp, rspec, disp32_operand);
}
} else if (base == rsp LP64_ONLY(|| base == r12)) {
// [rsp + disp]
if (disp == 0 && rtype == relocInfo::none) {
// [rsp]
// [00 reg 100][00 100 100]
emit_byte(0x04 | regenc);
emit_byte(0x24);
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [rsp + imm8]
// [01 reg 100][00 100 100] disp8
emit_byte(0x44 | regenc);
emit_byte(0x24);
emit_byte(disp & 0xFF);
} else {
// [rsp + imm32]
// [10 reg 100][00 100 100] disp32
emit_byte(0x84 | regenc);
emit_byte(0x24);
emit_data(disp, rspec, disp32_operand);
}
} else {
// [base + disp]
assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
if (disp == 0 && rtype == relocInfo::none &&
base != rbp LP64_ONLY(&& base != r13)) {
// [base]
// [00 reg base]
emit_byte(0x00 | regenc | baseenc);
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [base + disp8]
// [01 reg base] disp8
emit_byte(0x40 | regenc | baseenc);
emit_byte(disp & 0xFF);
} else {
// [base + disp32]
// [10 reg base] disp32
emit_byte(0x80 | regenc | baseenc);
emit_data(disp, rspec, disp32_operand);
}
}
} else {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [index*scale + disp]
// [00 reg 100][ss index 101] disp32
assert(index != rsp, "illegal addressing mode");
emit_byte(0x04 | regenc);
emit_byte(scale << 6 | indexenc | 0x05);
emit_data(disp, rspec, disp32_operand);
} else if (rtype != relocInfo::none ) {
// [disp] (64bit) RIP-RELATIVE (32bit) abs
// [00 000 101] disp32
emit_byte(0x05 | regenc);
// Note that the RIP-rel. correction applies to the generated
// disp field, but _not_ to the target address in the rspec.
// disp was created by converting the target address minus the pc
// at the start of the instruction. That needs more correction here.
// intptr_t disp = target - next_ip;
assert(inst_mark() != NULL, "must be inside InstructionMark");
address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
int64_t adjusted = disp;
// Do rip-rel adjustment for 64bit
LP64_ONLY(adjusted -= (next_ip - inst_mark()));
assert(is_simm32(adjusted),
"must be 32bit offset (RIP relative address)");
emit_data((int32_t) adjusted, rspec, disp32_operand);
} else {
// 32bit never did this, did everything as the rip-rel/disp code above
// [disp] ABSOLUTE
// [00 reg 100][00 100 101] disp32
emit_byte(0x04 | regenc);
emit_byte(0x25);
emit_data(disp, rspec, disp32_operand);
}
}
}
void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
Address::ScaleFactor scale, int disp,
RelocationHolder const& rspec) {
emit_operand((Register)reg, base, index, scale, disp, rspec);
}
// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)
address Assembler::locate_operand(address inst, WhichOperand which) {
// Decode the given instruction, and return the address of
// an embedded 32-bit operand word.
// If "which" is disp32_operand, selects the displacement portion
// of an effective address specifier.
// If "which" is imm64_operand, selects the trailing immediate constant.
// If "which" is call32_operand, selects the displacement of a call or jump.
// Caller is responsible for ensuring that there is such an operand,
// and that it is 32/64 bits wide.
// If "which" is end_pc_operand, find the end of the instruction.
address ip = inst;
bool is_64bit = false;
debug_only(bool has_disp32 = false);
int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
again_after_prefix:
switch (0xFF & *ip++) {
// These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
case REP8((x)+8)
case CS_segment:
case SS_segment:
case DS_segment:
case ES_segment:
case FS_segment:
case GS_segment:
// Seems dubious
LP64_ONLY(assert(false, "shouldn't have that prefix"));
assert(ip == inst+1, "only one prefix allowed");
goto again_after_prefix;
case 0x67:
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
NOT_LP64(assert(false, "64bit prefixes"));
goto again_after_prefix;
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "64bit prefixes"));
is_64bit = true;
goto again_after_prefix;
case 0xFF: // pushq a; decl a; incl a; call a; jmp a
case 0x88: // movb a, r
case 0x89: // movl a, r
case 0x8A: // movb r, a
case 0x8B: // movl r, a
case 0x8F: // popl a
debug_only(has_disp32 = true);
break;
case 0x68: // pushq #32
if (which == end_pc_operand) {
return ip + 4;
}
assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
return ip; // not produced by emit_operand
case 0x66: // movw ... (size prefix)
again_after_size_prefix2:
switch (0xFF & *ip++) {
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "64bit prefix found"));
goto again_after_size_prefix2;
case 0x8B: // movw r, a
case 0x89: // movw a, r
debug_only(has_disp32 = true);
break;
case 0xC7: // movw a, #16
debug_only(has_disp32 = true);
tail_size = 2; // the imm16
break;
case 0x0F: // several SSE/SSE2 variants
ip--; // reparse the 0x0F
goto again_after_prefix;
default:
ShouldNotReachHere();
}
break;
case REP8(0xB8): // movl/q r, #32/#64(oop?)
if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
// these asserts are somewhat nonsensical
#ifndef _LP64
assert(which == imm_operand || which == disp32_operand, "");
#else
assert((which == call32_operand || which == imm_operand) && is_64bit ||
which == narrow_oop_operand && !is_64bit, "");
#endif // _LP64
return ip;
case 0x69: // imul r, a, #32
case 0xC7: // movl a, #32(oop?)
tail_size = 4;
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x0F: // movx..., etc.
switch (0xFF & *ip++) {
case 0x3A: // pcmpestri
tail_size = 1;
case 0x38: // ptest, pmovzxbw
ip++; // skip opcode
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x70: // pshufd r, r/a, #8
debug_only(has_disp32 = true); // has both kinds of operands!
case 0x73: // psrldq r, #8
tail_size = 1;
break;
case 0x12: // movlps
case 0x28: // movaps
case 0x2E: // ucomiss
case 0x2F: // comiss
case 0x54: // andps
case 0x55: // andnps
case 0x56: // orps
case 0x57: // xorps
case 0x6E: // movd
case 0x7E: // movd
case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
debug_only(has_disp32 = true);
break;
case 0xAD: // shrd r, a, %cl
case 0xAF: // imul r, a
case 0xBE: // movsbl r, a (movsxb)
case 0xBF: // movswl r, a (movsxw)
case 0xB6: // movzbl r, a (movzxb)
case 0xB7: // movzwl r, a (movzxw)
case REP16(0x40): // cmovl cc, r, a
case 0xB0: // cmpxchgb
case 0xB1: // cmpxchg
case 0xC1: // xaddl
case 0xC7: // cmpxchg8
case REP16(0x90): // setcc a
debug_only(has_disp32 = true);
// fall out of the switch to decode the address
break;
case 0xC4: // pinsrw r, a, #8
debug_only(has_disp32 = true);
case 0xC5: // pextrw r, r, #8
tail_size = 1; // the imm8
break;
case 0xAC: // shrd r, a, #8
debug_only(has_disp32 = true);
tail_size = 1; // the imm8
break;
case REP16(0x80): // jcc rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "jcc has no disp32 or imm");
return ip;
default:
ShouldNotReachHere();
}
break;
case 0x81: // addl a, #32; addl r, #32
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
// on 32bit in the case of cmpl, the imm might be an oop
tail_size = 4;
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0x83: // addl a, #8; addl r, #8
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
debug_only(has_disp32 = true); // has both kinds of operands!
tail_size = 1;
break;
case 0x9B:
switch (0xFF & *ip++) {
case 0xD9: // fnstcw a
debug_only(has_disp32 = true);
break;
default:
ShouldNotReachHere();
}
break;
case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
case REP4(0x10): // adc...
case REP4(0x20): // and...
case REP4(0x30): // xor...
case REP4(0x08): // or...
case REP4(0x18): // sbb...
case REP4(0x28): // sub...
case 0xF7: // mull a
case 0x8D: // lea r, a
case 0x87: // xchg r, a
case REP4(0x38): // cmp...
case 0x85: // test r, a
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
case 0xC6: // movb a, #8
case 0x80: // cmpb a, #8
case 0x6B: // imul r, a, #8
debug_only(has_disp32 = true); // has both kinds of operands!
tail_size = 1; // the imm8
break;
case 0xC4: // VEX_3bytes
case 0xC5: // VEX_2bytes
assert((UseAVX > 0), "shouldn't have VEX prefix");
assert(ip == inst+1, "no prefixes allowed");
// C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
// but they have prefix 0x0F and processed when 0x0F processed above.
//
// In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
// instructions (these instructions are not supported in 64-bit mode).
// To distinguish them bits [7:6] are set in the VEX second byte since
// ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
// those VEX bits REX and vvvv bits are inverted.
//
// Fortunately C2 doesn't generate these instructions so we don't need
// to check for them in product version.
// Check second byte
NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
// First byte
if ((0xFF & *inst) == VEX_3bytes) {
ip++; // third byte
is_64bit = ((VEX_W & *ip) == VEX_W);
}
ip++; // opcode
// To find the end of instruction (which == end_pc_operand).
switch (0xFF & *ip) {
case 0x61: // pcmpestri r, r/a, #8
case 0x70: // pshufd r, r/a, #8
case 0x73: // psrldq r, #8
tail_size = 1; // the imm8
break;
default:
break;
}
ip++; // skip opcode
debug_only(has_disp32 = true); // has both kinds of operands!
break;
case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
case 0xDD: // fld_d a; fst_d a; fstp_d a
case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
case 0xDF: // fild_d a; fistp_d a
case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
debug_only(has_disp32 = true);
break;
case 0xE8: // call rdisp32
case 0xE9: // jmp rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "call has no disp32 or imm");
return ip;
case 0xF0: // Lock
assert(os::is_MP(), "only on MP");
goto again_after_prefix;
case 0xF3: // For SSE
case 0xF2: // For SSE2
switch (0xFF & *ip++) {
case REX:
case REX_B:
case REX_X:
case REX_XB:
case REX_R:
case REX_RB:
case REX_RX:
case REX_RXB:
case REX_W:
case REX_WB:
case REX_WX:
case REX_WXB:
case REX_WR:
case REX_WRB:
case REX_WRX:
case REX_WRXB:
NOT_LP64(assert(false, "found 64bit prefix"));
ip++;
default:
ip++;
}
debug_only(has_disp32 = true); // has both kinds of operands!
break;
default:
ShouldNotReachHere();
#undef REP8
#undef REP16
}
assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
#ifdef _LP64
assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
// assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
// parse the output of emit_operand
int op2 = 0xFF & *ip++;
int base = op2 & 0x07;
int op3 = -1;
const int b100 = 4;
const int b101 = 5;
if (base == b100 && (op2 >> 6) != 3) {
op3 = 0xFF & *ip++;
base = op3 & 0x07; // refetch the base
}
// now ip points at the disp (if any)
switch (op2 >> 6) {
case 0:
// [00 reg 100][ss index base]
// [00 reg 100][00 100 esp]
// [00 reg base]
// [00 reg 100][ss index 101][disp32]
// [00 reg 101] [disp32]
if (base == b101) {
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
}
break;
case 1:
// [01 reg 100][ss index base][disp8]
// [01 reg 100][00 100 esp][disp8]
// [01 reg base] [disp8]
ip += 1; // skip the disp8
break;
case 2:
// [10 reg 100][ss index base][disp32]
// [10 reg 100][00 100 esp][disp32]
// [10 reg base] [disp32]
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
break;
case 3:
// [11 reg base] (not a memory addressing mode)
break;
}
if (which == end_pc_operand) {
return ip + tail_size;
}
#ifdef _LP64
assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
#else
assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
return ip;
}
address Assembler::locate_next_instruction(address inst) {
// Secretly share code with locate_operand:
return locate_operand(inst, end_pc_operand);
}
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
address inst = inst_mark();
assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
address opnd;
Relocation* r = rspec.reloc();
if (r->type() == relocInfo::none) {
return;
} else if (r->is_call() || format == call32_operand) {
// assert(format == imm32_operand, "cannot specify a nonzero format");
opnd = locate_operand(inst, call32_operand);
} else if (r->is_data()) {
assert(format == imm_operand || format == disp32_operand
LP64_ONLY(|| format == narrow_oop_operand), "format ok");
opnd = locate_operand(inst, (WhichOperand)format);
} else {
assert(format == imm_operand, "cannot specify a format");
return;
}
assert(opnd == pc(), "must put operand where relocs can find it");
}
#endif // ASSERT
void Assembler::emit_operand32(Register reg, Address adr) {
assert(reg->encoding() < 8, "no extended registers");
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec);
}
void Assembler::emit_operand(Register reg, Address adr,
int rip_relative_correction) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec,
rip_relative_correction);
}
void Assembler::emit_operand(XMMRegister reg, Address adr) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
adr._rspec);
}
// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
void Assembler::emit_farith(int b1, int b2, int i) {
assert(isByte(b1) && isByte(b2), "wrong opcode");
assert(0 <= i && i < 8, "illegal stack offset");
emit_byte(b1);
emit_byte(b2 + i);
}
// Now the Assembler instructions (identical for 32/64 bits)
void Assembler::adcl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rdx, dst, imm32);
}
void Assembler::adcl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_byte(0x11);
emit_operand(src, dst);
}
void Assembler::adcl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xD0, dst, imm32);
}
void Assembler::adcl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x13);
emit_operand(dst, src);
}
void Assembler::adcl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x13, 0xC0, dst, src);
}
void Assembler::addl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rax, dst, imm32);
}
void Assembler::addl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_byte(0x01);
emit_operand(src, dst);
}
void Assembler::addl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xC0, dst, imm32);
}
void Assembler::addl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x03);
emit_operand(dst, src);
}
void Assembler::addl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x03, 0xC0, dst, src);
}
void Assembler::addr_nop_4() {
// 4 bytes: NOP DWORD PTR [EAX+0]
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
emit_byte(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_5() {
// 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_byte(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_7() {
// 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
emit_long(0); // 32-bits offset (4 bytes)
}
void Assembler::addr_nop_8() {
// 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_long(0); // 32-bits offset (4 bytes)
}
void Assembler::addsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x58);
emit_byte(0xC0 | encode);
}
void Assembler::addsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x58);
emit_operand(dst, src);
}
void Assembler::addss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x58);
emit_byte(0xC0 | encode);
}
void Assembler::addss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x58);
emit_operand(dst, src);
}
void Assembler::andl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_byte(0x81);
emit_operand(rsp, dst, 4);
emit_long(imm32);
}
void Assembler::andl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xE0, dst, imm32);
}
void Assembler::andl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x23);
emit_operand(dst, src);
}
void Assembler::andl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x23, 0xC0, dst, src);
}
void Assembler::andpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x54);
emit_operand(dst, src);
}
void Assembler::andpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0x54);
emit_byte(0xC0 | encode);
}
void Assembler::andps(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_NONE);
emit_byte(0x54);
emit_operand(dst, src);
}
void Assembler::andps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
emit_byte(0x54);
emit_byte(0xC0 | encode);
}
void Assembler::bsfl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBC);
emit_byte(0xC0 | encode);
}
void Assembler::bsrl(Register dst, Register src) {
assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBD);
emit_byte(0xC0 | encode);
}
void Assembler::bswapl(Register reg) { // bswap
int encode = prefix_and_encode(reg->encoding());
emit_byte(0x0F);
emit_byte(0xC8 | encode);
}
void Assembler::call(Label& L, relocInfo::relocType rtype) {
// suspect disp32 is always good
int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
if (L.is_bound()) {
const int long_size = 5;
int offs = (int)( target(L) - pc() );
assert(offs <= 0, "assembler error");
InstructionMark im(this);
// 1110 1000 #32-bit disp
emit_byte(0xE8);
emit_data(offs - long_size, rtype, operand);
} else {
InstructionMark im(this);
// 1110 1000 #32-bit disp
L.add_patch_at(code(), locator());
emit_byte(0xE8);
emit_data(int(0), rtype, operand);
}
}
void Assembler::call(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xFF);
emit_byte(0xD0 | encode);
}
void Assembler::call(Address adr) {
InstructionMark im(this);
prefix(adr);
emit_byte(0xFF);
emit_operand(rdx, adr);
}
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
assert(entry != NULL, "call most probably wrong");
InstructionMark im(this);
emit_byte(0xE8);
intptr_t disp = entry - (_code_pos + sizeof(int32_t));
assert(is_simm32(disp), "must be 32bit offset (call2)");
// Technically, should use call32_operand, but this format is
// implied by the fact that we're emitting a call instruction.
int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
emit_data((int) disp, rspec, operand);
}
void Assembler::cdql() {
emit_byte(0x99);
}
void Assembler::cmovl(Condition cc, Register dst, Register src) {
NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_byte(0xC0 | encode);
}
void Assembler::cmovl(Condition cc, Register dst, Address src) {
NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_operand(dst, src);
}
void Assembler::cmpb(Address dst, int imm8) {
InstructionMark im(this);
prefix(dst);
emit_byte(0x80);
emit_operand(rdi, dst, 1);
emit_byte(imm8);
}
void Assembler::cmpl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_byte(0x81);
emit_operand(rdi, dst, 4);
emit_long(imm32);
}
void Assembler::cmpl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xF8, dst, imm32);
}
void Assembler::cmpl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x3B, 0xC0, dst, src);
}
void Assembler::cmpl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x3B);
emit_operand(dst, src);
}
void Assembler::cmpw(Address dst, int imm16) {
InstructionMark im(this);
assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
emit_byte(0x66);
emit_byte(0x81);
emit_operand(rdi, dst, 2);
emit_word(imm16);
}
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
if (Atomics & 2) {
// caveat: no instructionmark, so this isn't relocatable.
// Emit a synthetic, non-atomic, CAS equivalent.
// Beware. The synthetic form sets all ICCs, not just ZF.
// cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
cmpl(rax, adr);
movl(rax, adr);
if (reg != rax) {
Label L ;
jcc(Assembler::notEqual, L);
movl(adr, reg);
bind(L);
}
} else {
InstructionMark im(this);
prefix(adr, reg);
emit_byte(0x0F);
emit_byte(0xB1);
emit_operand(reg, adr);
}
}
void Assembler::comisd(XMMRegister dst, Address src) {
// NOTE: dbx seems to decode this as comiss even though the
// 0x66 is there. Strangly ucomisd comes out correct
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66);
emit_byte(0x2F);
emit_operand(dst, src);
}
void Assembler::comisd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x2F);
emit_byte(0xC0 | encode);
}
void Assembler::comiss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_NONE);
emit_byte(0x2F);
emit_operand(dst, src);
}
void Assembler::comiss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
emit_byte(0x2F);
emit_byte(0xC0 | encode);
}
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
emit_byte(0xE6);
emit_byte(0xC0 | encode);
}
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
emit_byte(0x5B);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5A);
emit_operand(dst, src);
}
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x2A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x2A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtss2sd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5A);
emit_operand(dst, src);
}
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
emit_byte(0x2C);
emit_byte(0xC0 | encode);
}
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
emit_byte(0x2C);
emit_byte(0xC0 | encode);
}
void Assembler::decl(Address dst) {
// Don't use it directly. Use MacroAssembler::decrement() instead.
InstructionMark im(this);
prefix(dst);
emit_byte(0xFF);
emit_operand(rcx, dst);
}
void Assembler::divsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5E);
emit_operand(dst, src);
}
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5E);
emit_byte(0xC0 | encode);
}
void Assembler::divss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5E);
emit_operand(dst, src);
}
void Assembler::divss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5E);
emit_byte(0xC0 | encode);
}
void Assembler::emms() {
NOT_LP64(assert(VM_Version::supports_mmx(), ""));
emit_byte(0x0F);
emit_byte(0x77);
}
void Assembler::hlt() {
emit_byte(0xF4);
}
void Assembler::idivl(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_byte(0xF7);
emit_byte(0xF8 | encode);
}
void Assembler::divl(Register src) { // Unsigned
int encode = prefix_and_encode(src->encoding());
emit_byte(0xF7);
emit_byte(0xF0 | encode);
}
void Assembler::imull(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xAF);
emit_byte(0xC0 | encode);
}
void Assembler::imull(Register dst, Register src, int value) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
if (is8bit(value)) {
emit_byte(0x6B);
emit_byte(0xC0 | encode);
emit_byte(value & 0xFF);
} else {
emit_byte(0x69);
emit_byte(0xC0 | encode);
emit_long(value);
}
}
void Assembler::incl(Address dst) {
// Don't use it directly. Use MacroAssembler::increment() instead.
InstructionMark im(this);
prefix(dst);
emit_byte(0xFF);
emit_operand(rax, dst);
}
void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
InstructionMark im(this);
assert((0 <= cc) && (cc < 16), "illegal cc");
if (L.is_bound()) {
address dst = target(L);
assert(dst != NULL, "jcc most probably wrong");
const int short_size = 2;
const int long_size = 6;
intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
if (maybe_short && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
assert(is_simm32(offs - long_size),
"must be 32bit offset (call4)");
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(offs - long_size);
}
} else {
// Note: could eliminate cond. jumps to this jump if condition
// is the same however, seems to be rather unlikely case.
// Note: use jccb() if label to be bound is very close to get
// an 8-bit displacement
L.add_patch_at(code(), locator());
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(0);
}
}
void Assembler::jccb(Condition cc, Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
#ifdef ASSERT
intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
intptr_t delta = short_branch_delta();
if (delta != 0) {
dist += (dist < 0 ? (-delta) :delta);
}
assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_byte(0x70 | cc);
emit_byte(0);
}
}
void Assembler::jmp(Address adr) {
InstructionMark im(this);
prefix(adr);
emit_byte(0xFF);
emit_operand(rsp, adr);
}
void Assembler::jmp(Label& L, bool maybe_short) {
if (L.is_bound()) {
address entry = target(L);
assert(entry != NULL, "jmp most probably wrong");
InstructionMark im(this);
const int short_size = 2;
const int long_size = 5;
intptr_t offs = entry - _code_pos;
if (maybe_short && is8bit(offs - short_size)) {
emit_byte(0xEB);
emit_byte((offs - short_size) & 0xFF);
} else {
emit_byte(0xE9);
emit_long(offs - long_size);
}
} else {
// By default, forward jumps are always 32-bit displacements, since
// we can't yet know where the label will be bound. If you're sure that
// the forward jump will not run beyond 256 bytes, use jmpb to
// force an 8-bit displacement.
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_byte(0xE9);
emit_long(0);
}
}
void Assembler::jmp(Register entry) {
int encode = prefix_and_encode(entry->encoding());
emit_byte(0xFF);
emit_byte(0xE0 | encode);
}
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xE9);
assert(dest != NULL, "must have a target");
intptr_t disp = dest - (_code_pos + sizeof(int32_t));
assert(is_simm32(disp), "must be 32bit offset (jmp)");
emit_data(disp, rspec.reloc(), call32_operand);
}
void Assembler::jmpb(Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
assert(entry != NULL, "jmp most probably wrong");
#ifdef ASSERT
intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
intptr_t delta = short_branch_delta();
if (delta != 0) {
dist += (dist < 0 ? (-delta) :delta);
}
assert(is8bit(dist), "Dispacement too large for a short jmp");
#endif
intptr_t offs = entry - _code_pos;
emit_byte(0xEB);
emit_byte((offs - short_size) & 0xFF);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_byte(0xEB);
emit_byte(0);
}
}
void Assembler::ldmxcsr( Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
prefix(src);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(as_Register(2), src);
}
void Assembler::leal(Register dst, Address src) {
InstructionMark im(this);
#ifdef _LP64
emit_byte(0x67); // addr32
prefix(src, dst);
#endif // LP64
emit_byte(0x8D);
emit_operand(dst, src);
}
void Assembler::lock() {
if (Atomics & 1) {
// Emit either nothing, a NOP, or a NOP: prefix
emit_byte(0x90) ;
} else {
emit_byte(0xF0);
}
}
void Assembler::lzcntl(Register dst, Register src) {
assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
emit_byte(0xF3);
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBD);
emit_byte(0xC0 | encode);
}
// Emit mfence instruction
void Assembler::mfence() {
NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
emit_byte( 0x0F );
emit_byte( 0xAE );
emit_byte( 0xF0 );
}
void Assembler::mov(Register dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x28);
emit_byte(0xC0 | encode);
}
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
emit_byte(0x28);
emit_byte(0xC0 | encode);
}
void Assembler::movb(Register dst, Address src) {
NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
InstructionMark im(this);
prefix(src, dst, true);
emit_byte(0x8A);
emit_operand(dst, src);
}
void Assembler::movb(Address dst, int imm8) {
InstructionMark im(this);
prefix(dst);
emit_byte(0xC6);
emit_operand(rax, dst, 1);
emit_byte(imm8);
}
void Assembler::movb(Address dst, Register src) {
assert(src->has_byte_register(), "must have byte register");
InstructionMark im(this);
prefix(dst, src, true);
emit_byte(0x88);
emit_operand(src, dst);
}
void Assembler::movdl(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x6E);
emit_byte(0xC0 | encode);
}
void Assembler::movdl(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
// swap src/dst to get correct prefix
int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
emit_byte(0x7E);
emit_byte(0xC0 | encode);
}
void Assembler::movdl(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66);
emit_byte(0x6E);
emit_operand(dst, src);
}
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x6F);
emit_byte(0xC0 | encode);
}
void Assembler::movdqu(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F3);
emit_byte(0x6F);
emit_operand(dst, src);
}
void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
emit_byte(0x6F);
emit_byte(0xC0 | encode);
}
void Assembler::movdqu(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F3);
emit_byte(0x7F);
emit_operand(src, dst);
}
// Uses zero extension on 64bit
void Assembler::movl(Register dst, int32_t imm32) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xB8 | encode);
emit_long(imm32);
}
void Assembler::movl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x8B);
emit_byte(0xC0 | encode);
}
void Assembler::movl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x8B);
emit_operand(dst, src);
}
void Assembler::movl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_byte(0xC7);
emit_operand(rax, dst, 4);
emit_long(imm32);
}
void Assembler::movl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_byte(0x89);
emit_operand(src, dst);
}
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x12);
emit_operand(dst, src);
}
void Assembler::movq( MMXRegister dst, Address src ) {
assert( VM_Version::supports_mmx(), "" );
emit_byte(0x0F);
emit_byte(0x6F);
emit_operand(dst, src);
}
void Assembler::movq( Address dst, MMXRegister src ) {
assert( VM_Version::supports_mmx(), "" );
emit_byte(0x0F);
emit_byte(0x7F);
// workaround gcc (3.2.1-7a) bug
// In that version of gcc with only an emit_operand(MMX, Address)
// gcc will tail jump and try and reverse the parameters completely
// obliterating dst in the process. By having a version available
// that doesn't need to swap the args at the tail jump the bug is
// avoided.
emit_operand(dst, src);
}
void Assembler::movq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F3);
emit_byte(0x7E);
emit_operand(dst, src);
}
void Assembler::movq(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66);
emit_byte(0xD6);
emit_operand(src, dst);
}
void Assembler::movsbl(Register dst, Address src) { // movsxb
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0xBE);
emit_operand(dst, src);
}
void Assembler::movsbl(Register dst, Register src) { // movsxb
NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
emit_byte(0x0F);
emit_byte(0xBE);
emit_byte(0xC0 | encode);
}
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x10);
emit_byte(0xC0 | encode);
}
void Assembler::movsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F2);
emit_byte(0x10);
emit_operand(dst, src);
}
void Assembler::movsd(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F2);
emit_byte(0x11);
emit_operand(src, dst);
}
void Assembler::movss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x10);
emit_byte(0xC0 | encode);
}
void Assembler::movss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F3);
emit_byte(0x10);
emit_operand(dst, src);
}
void Assembler::movss(Address dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F3);
emit_byte(0x11);
emit_operand(src, dst);
}
void Assembler::movswl(Register dst, Address src) { // movsxw
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0xBF);
emit_operand(dst, src);
}
void Assembler::movswl(Register dst, Register src) { // movsxw
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBF);
emit_byte(0xC0 | encode);
}
void Assembler::movw(Address dst, int imm16) {
InstructionMark im(this);
emit_byte(0x66); // switch to 16-bit mode
prefix(dst);
emit_byte(0xC7);
emit_operand(rax, dst, 2);
emit_word(imm16);
}
void Assembler::movw(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x66);
prefix(src, dst);
emit_byte(0x8B);
emit_operand(dst, src);
}
void Assembler::movw(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x66);
prefix(dst, src);
emit_byte(0x89);
emit_operand(src, dst);
}
void Assembler::movzbl(Register dst, Address src) { // movzxb
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0xB6);
emit_operand(dst, src);
}
void Assembler::movzbl(Register dst, Register src) { // movzxb
NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
emit_byte(0x0F);
emit_byte(0xB6);
emit_byte(0xC0 | encode);
}
void Assembler::movzwl(Register dst, Address src) { // movzxw
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0xB7);
emit_operand(dst, src);
}
void Assembler::movzwl(Register dst, Register src) { // movzxw
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xB7);
emit_byte(0xC0 | encode);
}
void Assembler::mull(Address src) {
InstructionMark im(this);
prefix(src);
emit_byte(0xF7);
emit_operand(rsp, src);
}
void Assembler::mull(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_byte(0xF7);
emit_byte(0xE0 | encode);
}
void Assembler::mulsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x59);
emit_operand(dst, src);
}
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x59);
emit_byte(0xC0 | encode);
}
void Assembler::mulss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x59);
emit_operand(dst, src);
}
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x59);
emit_byte(0xC0 | encode);
}
void Assembler::negl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xF7);
emit_byte(0xD8 | encode);
}
void Assembler::nop(int i) {
#ifdef ASSERT
assert(i > 0, " ");
// The fancy nops aren't currently recognized by debuggers making it a
// pain to disassemble code while debugging. If asserts are on clearly
// speed is not an issue so simply use the single byte traditional nop
// to do alignment.
for (; i > 0 ; i--) emit_byte(0x90);
return;
#endif // ASSERT
if (UseAddressNop && VM_Version::is_intel()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for Intel
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is Intel specific - don't use consecutive address nops
// 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
while(i >= 15) {
// For Intel don't generate consecutive addess nops (mix with regular nops)
i -= 15;
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
addr_nop_8();
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x90); // nop
}
switch (i) {
case 14:
emit_byte(0x66); // size prefix
case 13:
emit_byte(0x66); // size prefix
case 12:
addr_nop_8();
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x90); // nop
break;
case 11:
emit_byte(0x66); // size prefix
case 10:
emit_byte(0x66); // size prefix
case 9:
emit_byte(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_byte(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_byte(0x66); // size prefix
case 2:
emit_byte(0x66); // size prefix
case 1:
emit_byte(0x90); // nop
break;
default:
assert(i == 0, " ");
}
return;
}
if (UseAddressNop && VM_Version::is_amd()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is AMD specific - use consecutive address nops
// 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// Size prefixes (0x66) are added for larger sizes
while(i >= 22) {
i -= 11;
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
addr_nop_8();
}
// Generate first nop for size between 21-12
switch (i) {
case 21:
i -= 1;
emit_byte(0x66); // size prefix
case 20:
case 19:
i -= 1;
emit_byte(0x66); // size prefix
case 18:
case 17:
i -= 1;
emit_byte(0x66); // size prefix
case 16:
case 15:
i -= 8;
addr_nop_8();
break;
case 14:
case 13:
i -= 7;
addr_nop_7();
break;
case 12:
i -= 6;
emit_byte(0x66); // size prefix
addr_nop_5();
break;
default:
assert(i < 12, " ");
}
// Generate second nop for size between 11-1
switch (i) {
case 11:
emit_byte(0x66); // size prefix
case 10:
emit_byte(0x66); // size prefix
case 9:
emit_byte(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_byte(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_byte(0x66); // size prefix
case 2:
emit_byte(0x66); // size prefix
case 1:
emit_byte(0x90); // nop
break;
default:
assert(i == 0, " ");
}
return;
}
// Using nops with size prefixes "0x66 0x90".
// From AMD Optimization Guide:
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90
// 4: 0x66 0x66 0x66 0x90
// 5: 0x66 0x66 0x90 0x66 0x90
// 6: 0x66 0x66 0x90 0x66 0x66 0x90
// 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
// 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
// 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
// 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
//
while(i > 12) {
i -= 4;
emit_byte(0x66); // size prefix
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90); // nop
}
// 1 - 12 nops
if(i > 8) {
if(i > 9) {
i -= 1;
emit_byte(0x66);
}
i -= 3;
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90);
}
// 1 - 8 nops
if(i > 4) {
if(i > 6) {
i -= 1;
emit_byte(0x66);
}
i -= 3;
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90);
}
switch (i) {
case 4:
emit_byte(0x66);
case 3:
emit_byte(0x66);
case 2:
emit_byte(0x66);
case 1:
emit_byte(0x90);
break;
default:
assert(i == 0, " ");
}
}
void Assembler::notl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xF7);
emit_byte(0xD0 | encode );
}
void Assembler::orl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rcx, dst, imm32);
}
void Assembler::orl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xC8, dst, imm32);
}
void Assembler::orl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x0B);
emit_operand(dst, src);
}
void Assembler::orl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x0B, 0xC0, dst, src);
}
void Assembler::packuswb(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x67);
emit_operand(dst, src);
}
void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0x67);
emit_byte(0xC0 | encode);
}
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
assert(VM_Version::supports_sse4_2(), "");
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
emit_byte(0x61);
emit_operand(dst, src);
emit_byte(imm8);
}
void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
assert(VM_Version::supports_sse4_2(), "");
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
emit_byte(0x61);
emit_byte(0xC0 | encode);
emit_byte(imm8);
}
void Assembler::pmovzxbw(XMMRegister dst, Address src) {
assert(VM_Version::supports_sse4_1(), "");
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
emit_byte(0x30);
emit_operand(dst, src);
}
void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
emit_byte(0x30);
emit_byte(0xC0 | encode);
}
// generic
void Assembler::pop(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0x58 | encode);
}
void Assembler::popcntl(Register dst, Address src) {
assert(VM_Version::supports_popcnt(), "must support");
InstructionMark im(this);
emit_byte(0xF3);
prefix(src, dst);
emit_byte(0x0F);
emit_byte(0xB8);
emit_operand(dst, src);
}
void Assembler::popcntl(Register dst, Register src) {
assert(VM_Version::supports_popcnt(), "must support");
emit_byte(0xF3);
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xB8);
emit_byte(0xC0 | encode);
}
void Assembler::popf() {
emit_byte(0x9D);
}
#ifndef _LP64 // no 32bit push/pop on amd64
void Assembler::popl(Address dst) {
// NOTE: this will adjust stack by 8byte on 64bits
InstructionMark im(this);
prefix(dst);
emit_byte(0x8F);
emit_operand(rax, dst);
}
#endif
void Assembler::prefetch_prefix(Address src) {
prefix(src);
emit_byte(0x0F);
}
void Assembler::prefetchnta(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x18);
emit_operand(rax, src); // 0, src
}
void Assembler::prefetchr(Address src) {
assert(VM_Version::supports_3dnow_prefetch(), "must support");
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x0D);
emit_operand(rax, src); // 0, src
}
void Assembler::prefetcht0(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x18);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefetcht1(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x18);
emit_operand(rdx, src); // 2, src
}
void Assembler::prefetcht2(Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x18);
emit_operand(rbx, src); // 3, src
}
void Assembler::prefetchw(Address src) {
assert(VM_Version::supports_3dnow_prefetch(), "must support");
InstructionMark im(this);
prefetch_prefix(src);
emit_byte(0x0D);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefix(Prefix p) {
a_byte(p);
}
void Assembler::por(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0xEB);
emit_byte(0xC0 | encode);
}
void Assembler::por(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0xEB);
emit_operand(dst, src);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x70);
emit_byte(0xC0 | encode);
emit_byte(mode & 0xFF);
}
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66);
emit_byte(0x70);
emit_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
emit_byte(0x70);
emit_byte(0xC0 | encode);
emit_byte(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_F2);
emit_byte(0x70);
emit_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::psrlq(XMMRegister dst, int shift) {
// Shift 64 bit value logically right by specified number of bits.
// HMM Table D-1 says sse2 or mmx.
// Do not confuse it with psrldq SSE2 instruction which
// shifts 128 bit value in xmm register by number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
emit_byte(0x73);
emit_byte(0xC0 | encode);
emit_byte(shift);
}
void Assembler::psrldq(XMMRegister dst, int shift) {
// Shift 128 bit value in xmm register by number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
emit_byte(0x73);
emit_byte(0xC0 | encode);
emit_byte(shift);
}
void Assembler::ptest(XMMRegister dst, Address src) {
assert(VM_Version::supports_sse4_1(), "");
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
emit_byte(0x17);
emit_operand(dst, src);
}
void Assembler::ptest(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse4_1(), "");
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
emit_byte(0x17);
emit_byte(0xC0 | encode);
}
void Assembler::punpcklbw(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x60);
emit_operand(dst, src);
}
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0x60);
emit_byte(0xC0 | encode);
}
void Assembler::punpckldq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x62);
emit_operand(dst, src);
}
void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0x62);
emit_byte(0xC0 | encode);
}
void Assembler::push(int32_t imm32) {
// in 64bits we push 64bits onto the stack but only
// take a 32bit immediate
emit_byte(0x68);
emit_long(imm32);
}
void Assembler::push(Register src) {
int encode = prefix_and_encode(src->encoding());
emit_byte(0x50 | encode);
}
void Assembler::pushf() {
emit_byte(0x9C);
}
#ifndef _LP64 // no 32bit push/pop on amd64
void Assembler::pushl(Address src) {
// Note this will push 64bit on 64bit
InstructionMark im(this);
prefix(src);
emit_byte(0xFF);
emit_operand(rsi, src);
}
#endif
void Assembler::pxor(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0xEF);
emit_operand(dst, src);
}
void Assembler::pxor(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0xEF);
emit_byte(0xC0 | encode);
}
void Assembler::rcll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xD0 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xD0 | encode);
emit_byte(imm8);
}
}
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
emit_byte(0xF3);
// MOVSQ
LP64_ONLY(prefix(REX_W));
emit_byte(0xA5);
}
// sets rcx pointer sized words with rax, value at [edi]
// generic
void Assembler::rep_set() { // rep_set
emit_byte(0xF3);
// STOSQ
LP64_ONLY(prefix(REX_W));
emit_byte(0xAB);
}
// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
emit_byte(0xF2);
// SCASQ
LP64_ONLY(prefix(REX_W));
emit_byte(0xAF);
}
#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
emit_byte(0xF2);
// SCASL
emit_byte(0xAF);
}
#endif
void Assembler::ret(int imm16) {
if (imm16 == 0) {
emit_byte(0xC3);
} else {
emit_byte(0xC2);
emit_word(imm16);
}
}
void Assembler::sahf() {
#ifdef _LP64
// Not supported in 64bit mode
ShouldNotReachHere();
#endif
emit_byte(0x9E);
}
void Assembler::sarl(Register dst, int imm8) {
int encode = prefix_and_encode(dst->encoding());
assert(isShiftCount(imm8), "illegal shift count");
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xF8 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xF8 | encode);
emit_byte(imm8);
}
}
void Assembler::sarl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xF8 | encode);
}
void Assembler::sbbl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rbx, dst, imm32);
}
void Assembler::sbbl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xD8, dst, imm32);
}
void Assembler::sbbl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x1B);
emit_operand(dst, src);
}
void Assembler::sbbl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x1B, 0xC0, dst, src);
}
void Assembler::setb(Condition cc, Register dst) {
assert(0 <= cc && cc < 16, "illegal cc");
int encode = prefix_and_encode(dst->encoding(), true);
emit_byte(0x0F);
emit_byte(0x90 | cc);
emit_byte(0xC0 | encode);
}
void Assembler::shll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
if (imm8 == 1 ) {
emit_byte(0xD1);
emit_byte(0xE0 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xE0 | encode);
emit_byte(imm8);
}
}
void Assembler::shll(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xE0 | encode);
}
void Assembler::shrl(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xC1);
emit_byte(0xE8 | encode);
emit_byte(imm8);
}
void Assembler::shrl(Register dst) {
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xE8 | encode);
}
// copies a single word from [esi] to [edi]
void Assembler::smovl() {
emit_byte(0xA5);
}
void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x51);
emit_byte(0xC0 | encode);
}
void Assembler::sqrtsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x51);
emit_operand(dst, src);
}
void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x51);
emit_byte(0xC0 | encode);
}
void Assembler::sqrtss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x51);
emit_operand(dst, src);
}
void Assembler::stmxcsr( Address dst) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
prefix(dst);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(as_Register(3), dst);
}
void Assembler::subl(Address dst, int32_t imm32) {
InstructionMark im(this);
prefix(dst);
emit_arith_operand(0x81, rbp, dst, imm32);
}
void Assembler::subl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_byte(0x29);
emit_operand(src, dst);
}
void Assembler::subl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xE8, dst, imm32);
}
void Assembler::subl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x2B);
emit_operand(dst, src);
}
void Assembler::subl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x2B, 0xC0, dst, src);
}
void Assembler::subsd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5C);
emit_byte(0xC0 | encode);
}
void Assembler::subsd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x5C);
emit_operand(dst, src);
}
void Assembler::subss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5C);
emit_byte(0xC0 | encode);
}
void Assembler::subss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x5C);
emit_operand(dst, src);
}
void Assembler::testb(Register dst, int imm8) {
NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
(void) prefix_and_encode(dst->encoding(), true);
emit_arith_b(0xF6, 0xC0, dst, imm8);
}
void Assembler::testl(Register dst, int32_t imm32) {
// not using emit_arith because test
// doesn't support sign-extension of
// 8bit operands
int encode = dst->encoding();
if (encode == 0) {
emit_byte(0xA9);
} else {
encode = prefix_and_encode(encode);
emit_byte(0xF7);
emit_byte(0xC0 | encode);
}
emit_long(imm32);
}
void Assembler::testl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x85, 0xC0, dst, src);
}
void Assembler::testl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x85);
emit_operand(dst, src);
}
void Assembler::ucomisd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_66);
emit_byte(0x2E);
emit_operand(dst, src);
}
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
emit_byte(0x2E);
emit_byte(0xC0 | encode);
}
void Assembler::ucomiss(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, src, VEX_SIMD_NONE);
emit_byte(0x2E);
emit_operand(dst, src);
}
void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
emit_byte(0x2E);
emit_byte(0xC0 | encode);
}
void Assembler::xaddl(Address dst, Register src) {
InstructionMark im(this);
prefix(dst, src);
emit_byte(0x0F);
emit_byte(0xC1);
emit_operand(src, dst);
}
void Assembler::xchgl(Register dst, Address src) { // xchg
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x87);
emit_operand(dst, src);
}
void Assembler::xchgl(Register dst, Register src) {
int encode = prefix_and_encode(dst->encoding(), src->encoding());
emit_byte(0x87);
emit_byte(0xc0 | encode);
}
void Assembler::xorl(Register dst, int32_t imm32) {
prefix(dst);
emit_arith(0x81, 0xF0, dst, imm32);
}
void Assembler::xorl(Register dst, Address src) {
InstructionMark im(this);
prefix(src, dst);
emit_byte(0x33);
emit_operand(dst, src);
}
void Assembler::xorl(Register dst, Register src) {
(void) prefix_and_encode(dst->encoding(), src->encoding());
emit_arith(0x33, 0xC0, dst, src);
}
void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
emit_byte(0x57);
emit_byte(0xC0 | encode);
}
void Assembler::xorpd(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_66);
emit_byte(0x57);
emit_operand(dst, src);
}
void Assembler::xorps(XMMRegister dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
emit_byte(0x57);
emit_byte(0xC0 | encode);
}
void Assembler::xorps(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix(dst, dst, src, VEX_SIMD_NONE);
emit_byte(0x57);
emit_operand(dst, src);
}
// AVX 3-operands non destructive source instructions (encoded with VEX prefix)
void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x58);
emit_operand(dst, src);
}
void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x58);
emit_byte(0xC0 | encode);
}
void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x58);
emit_operand(dst, src);
}
void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x58);
emit_byte(0xC0 | encode);
}
void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
emit_byte(0x54);
emit_operand(dst, src);
}
void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
emit_byte(0x54);
emit_operand(dst, src);
}
void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x5E);
emit_operand(dst, src);
}
void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x5E);
emit_byte(0xC0 | encode);
}
void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x5E);
emit_operand(dst, src);
}
void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x5E);
emit_byte(0xC0 | encode);
}
void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x59);
emit_operand(dst, src);
}
void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x59);
emit_byte(0xC0 | encode);
}
void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x59);
emit_operand(dst, src);
}
void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x59);
emit_byte(0xC0 | encode);
}
void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x5C);
emit_operand(dst, src);
}
void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
emit_byte(0x5C);
emit_byte(0xC0 | encode);
}
void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x5C);
emit_operand(dst, src);
}
void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
assert(VM_Version::supports_avx(), "");
int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
emit_byte(0x5C);
emit_byte(0xC0 | encode);
}
void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
emit_byte(0x57);
emit_operand(dst, src);
}
void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
assert(VM_Version::supports_avx(), "");
InstructionMark im(this);
vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
emit_byte(0x57);
emit_operand(dst, src);
}
#ifndef _LP64
// 32bit only pieces of the assembler
void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
// NO PREFIX AS NEVER 64BIT
InstructionMark im(this);
emit_byte(0x81);
emit_byte(0xF8 | src1->encoding());
emit_data(imm32, rspec, 0);
}
void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
// NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
InstructionMark im(this);
emit_byte(0x81);
emit_operand(rdi, src1);
emit_data(imm32, rspec, 0);
}
// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xc7);
emit_operand(rcx, adr);
}
void Assembler::decl(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementl() instead.
emit_byte(0x48 | dst->encoding());
}
#endif // _LP64
// 64bit typically doesn't use the x87 but needs to for the trig funcs
void Assembler::fabs() {
emit_byte(0xD9);
emit_byte(0xE1);
}
void Assembler::fadd(int i) {
emit_farith(0xD8, 0xC0, i);
}
void Assembler::fadd_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rax, src);
}
void Assembler::fadd_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rax, src);
}
void Assembler::fadda(int i) {
emit_farith(0xDC, 0xC0, i);
}
void Assembler::faddp(int i) {
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fchs() {
emit_byte(0xD9);
emit_byte(0xE0);
}
void Assembler::fcom(int i) {
emit_farith(0xD8, 0xD0, i);
}
void Assembler::fcomp(int i) {
emit_farith(0xD8, 0xD8, i);
}
void Assembler::fcomp_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rbx, src);
}
void Assembler::fcomp_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rbx, src);
}
void Assembler::fcompp() {
emit_byte(0xDE);
emit_byte(0xD9);
}
void Assembler::fcos() {
emit_byte(0xD9);
emit_byte(0xFF);
}
void Assembler::fdecstp() {
emit_byte(0xD9);
emit_byte(0xF6);
}
void Assembler::fdiv(int i) {
emit_farith(0xD8, 0xF0, i);
}
void Assembler::fdiv_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rsi, src);
}
void Assembler::fdiv_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rsi, src);
}
void Assembler::fdiva(int i) {
emit_farith(0xDC, 0xF8, i);
}
// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
// is erroneous for some of the floating-point instructions below.
void Assembler::fdivp(int i) {
emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}
void Assembler::fdivr(int i) {
emit_farith(0xD8, 0xF8, i);
}
void Assembler::fdivr_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rdi, src);
}
void Assembler::fdivr_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rdi, src);
}
void Assembler::fdivra(int i) {
emit_farith(0xDC, 0xF0, i);
}
void Assembler::fdivrp(int i) {
emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}
void Assembler::ffree(int i) {
emit_farith(0xDD, 0xC0, i);
}
void Assembler::fild_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDF);
emit_operand32(rbp, adr);
}
void Assembler::fild_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand32(rax, adr);
}
void Assembler::fincstp() {
emit_byte(0xD9);
emit_byte(0xF7);
}
void Assembler::finit() {
emit_byte(0x9B);
emit_byte(0xDB);
emit_byte(0xE3);
}
void Assembler::fist_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand32(rdx, adr);
}
void Assembler::fistp_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDF);
emit_operand32(rdi, adr);
}
void Assembler::fistp_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand32(rbx, adr);
}
void Assembler::fld1() {
emit_byte(0xD9);
emit_byte(0xE8);
}
void Assembler::fld_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand32(rax, adr);
}
void Assembler::fld_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand32(rax, adr);
}
void Assembler::fld_s(int index) {
emit_farith(0xD9, 0xC0, index);
}
void Assembler::fld_x(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand32(rbp, adr);
}
void Assembler::fldcw(Address src) {
InstructionMark im(this);
emit_byte(0xd9);
emit_operand32(rbp, src);
}
void Assembler::fldenv(Address src) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand32(rsp, src);
}
void Assembler::fldlg2() {
emit_byte(0xD9);
emit_byte(0xEC);
}
void Assembler::fldln2() {
emit_byte(0xD9);
emit_byte(0xED);
}
void Assembler::fldz() {
emit_byte(0xD9);
emit_byte(0xEE);
}
void Assembler::flog() {
fldln2();
fxch();
fyl2x();
}
void Assembler::flog10() {
fldlg2();
fxch();
fyl2x();
}
void Assembler::fmul(int i) {
emit_farith(0xD8, 0xC8, i);
}
void Assembler::fmul_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rcx, src);
}
void Assembler::fmul_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rcx, src);
}
void Assembler::fmula(int i) {
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fmulp(int i) {
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fnsave(Address dst) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand32(rsi, dst);
}
void Assembler::fnstcw(Address src) {
InstructionMark im(this);
emit_byte(0x9B);
emit_byte(0xD9);
emit_operand32(rdi, src);
}
void Assembler::fnstsw_ax() {
emit_byte(0xdF);
emit_byte(0xE0);
}
void Assembler::fprem() {
emit_byte(0xD9);
emit_byte(0xF8);
}
void Assembler::fprem1() {
emit_byte(0xD9);
emit_byte(0xF5);
}
void Assembler::frstor(Address src) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand32(rsp, src);
}
void Assembler::fsin() {
emit_byte(0xD9);
emit_byte(0xFE);
}
void Assembler::fsqrt() {
emit_byte(0xD9);
emit_byte(0xFA);
}
void Assembler::fst_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand32(rdx, adr);
}
void Assembler::fst_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand32(rdx, adr);
}
void Assembler::fstp_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand32(rbx, adr);
}
void Assembler::fstp_d(int index) {
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fstp_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand32(rbx, adr);
}
void Assembler::fstp_x(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand32(rdi, adr);
}
void Assembler::fsub(int i) {
emit_farith(0xD8, 0xE0, i);
}
void Assembler::fsub_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rsp, src);
}
void Assembler::fsub_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rsp, src);
}
void Assembler::fsuba(int i) {
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fsubp(int i) {
emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}
void Assembler::fsubr(int i) {
emit_farith(0xD8, 0xE8, i);
}
void Assembler::fsubr_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand32(rbp, src);
}
void Assembler::fsubr_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand32(rbp, src);
}
void Assembler::fsubra(int i) {
emit_farith(0xDC, 0xE0, i);
}
void Assembler::fsubrp(int i) {
emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}
void Assembler::ftan() {
emit_byte(0xD9);
emit_byte(0xF2);
emit_byte(0xDD);
emit_byte(0xD8);
}
void Assembler::ftst() {
emit_byte(0xD9);
emit_byte(0xE4);
}
void Assembler::fucomi(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDB, 0xE8, i);
}
void Assembler::fucomip(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDF, 0xE8, i);
}
void Assembler::fwait() {
emit_byte(0x9B);
}
void Assembler::fxch(int i) {
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fyl2x() {
emit_byte(0xD9);
emit_byte(0xF1);
}
// SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
// SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
static int simd_opc[4] = { 0, 0, 0x38, 0x3A };
// Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
if (pre > 0) {
emit_byte(simd_pre[pre]);
}
if (rex_w) {
prefixq(adr, xreg);
} else {
prefix(adr, xreg);
}
if (opc > 0) {
emit_byte(0x0F);
int opc2 = simd_opc[opc];
if (opc2 > 0) {
emit_byte(opc2);
}
}
}
int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
if (pre > 0) {
emit_byte(simd_pre[pre]);
}
int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
prefix_and_encode(dst_enc, src_enc);
if (opc > 0) {
emit_byte(0x0F);
int opc2 = simd_opc[opc];
if (opc2 > 0) {
emit_byte(opc2);
}
}
return encode;
}
void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
prefix(VEX_3bytes);
int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
byte1 = (~byte1) & 0xE0;
byte1 |= opc;
a_byte(byte1);
int byte2 = ((~nds_enc) & 0xf) << 3;
byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
emit_byte(byte2);
} else {
prefix(VEX_2bytes);
int byte1 = vex_r ? VEX_R : 0;
byte1 = (~byte1) & 0x80;
byte1 |= ((~nds_enc) & 0xf) << 3;
byte1 |= (vector256 ? 4 : 0) | pre;
emit_byte(byte1);
}
}
void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
bool vex_r = (xreg_enc >= 8);
bool vex_b = adr.base_needs_rex();
bool vex_x = adr.index_needs_rex();
vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
}
int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
bool vex_r = (dst_enc >= 8);
bool vex_b = (src_enc >= 8);
bool vex_x = false;
vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
return (((dst_enc & 7) << 3) | (src_enc & 7));
}
void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
if (UseAVX > 0) {
int xreg_enc = xreg->encoding();
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
} else {
assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
rex_prefix(adr, xreg, pre, opc, rex_w);
}
}
int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
int dst_enc = dst->encoding();
int src_enc = src->encoding();
if (UseAVX > 0) {
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
} else {
assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
}
}
#ifndef _LP64
void Assembler::incl(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementl() instead.
emit_byte(0x40 | dst->encoding());
}
void Assembler::lea(Register dst, Address src) {
leal(dst, src);
}
void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xC7);
emit_operand(rax, dst);
emit_data((int)imm32, rspec, 0);
}
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xB8 | encode);
emit_data((int)imm32, rspec, 0);
}
void Assembler::popa() { // 32bit
emit_byte(0x61);
}
void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0x68);
emit_data(imm32, rspec, 0);
}
void Assembler::pusha() { // 32bit
emit_byte(0x60);
}
void Assembler::set_byte_if_not_zero(Register dst) {
emit_byte(0x0F);
emit_byte(0x95);
emit_byte(0xE0 | dst->encoding());
}
void Assembler::shldl(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xA5);
emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}
void Assembler::shrdl(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xAD);
emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}
#else // LP64
void Assembler::set_byte_if_not_zero(Register dst) {
int enc = prefix_and_encode(dst->encoding(), true);
emit_byte(0x0F);
emit_byte(0x95);
emit_byte(0xE0 | enc);
}
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.
bool Assembler::reachable(AddressLiteral adr) {
int64_t disp;
// None will force a 64bit literal to the code stream. Likely a placeholder
// for something that will be patched later and we need to certain it will
// always be reachable.
if (adr.reloc() == relocInfo::none) {
return false;
}
if (adr.reloc() == relocInfo::internal_word_type) {
// This should be rip relative and easily reachable.
return true;
}
if (adr.reloc() == relocInfo::virtual_call_type ||
adr.reloc() == relocInfo::opt_virtual_call_type ||
adr.reloc() == relocInfo::static_call_type ||
adr.reloc() == relocInfo::static_stub_type ) {
// This should be rip relative within the code cache and easily
// reachable until we get huge code caches. (At which point
// ic code is going to have issues).
return true;
}
if (adr.reloc() != relocInfo::external_word_type &&
adr.reloc() != relocInfo::poll_return_type && // these are really external_word but need special
adr.reloc() != relocInfo::poll_type && // relocs to identify them
adr.reloc() != relocInfo::runtime_call_type ) {
return false;
}
// Stress the correction code
if (ForceUnreachable) {
// Must be runtimecall reloc, see if it is in the codecache
// Flipping stuff in the codecache to be unreachable causes issues
// with things like inline caches where the additional instructions
// are not handled.
if (CodeCache::find_blob(adr._target) == NULL) {
return false;
}
}
// For external_word_type/runtime_call_type if it is reachable from where we
// are now (possibly a temp buffer) and where we might end up
// anywhere in the codeCache then we are always reachable.
// This would have to change if we ever save/restore shared code
// to be more pessimistic.
disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
if (!is_simm32(disp)) return false;
disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
if (!is_simm32(disp)) return false;
disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
// Because rip relative is a disp + address_of_next_instruction and we
// don't know the value of address_of_next_instruction we apply a fudge factor
// to make sure we will be ok no matter the size of the instruction we get placed into.
// We don't have to fudge the checks above here because they are already worst case.
// 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
// + 4 because better safe than sorry.
const int fudge = 12 + 4;
if (disp < 0) {
disp -= fudge;
} else {
disp += fudge;
}
return is_simm32(disp);
}
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
intptr_t addr = (intptr_t)os::get_polling_page();
return ForceUnreachable ||
!is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
!is_simm32(addr - (intptr_t)CodeCache::high_bound());
}
void Assembler::emit_data64(jlong data,
relocInfo::relocType rtype,
int format) {
if (rtype == relocInfo::none) {
emit_long64(data);
} else {
emit_data64(data, Relocation::spec_simple(rtype), format);
}
}
void Assembler::emit_data64(jlong data,
RelocationHolder const& rspec,
int format) {
assert(imm_operand == 0, "default format must be immediate in this file");
assert(imm_operand == format, "must be immediate");
assert(inst_mark() != NULL, "must be inside InstructionMark");
// Do not use AbstractAssembler::relocate, which is not intended for
// embedded words. Instead, relocate to the enclosing instruction.
code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
check_relocation(rspec, format);
#endif
emit_long64(data);
}
int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
if (reg_enc >= 8) {
prefix(REX_B);
reg_enc -= 8;
} else if (byteinst && reg_enc >= 4) {
prefix(REX);
}
return reg_enc;
}
int Assembler::prefixq_and_encode(int reg_enc) {
if (reg_enc < 8) {
prefix(REX_W);
} else {
prefix(REX_WB);
reg_enc -= 8;
}
return reg_enc;
}
int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
if (dst_enc < 8) {
if (src_enc >= 8) {
prefix(REX_B);
src_enc -= 8;
} else if (byteinst && src_enc >= 4) {
prefix(REX);
}
} else {
if (src_enc < 8) {
prefix(REX_R);
} else {
prefix(REX_RB);
src_enc -= 8;
}
dst_enc -= 8;
}
return dst_enc << 3 | src_enc;
}
int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
if (dst_enc < 8) {
if (src_enc < 8) {
prefix(REX_W);
} else {
prefix(REX_WB);
src_enc -= 8;
}
} else {
if (src_enc < 8) {
prefix(REX_WR);
} else {
prefix(REX_WRB);
src_enc -= 8;
}
dst_enc -= 8;
}
return dst_enc << 3 | src_enc;
}
void Assembler::prefix(Register reg) {
if (reg->encoding() >= 8) {
prefix(REX_B);
}
}
void Assembler::prefix(Address adr) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
}
}
}
void Assembler::prefixq(Address adr) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
}
void Assembler::prefix(Address adr, Register reg, bool byteinst) {
if (reg->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
} else if (byteinst && reg->encoding() >= 4 ) {
prefix(REX);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_RXB);
} else {
prefix(REX_RB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_RX);
} else {
prefix(REX_R);
}
}
}
}
void Assembler::prefixq(Address adr, Register src) {
if (src->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WRXB);
} else {
prefix(REX_WRB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WRX);
} else {
prefix(REX_WR);
}
}
}
}
void Assembler::prefix(Address adr, XMMRegister reg) {
if (reg->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_XB);
} else {
prefix(REX_B);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_X);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_RXB);
} else {
prefix(REX_RB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_RX);
} else {
prefix(REX_R);
}
}
}
}
void Assembler::prefixq(Address adr, XMMRegister src) {
if (src->encoding() < 8) {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WXB);
} else {
prefix(REX_WB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WX);
} else {
prefix(REX_W);
}
}
} else {
if (adr.base_needs_rex()) {
if (adr.index_needs_rex()) {
prefix(REX_WRXB);
} else {
prefix(REX_WRB);
}
} else {
if (adr.index_needs_rex()) {
prefix(REX_WRX);
} else {
prefix(REX_WR);
}
}
}
}
void Assembler::adcq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xD0, dst, imm32);
}
void Assembler::adcq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x13);
emit_operand(dst, src);
}
void Assembler::adcq(Register dst, Register src) {
(int) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x13, 0xC0, dst, src);
}
void Assembler::addq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rax, dst,imm32);
}
void Assembler::addq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_byte(0x01);
emit_operand(src, dst);
}
void Assembler::addq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xC0, dst, imm32);
}
void Assembler::addq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x03);
emit_operand(dst, src);
}
void Assembler::addq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x03, 0xC0, dst, src);
}
void Assembler::andq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_byte(0x81);
emit_operand(rsp, dst, 4);
emit_long(imm32);
}
void Assembler::andq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xE0, dst, imm32);
}
void Assembler::andq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x23);
emit_operand(dst, src);
}
void Assembler::andq(Register dst, Register src) {
(int) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x23, 0xC0, dst, src);
}
void Assembler::bsfq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBC);
emit_byte(0xC0 | encode);
}
void Assembler::bsrq(Register dst, Register src) {
assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBD);
emit_byte(0xC0 | encode);
}
void Assembler::bswapq(Register reg) {
int encode = prefixq_and_encode(reg->encoding());
emit_byte(0x0F);
emit_byte(0xC8 | encode);
}
void Assembler::cdqq() {
prefix(REX_W);
emit_byte(0x99);
}
void Assembler::clflush(Address adr) {
prefix(adr);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(rdi, adr);
}
void Assembler::cmovq(Condition cc, Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_byte(0xC0 | encode);
}
void Assembler::cmovq(Condition cc, Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_operand(dst, src);
}
void Assembler::cmpq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_byte(0x81);
emit_operand(rdi, dst, 4);
emit_long(imm32);
}
void Assembler::cmpq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xF8, dst, imm32);
}
void Assembler::cmpq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_byte(0x3B);
emit_operand(src, dst);
}
void Assembler::cmpq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x3B, 0xC0, dst, src);
}
void Assembler::cmpq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x3B);
emit_operand(dst, src);
}
void Assembler::cmpxchgq(Register reg, Address adr) {
InstructionMark im(this);
prefixq(adr, reg);
emit_byte(0x0F);
emit_byte(0xB1);
emit_operand(reg, adr);
}
void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x2A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
InstructionMark im(this);
simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
emit_byte(0x2A);
emit_operand(dst, src);
}
void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x2A);
emit_byte(0xC0 | encode);
}
void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
InstructionMark im(this);
simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
emit_byte(0x2A);
emit_operand(dst, src);
}
void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
emit_byte(0x2C);
emit_byte(0xC0 | encode);
}
void Assembler::cvttss2siq(Register dst, XMMRegister src) {
NOT_LP64(assert(VM_Version::supports_sse(), ""));
int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
emit_byte(0x2C);
emit_byte(0xC0 | encode);
}
void Assembler::decl(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementl() instead.
// Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xFF);
emit_byte(0xC8 | encode);
}
void Assembler::decq(Register dst) {
// Don't use it directly. Use MacroAssembler::decrementq() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xFF);
emit_byte(0xC8 | encode);
}
void Assembler::decq(Address dst) {
// Don't use it directly. Use MacroAssembler::decrementq() instead.
InstructionMark im(this);
prefixq(dst);
emit_byte(0xFF);
emit_operand(rcx, dst);
}
void Assembler::fxrstor(Address src) {
prefixq(src);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(as_Register(1), src);
}
void Assembler::fxsave(Address dst) {
prefixq(dst);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(as_Register(0), dst);
}
void Assembler::idivq(Register src) {
int encode = prefixq_and_encode(src->encoding());
emit_byte(0xF7);
emit_byte(0xF8 | encode);
}
void Assembler::imulq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xAF);
emit_byte(0xC0 | encode);
}
void Assembler::imulq(Register dst, Register src, int value) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
if (is8bit(value)) {
emit_byte(0x6B);
emit_byte(0xC0 | encode);
emit_byte(value & 0xFF);
} else {
emit_byte(0x69);
emit_byte(0xC0 | encode);
emit_long(value);
}
}
void Assembler::incl(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementl() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xFF);
emit_byte(0xC0 | encode);
}
void Assembler::incq(Register dst) {
// Don't use it directly. Use MacroAssembler::incrementq() instead.
// Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xFF);
emit_byte(0xC0 | encode);
}
void Assembler::incq(Address dst) {
// Don't use it directly. Use MacroAssembler::incrementq() instead.
InstructionMark im(this);
prefixq(dst);
emit_byte(0xFF);
emit_operand(rax, dst);
}
void Assembler::lea(Register dst, Address src) {
leaq(dst, src);
}
void Assembler::leaq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x8D);
emit_operand(dst, src);
}
void Assembler::mov64(Register dst, int64_t imm64) {
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xB8 | encode);
emit_long64(imm64);
}
void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xB8 | encode);
emit_data64(imm64, rspec);
}
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(dst->encoding());
emit_byte(0xB8 | encode);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
prefix(dst);
emit_byte(0xC7);
emit_operand(rax, dst, 4);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
int encode = prefix_and_encode(src1->encoding());
emit_byte(0x81);
emit_byte(0xF8 | encode);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
prefix(src1);
emit_byte(0x81);
emit_operand(rax, src1, 4);
emit_data((int)imm32, rspec, narrow_oop_operand);
}
void Assembler::lzcntq(Register dst, Register src) {
assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
emit_byte(0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBD);
emit_byte(0xC0 | encode);
}
void Assembler::movdq(XMMRegister dst, Register src) {
// table D-1 says MMX/SSE2
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
emit_byte(0x6E);
emit_byte(0xC0 | encode);
}
void Assembler::movdq(Register dst, XMMRegister src) {
// table D-1 says MMX/SSE2
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
// swap src/dst to get correct prefix
int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
emit_byte(0x7E);
emit_byte(0xC0 | encode);
}
void Assembler::movq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x8B);
emit_byte(0xC0 | encode);
}
void Assembler::movq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x8B);
emit_operand(dst, src);
}
void Assembler::movq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_byte(0x89);
emit_operand(src, dst);
}
void Assembler::movsbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0xBE);
emit_operand(dst, src);
}
void Assembler::movsbq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBE);
emit_byte(0xC0 | encode);
}
void Assembler::movslq(Register dst, int32_t imm32) {
// dbx shows movslq(rcx, 3) as movq $0x0000000049000000,(%rbx)
// and movslq(r8, 3); as movl $0x0000000048000000,(%rbx)
// as a result we shouldn't use until tested at runtime...
ShouldNotReachHere();
InstructionMark im(this);
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xC7 | encode);
emit_long(imm32);
}
void Assembler::movslq(Address dst, int32_t imm32) {
assert(is_simm32(imm32), "lost bits");
InstructionMark im(this);
prefixq(dst);
emit_byte(0xC7);
emit_operand(rax, dst, 4);
emit_long(imm32);
}
void Assembler::movslq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x63);
emit_operand(dst, src);
}
void Assembler::movslq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x63);
emit_byte(0xC0 | encode);
}
void Assembler::movswq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0xBF);
emit_operand(dst, src);
}
void Assembler::movswq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xBF);
emit_byte(0xC0 | encode);
}
void Assembler::movzbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0xB6);
emit_operand(dst, src);
}
void Assembler::movzbq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xB6);
emit_byte(0xC0 | encode);
}
void Assembler::movzwq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0xB7);
emit_operand(dst, src);
}
void Assembler::movzwq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xB7);
emit_byte(0xC0 | encode);
}
void Assembler::negq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xF7);
emit_byte(0xD8 | encode);
}
void Assembler::notq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xF7);
emit_byte(0xD0 | encode);
}
void Assembler::orq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_byte(0x81);
emit_operand(rcx, dst, 4);
emit_long(imm32);
}
void Assembler::orq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xC8, dst, imm32);
}
void Assembler::orq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x0B);
emit_operand(dst, src);
}
void Assembler::orq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x0B, 0xC0, dst, src);
}
void Assembler::popa() { // 64bit
movq(r15, Address(rsp, 0));
movq(r14, Address(rsp, wordSize));
movq(r13, Address(rsp, 2 * wordSize));
movq(r12, Address(rsp, 3 * wordSize));
movq(r11, Address(rsp, 4 * wordSize));
movq(r10, Address(rsp, 5 * wordSize));
movq(r9, Address(rsp, 6 * wordSize));
movq(r8, Address(rsp, 7 * wordSize));
movq(rdi, Address(rsp, 8 * wordSize));
movq(rsi, Address(rsp, 9 * wordSize));
movq(rbp, Address(rsp, 10 * wordSize));
// skip rsp
movq(rbx, Address(rsp, 12 * wordSize));
movq(rdx, Address(rsp, 13 * wordSize));
movq(rcx, Address(rsp, 14 * wordSize));
movq(rax, Address(rsp, 15 * wordSize));
addq(rsp, 16 * wordSize);
}
void Assembler::popcntq(Register dst, Address src) {
assert(VM_Version::supports_popcnt(), "must support");
InstructionMark im(this);
emit_byte(0xF3);
prefixq(src, dst);
emit_byte(0x0F);
emit_byte(0xB8);
emit_operand(dst, src);
}
void Assembler::popcntq(Register dst, Register src) {
assert(VM_Version::supports_popcnt(), "must support");
emit_byte(0xF3);
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x0F);
emit_byte(0xB8);
emit_byte(0xC0 | encode);
}
void Assembler::popq(Address dst) {
InstructionMark im(this);
prefixq(dst);
emit_byte(0x8F);
emit_operand(rax, dst);
}
void Assembler::pusha() { // 64bit
// we have to store original rsp. ABI says that 128 bytes
// below rsp are local scratch.
movq(Address(rsp, -5 * wordSize), rsp);
subq(rsp, 16 * wordSize);
movq(Address(rsp, 15 * wordSize), rax);
movq(Address(rsp, 14 * wordSize), rcx);
movq(Address(rsp, 13 * wordSize), rdx);
movq(Address(rsp, 12 * wordSize), rbx);
// skip rsp
movq(Address(rsp, 10 * wordSize), rbp);
movq(Address(rsp, 9 * wordSize), rsi);
movq(Address(rsp, 8 * wordSize), rdi);
movq(Address(rsp, 7 * wordSize), r8);
movq(Address(rsp, 6 * wordSize), r9);
movq(Address(rsp, 5 * wordSize), r10);
movq(Address(rsp, 4 * wordSize), r11);
movq(Address(rsp, 3 * wordSize), r12);
movq(Address(rsp, 2 * wordSize), r13);
movq(Address(rsp, wordSize), r14);
movq(Address(rsp, 0), r15);
}
void Assembler::pushq(Address src) {
InstructionMark im(this);
prefixq(src);
emit_byte(0xFF);
emit_operand(rsi, src);
}
void Assembler::rclq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xD0 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xD0 | encode);
emit_byte(imm8);
}
}
void Assembler::sarq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xF8 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xF8 | encode);
emit_byte(imm8);
}
}
void Assembler::sarq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xF8 | encode);
}
void Assembler::sbbq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rbx, dst, imm32);
}
void Assembler::sbbq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xD8, dst, imm32);
}
void Assembler::sbbq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x1B);
emit_operand(dst, src);
}
void Assembler::sbbq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x1B, 0xC0, dst, src);
}
void Assembler::shlq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xE0 | encode);
} else {
emit_byte(0xC1);
emit_byte(0xE0 | encode);
emit_byte(imm8);
}
}
void Assembler::shlq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xE0 | encode);
}
void Assembler::shrq(Register dst, int imm8) {
assert(isShiftCount(imm8 >> 1), "illegal shift count");
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xC1);
emit_byte(0xE8 | encode);
emit_byte(imm8);
}
void Assembler::shrq(Register dst) {
int encode = prefixq_and_encode(dst->encoding());
emit_byte(0xD3);
emit_byte(0xE8 | encode);
}
void Assembler::subq(Address dst, int32_t imm32) {
InstructionMark im(this);
prefixq(dst);
emit_arith_operand(0x81, rbp, dst, imm32);
}
void Assembler::subq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_byte(0x29);
emit_operand(src, dst);
}
void Assembler::subq(Register dst, int32_t imm32) {
(void) prefixq_and_encode(dst->encoding());
emit_arith(0x81, 0xE8, dst, imm32);
}
void Assembler::subq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x2B);
emit_operand(dst, src);
}
void Assembler::subq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x2B, 0xC0, dst, src);
}
void Assembler::testq(Register dst, int32_t imm32) {
// not using emit_arith because test
// doesn't support sign-extension of
// 8bit operands
int encode = dst->encoding();
if (encode == 0) {
prefix(REX_W);
emit_byte(0xA9);
} else {
encode = prefixq_and_encode(encode);
emit_byte(0xF7);
emit_byte(0xC0 | encode);
}
emit_long(imm32);
}
void Assembler::testq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x85, 0xC0, dst, src);
}
void Assembler::xaddq(Address dst, Register src) {
InstructionMark im(this);
prefixq(dst, src);
emit_byte(0x0F);
emit_byte(0xC1);
emit_operand(src, dst);
}
void Assembler::xchgq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x87);
emit_operand(dst, src);
}
void Assembler::xchgq(Register dst, Register src) {
int encode = prefixq_and_encode(dst->encoding(), src->encoding());
emit_byte(0x87);
emit_byte(0xc0 | encode);
}
void Assembler::xorq(Register dst, Register src) {
(void) prefixq_and_encode(dst->encoding(), src->encoding());
emit_arith(0x33, 0xC0, dst, src);
}
void Assembler::xorq(Register dst, Address src) {
InstructionMark im(this);
prefixq(src, dst);
emit_byte(0x33);
emit_operand(dst, src);
}
#endif // !LP64
static Assembler::Condition reverse[] = {
Assembler::noOverflow /* overflow = 0x0 */ ,
Assembler::overflow /* noOverflow = 0x1 */ ,
Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
Assembler::above /* belowEqual = 0x6 */ ,
Assembler::belowEqual /* above = 0x7 */ ,
Assembler::positive /* negative = 0x8 */ ,
Assembler::negative /* positive = 0x9 */ ,
Assembler::noParity /* parity = 0xa */ ,
Assembler::parity /* noParity = 0xb */ ,
Assembler::greaterEqual /* less = 0xc */ ,
Assembler::less /* greaterEqual = 0xd */ ,
Assembler::greater /* lessEqual = 0xe */ ,
Assembler::lessEqual /* greater = 0xf, */
};
// Implementation of MacroAssembler
// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).
#ifndef _LP64
// 32bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
return Address(adr.target(), adr.rspec());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
return Address::make_array(adr);
}
int MacroAssembler::biased_locking_enter(Register lock_reg,
Register obj_reg,
Register swap_reg,
Register tmp_reg,
bool swap_reg_contains_mark,
Label& done,
Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
assert_different_registers(lock_reg, obj_reg, swap_reg);
if (PrintBiasedLockingStatistics && counters == NULL)
counters = BiasedLocking::counters();
bool need_tmp_reg = false;
if (tmp_reg == noreg) {
need_tmp_reg = true;
tmp_reg = lock_reg;
} else {
assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
}
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
Address saved_mark_addr(lock_reg, 0);
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
// First check to see whether biasing is even enabled for this object
Label cas_label;
int null_check_offset = -1;
if (!swap_reg_contains_mark) {
null_check_offset = offset();
movl(swap_reg, mark_addr);
}
if (need_tmp_reg) {
push(tmp_reg);
}
movl(tmp_reg, swap_reg);
andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
if (need_tmp_reg) {
pop(tmp_reg);
}
jcc(Assembler::notEqual, cas_label);
// The bias pattern is present in the object's header. Need to check
// whether the bias owner and the epoch are both still current.
// Note that because there is no current thread register on x86 we
// need to store off the mark word we read out of the object to
// avoid reloading it and needing to recheck invariants below. This
// store is unfortunate but it makes the overall code shorter and
// simpler.
movl(saved_mark_addr, swap_reg);
if (need_tmp_reg) {
push(tmp_reg);
}
get_thread(tmp_reg);
xorl(swap_reg, tmp_reg);
if (swap_reg_contains_mark) {
null_check_offset = offset();
}
movl(tmp_reg, klass_addr);
xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
if (need_tmp_reg) {
pop(tmp_reg);
}
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->biased_lock_entry_count_addr()));
}
jcc(Assembler::equal, done);
Label try_revoke_bias;
Label try_rebias;
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
jcc(Assembler::notZero, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
testl(swap_reg, markOopDesc::epoch_mask_in_place);
jcc(Assembler::notZero, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
movl(swap_reg, saved_mark_addr);
andl(swap_reg,
markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
if (need_tmp_reg) {
push(tmp_reg);
}
get_thread(tmp_reg);
orl(tmp_reg, swap_reg);
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
pop(tmp_reg);
}
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
if (need_tmp_reg) {
push(tmp_reg);
}
get_thread(tmp_reg);
movl(swap_reg, klass_addr);
orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
movl(swap_reg, saved_mark_addr);
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
pop(tmp_reg);
}
// If the biasing toward our thread failed, then another thread
// succeeded in biasing it toward itself and we need to revoke that
// bias. The revocation will occur in the runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
movl(swap_reg, saved_mark_addr);
if (need_tmp_reg) {
push(tmp_reg);
}
movl(tmp_reg, klass_addr);
movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
if (os::is_MP()) {
lock();
}
cmpxchgptr(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
pop(tmp_reg);
}
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
}
bind(cas_label);
return null_check_offset;
}
void MacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
call(RuntimeAddress(entry_point));
increment(rsp, number_of_arguments * wordSize);
}
void MacroAssembler::cmpoop(Address src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop(Register src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::extend_sign(Register hi, Register lo) {
// According to Intel Doc. AP-526, "Integer Divide", p.18.
if (VM_Version::is_P6() && hi == rdx && lo == rax) {
cdql();
} else {
movl(hi, lo);
sarl(hi, 31);
}
}
void MacroAssembler::fat_nop() {
// A 5 byte nop that is safe for patching (see patch_verified_entry)
emit_byte(0x26); // es:
emit_byte(0x2e); // cs:
emit_byte(0x64); // fs:
emit_byte(0x65); // gs:
emit_byte(0x90);
}
void MacroAssembler::jC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::parity, L);
}
void MacroAssembler::jnC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::noParity, L);
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
jmp(as_Address(entry));
}
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
// Long compare for Java (semantics as described in JVM spec.)
Label high, low, done;
cmpl(x_hi, y_hi);
jcc(Assembler::less, low);
jcc(Assembler::greater, high);
// x_hi is the return register
xorl(x_hi, x_hi);
cmpl(x_lo, y_lo);
jcc(Assembler::below, low);
jcc(Assembler::equal, done);
bind(high);
xorl(x_hi, x_hi);
increment(x_hi);
jmp(done);
bind(low);
xorl(x_hi, x_hi);
decrementl(x_hi);
bind(done);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal32(dst, (int32_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
// leal(dst, as_Address(adr));
// see note in movl as to why we must use a move
mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}
void MacroAssembler::leave() {
mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
// Multiplication of two Java long values stored on the stack
// as illustrated below. Result is in rdx:rax.
//
// rsp ---> [ ?? ] \ \
// .... | y_rsp_offset |
// [ y_lo ] / (in bytes) | x_rsp_offset
// [ y_hi ] | (in bytes)
// .... |
// [ x_lo ] /
// [ x_hi ]
// ....
//
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
Label quick;
// load x_hi, y_hi and check if quick
// multiplication is possible
movl(rbx, x_hi);
movl(rcx, y_hi);
movl(rax, rbx);
orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0
jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply
// do full multiplication
// 1st step
mull(y_lo); // x_hi * y_lo
movl(rbx, rax); // save lo(x_hi * y_lo) in rbx,
// 2nd step
movl(rax, x_lo);
mull(rcx); // x_lo * y_hi
addl(rbx, rax); // add lo(x_lo * y_hi) to rbx,
// 3rd step
bind(quick); // note: rbx, = 0 if quick multiply!
movl(rax, x_lo);
mull(y_lo); // x_lo * y_lo
addl(rdx, rbx); // correct hi(x_lo * y_lo)
}
void MacroAssembler::lneg(Register hi, Register lo) {
negl(lo);
adcl(hi, 0);
negl(hi);
}
void MacroAssembler::lshl(Register hi, Register lo) {
// Java shift left long support (semantics as described in JVM spec., p.305)
// (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
// shift value is in rcx !
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(hi, lo); // x := x << n
xorl(lo, lo);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shldl(hi, lo); // x := x << s
shll(lo);
}
void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
// Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
// (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(lo, hi); // x := x >> n
if (sign_extension) sarl(hi, 31);
else xorl(hi, hi);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shrdl(lo, hi); // x := x >> s
if (sign_extension) sarl(hi);
else shrl(hi);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
if (src.is_lval()) {
mov_literal32(dst, (intptr_t)src.target(), src.rspec());
} else {
movl(dst, as_Address(src));
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movl(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movl(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
movl(dst, src);
}
void MacroAssembler::pop_callee_saved_registers() {
pop(rcx);
pop(rdx);
pop(rdi);
pop(rsi);
}
void MacroAssembler::pop_fTOS() {
fld_d(Address(rsp, 0));
addl(rsp, 2 * wordSize);
}
void MacroAssembler::push_callee_saved_registers() {
push(rsi);
push(rdi);
push(rdx);
push(rcx);
}
void MacroAssembler::push_fTOS() {
subl(rsp, 2 * wordSize);
fstp_d(Address(rsp, 0));
}
void MacroAssembler::pushoop(jobject obj) {
push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::pushptr(AddressLiteral src) {
if (src.is_lval()) {
push_literal32((int32_t)src.target(), src.rspec());
} else {
pushl(as_Address(src));
}
}
void MacroAssembler::set_word_if_not_zero(Register dst) {
xorl(dst, dst);
set_byte_if_not_zero(dst);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
masm->push(arg);
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
// In order to get locks to work, we need to fake a in_VM state
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
ttyLocker ttyl;
tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
if ((WizardMode || Verbose) && PrintMiscellaneous) {
tty->cr();
findpc(eip);
tty->cr();
}
#endif
tty->print_cr("rax = 0x%08x", rax);
tty->print_cr("rbx = 0x%08x", rbx);
tty->print_cr("rcx = 0x%08x", rcx);
tty->print_cr("rdx = 0x%08x", rdx);
tty->print_cr("rdi = 0x%08x", rdi);
tty->print_cr("rsi = 0x%08x", rsi);
tty->print_cr("rbp = 0x%08x", rbp);
tty->print_cr("rsp = 0x%08x", rsp);
BREAKPOINT;
assert(false, "start up GDB");
}
} else {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
}
void MacroAssembler::stop(const char* msg) {
ExternalAddress message((address)msg);
// push address of message
pushptr(message.addr());
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push_CPU_state();
ExternalAddress message((address) msg);
// push address of message
pushptr(message.addr());
call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
addl(rsp, wordSize); // discard argument
pop_CPU_state();
}
#else // _LP64
// 64 bit versions
Address MacroAssembler::as_Address(AddressLiteral adr) {
// amd64 always does this as a pc-rel
// we can be absolute or disp based on the instruction type
// jmp/call are displacements others are absolute
assert(!adr.is_lval(), "must be rval");
assert(reachable(adr), "must be");
return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
AddressLiteral base = adr.base();
lea(rscratch1, base);
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(rscratch1, index._index, index._scale, index._disp);
return array;
}
int MacroAssembler::biased_locking_enter(Register lock_reg,
Register obj_reg,
Register swap_reg,
Register tmp_reg,
bool swap_reg_contains_mark,
Label& done,
Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
assert(tmp_reg != noreg, "tmp_reg must be supplied");
assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
Address saved_mark_addr(lock_reg, 0);
if (PrintBiasedLockingStatistics && counters == NULL)
counters = BiasedLocking::counters();
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
// First check to see whether biasing is even enabled for this object
Label cas_label;
int null_check_offset = -1;
if (!swap_reg_contains_mark) {
null_check_offset = offset();
movq(swap_reg, mark_addr);
}
movq(tmp_reg, swap_reg);
andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
jcc(Assembler::notEqual, cas_label);
// The bias pattern is present in the object's header. Need to check
// whether the bias owner and the epoch are both still current.
load_prototype_header(tmp_reg, obj_reg);
orq(tmp_reg, r15_thread);
xorq(tmp_reg, swap_reg);
andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
}
jcc(Assembler::equal, done);
Label try_revoke_bias;
Label try_rebias;
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
jcc(Assembler::notZero, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
testq(tmp_reg, markOopDesc::epoch_mask_in_place);
jcc(Assembler::notZero, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
andq(swap_reg,
markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
movq(tmp_reg, swap_reg);
orq(tmp_reg, r15_thread);
if (os::is_MP()) {
lock();
}
cmpxchgq(tmp_reg, Address(obj_reg, 0));
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_prototype_header(tmp_reg, obj_reg);
orq(tmp_reg, r15_thread);
if (os::is_MP()) {
lock();
}
cmpxchgq(tmp_reg, Address(obj_reg, 0));
// If the biasing toward our thread failed, then another thread
// succeeded in biasing it toward itself and we need to revoke that
// bias. The revocation will occur in the runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_prototype_header(tmp_reg, obj_reg);
if (os::is_MP()) {
lock();
}
cmpxchgq(tmp_reg, Address(obj_reg, 0));
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
}
bind(cas_label);
return null_check_offset;
}
void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
Label L, E;
#ifdef _WIN64
// Windows always allocates space for it's register args
assert(num_args <= 4, "only register arguments supported");
subq(rsp, frame::arg_reg_save_area_bytes);
#endif
// Align stack if necessary
testl(rsp, 15);
jcc(Assembler::zero, L);
subq(rsp, 8);
{
call(RuntimeAddress(entry_point));
}
addq(rsp, 8);
jmp(E);
bind(L);
{
call(RuntimeAddress(entry_point));
}
bind(E);
#ifdef _WIN64
// restore stack pointer
addq(rsp, frame::arg_reg_save_area_bytes);
#endif
}
void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "should use cmpptr");
if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
}
int MacroAssembler::corrected_idivq(Register reg) {
// Full implementation of Java ldiv and lrem; checks for special
// case as described in JVM spec., p.243 & p.271. The function
// returns the (pc) offset of the idivl instruction - may be needed
// for implicit exceptions.
//
// normal case special case
//
// input : rax: dividend min_long
// reg: divisor (may not be eax/edx) -1
//
// output: rax: quotient (= rax idiv reg) min_long
// rdx: remainder (= rax irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
static const int64_t min_long = 0x8000000000000000;
Label normal_case, special_case;
// check for special case
cmp64(rax, ExternalAddress((address) &min_long));
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where
// remainder = 0)
cmpq(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdqq();
int idivq_offset = offset();
idivq(reg);
// normal and special case exit
bind(special_case);
return idivq_offset;
}
void MacroAssembler::decrementq(Register reg, int value) {
if (value == min_jint) { subq(reg, value); return; }
if (value < 0) { incrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(reg) ; return; }
/* else */ { subq(reg, value) ; return; }
}
void MacroAssembler::decrementq(Address dst, int value) {
if (value == min_jint) { subq(dst, value); return; }
if (value < 0) { incrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decq(dst) ; return; }
/* else */ { subq(dst, value) ; return; }
}
void MacroAssembler::fat_nop() {
// A 5 byte nop that is safe for patching (see patch_verified_entry)
// Recommened sequence from 'Software Optimization Guide for the AMD
// Hammer Processor'
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90);
emit_byte(0x66);
emit_byte(0x90);
}
void MacroAssembler::incrementq(Register reg, int value) {
if (value == min_jint) { addq(reg, value); return; }
if (value < 0) { decrementq(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(reg) ; return; }
/* else */ { addq(reg, value) ; return; }
}
void MacroAssembler::incrementq(Address dst, int value) {
if (value == min_jint) { addq(dst, value); return; }
if (value < 0) { decrementq(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incq(dst) ; return; }
/* else */ { addq(dst, value) ; return; }
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
lea(rscratch1, entry.base());
Address dispatch = entry.index();
assert(dispatch._base == noreg, "must be");
dispatch._base = rscratch1;
jmp(dispatch);
}
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
cmpq(x_lo, y_lo);
}
void MacroAssembler::lea(Register dst, AddressLiteral src) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
movptr(dst, rscratch1);
}
void MacroAssembler::leave() {
// %%% is this really better? Why not on 32bit too?
emit_byte(0xC9); // LEAVE
}
void MacroAssembler::lneg(Register hi, Register lo) {
ShouldNotReachHere(); // 64bit doesn't use two regs
negq(lo);
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
movq(dst, rscratch1);
}
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
if (src.is_lval()) {
mov_literal64(dst, (intptr_t)src.target(), src.rspec());
} else {
if (reachable(src)) {
movq(dst, as_Address(src));
} else {
lea(rscratch1, src);
movq(dst, Address(rscratch1,0));
}
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movq(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movq(dst, as_Address(src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
mov64(rscratch1, src);
movq(dst, rscratch1);
}
// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
movslq(dst, src);
}
void MacroAssembler::movptr(Register dst, int32_t src) {
mov64(dst, (intptr_t)src);
}
void MacroAssembler::pushoop(jobject obj) {
movoop(rscratch1, obj);
push(rscratch1);
}
void MacroAssembler::pushptr(AddressLiteral src) {
lea(rscratch1, src);
if (src.is_lval()) {
push(rscratch1);
} else {
pushq(Address(rscratch1, 0));
}
}
void MacroAssembler::reset_last_Java_frame(bool clear_fp,
bool clear_pc) {
// we must set sp to zero to clear frame
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
// must clear fp, so that compiled frames are not confused; it is
// possible that we need it only for debugging
if (clear_fp) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
if (clear_pc) {
movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
}
}
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
Address java_pc(r15_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
lea(rscratch1, InternalAddress(last_java_pc));
movptr(java_pc, rscratch1);
}
movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
static void pass_arg0(MacroAssembler* masm, Register arg) {
if (c_rarg0 != arg ) {
masm->mov(c_rarg0, arg);
}
}
static void pass_arg1(MacroAssembler* masm, Register arg) {
if (c_rarg1 != arg ) {
masm->mov(c_rarg1, arg);
}
}
static void pass_arg2(MacroAssembler* masm, Register arg) {
if (c_rarg2 != arg ) {
masm->mov(c_rarg2, arg);
}
}
static void pass_arg3(MacroAssembler* masm, Register arg) {
if (c_rarg3 != arg ) {
masm->mov(c_rarg3, arg);
}
}
void MacroAssembler::stop(const char* msg) {
address rip = pc();
pusha(); // get regs on stack
lea(c_rarg0, ExternalAddress((address) msg));
lea(c_rarg1, InternalAddress(rip));
movq(c_rarg2, rsp); // pass pointer to regs array
andq(rsp, -16); // align stack as required by ABI
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push(rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, ExternalAddress((address) msg));
call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
pop_CPU_state();
pop(rsp);
}
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
// In order to get locks to work, we need to fake a in_VM state
if (ShowMessageBoxOnError ) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
ttyLocker ttyl;
BytecodeCounter::print();
}
#endif
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// XXX correct this offset for amd64
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
ttyLocker ttyl;
tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
tty->print_cr("rax = 0x%016lx", regs[15]);
tty->print_cr("rbx = 0x%016lx", regs[12]);
tty->print_cr("rcx = 0x%016lx", regs[14]);
tty->print_cr("rdx = 0x%016lx", regs[13]);
tty->print_cr("rdi = 0x%016lx", regs[8]);
tty->print_cr("rsi = 0x%016lx", regs[9]);
tty->print_cr("rbp = 0x%016lx", regs[10]);
tty->print_cr("rsp = 0x%016lx", regs[11]);
tty->print_cr("r8 = 0x%016lx", regs[7]);
tty->print_cr("r9 = 0x%016lx", regs[6]);
tty->print_cr("r10 = 0x%016lx", regs[5]);
tty->print_cr("r11 = 0x%016lx", regs[4]);
tty->print_cr("r12 = 0x%016lx", regs[3]);
tty->print_cr("r13 = 0x%016lx", regs[2]);
tty->print_cr("r14 = 0x%016lx", regs[1]);
tty->print_cr("r15 = 0x%016lx", regs[0]);
BREAKPOINT;
}
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
} else {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
msg);
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
}
#endif // _LP64
// Now versions that are common to 32/64 bit
void MacroAssembler::addptr(Register dst, int32_t imm32) {
LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
}
void MacroAssembler::addptr(Register dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addptr(Address dst, Register src) {
LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}
void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::addsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::addsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
addss(dst, as_Address(src));
} else {
lea(rscratch1, src);
addss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::align(int modulus) {
if (offset() % modulus != 0) {
nop(modulus - (offset() % modulus));
}
}
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::andpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
// Used in sign-masking with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::andps(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::andps(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::andptr(Register dst, int32_t imm32) {
LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
pushf();
if (os::is_MP())
lock();
incrementl(counter_addr);
popf();
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
movptr(tmp, rsp);
// Bang stack for total size given plus shadow page size.
// Bang one page at a time because large size can bang beyond yellow and
// red zones.
Label loop;
bind(loop);
movl(Address(tmp, (-os::vm_page_size())), size );
subptr(tmp, os::vm_page_size());
subl(size, os::vm_page_size());
jcc(Assembler::greater, loop);
// Bang down shadow pages too.
// The -1 because we already subtracted 1 page.
for (int i = 0; i< StackShadowPages-1; i++) {
// this could be any sized move but this is can be a debugging crumb
// so the bigger the better.
movptr(Address(tmp, (-i*os::vm_page_size())), size );
}
}
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
assert(UseBiasedLocking, "why call this otherwise?");
// Check for biased locking unlock case, which is a no-op
// Note: we do not have to check the thread ID for two reasons.
// First, the interpreter checks for IllegalMonitorStateException at
// a higher level. Second, if the bias was revoked while we held the
// lock, the object could not be rebiased toward another thread, so
// the bias bit would be clear.
movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
jcc(Assembler::equal, done);
}
void MacroAssembler::c2bool(Register x) {
// implements x == 0 ? 0 : 1
// note: must only look at least-significant byte of x
// since C-style booleans are stored in one byte
// only! (was bug)
andl(x, 0xFF);
setb(Assembler::notZero, x);
}
// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
Assembler::call(L, rtype);
}
void MacroAssembler::call(Register entry) {
Assembler::call(entry);
}
void MacroAssembler::call(AddressLiteral entry) {
if (reachable(entry)) {
Assembler::call_literal(entry.target(), entry.rspec());
} else {
lea(rscratch1, entry);
Assembler::call(rscratch1);
}
}
// Implementation of call_VM versions
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
call_VM_helper(oop_result, entry_point, 0, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 1, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 2, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM_helper(oop_result, entry_point, 3, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
bool check_exceptions) {
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::super_call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1,
Register arg_2,
Register arg_3,
bool check_exceptions) {
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
pass_arg1(this, arg_1);
super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// determine java_thread register
if (!java_thread->is_valid()) {
#ifdef _LP64
java_thread = r15_thread;
#else
java_thread = rdi;
get_thread(java_thread);
#endif // LP64
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
#ifdef ASSERT
// TraceBytecodes does not use r12 but saves it over the call, so don't verify
// r12 is the heapbase.
LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
#endif // ASSERT
assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
// push java thread (becomes first argument of C function)
NOT_LP64(push(java_thread); number_of_arguments++);
LP64_ONLY(mov(c_rarg0, r15_thread));
// set last Java frame before call
assert(last_java_sp != rbp, "can't use ebp/rbp");
// Only interpreter should have to set fp
set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
// do the call, remove parameters
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
// restore the thread (cannot use the pushed argument since arguments
// may be overwritten by C code generated by an optimizing compiler);
// however can use the register value directly if it is callee saved.
if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
// rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
guarantee(java_thread != rax, "change this code");
push(rax);
{ Label L;
get_thread(rax);
cmpptr(java_thread, rax);
jcc(Assembler::equal, L);
stop("MacroAssembler::call_VM_base: rdi not callee saved?");
bind(L);
}
pop(rax);
#endif
} else {
get_thread(java_thread);
}
// reset last Java frame
// Only interpreter should have to clear fp
reset_last_Java_frame(java_thread, true, false);
#ifndef CC_INTERP
// C++ interp handles this in the interpreter
check_and_handle_popframe(java_thread);
check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */
if (check_exceptions) {
// check for pending exceptions (java_thread is set upon return)
cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
jump_cc(Assembler::notEqual,
RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
// This used to conditionally jump to forward_exception however it is
// possible if we relocate that the branch will not reach. So we must jump
// around so we can always reach
Label ok;
jcc(Assembler::equal, ok);
jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
bind(ok);
#endif // LP64
}
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
verify_oop(oop_result, "broken oop in call_VM_base");
}
}
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
// Calculate the value for last_Java_sp
// somewhat subtle. call_VM does an intermediate call
// which places a return address on the stack just under the
// stack pointer as the user finsihed with it. This allows
// use to retrieve last_Java_pc from last_Java_sp[-1].
// On 32bit we then have to push additional args on the stack to accomplish
// the actual requested call. On 64bit call_VM only can use register args
// so the only extra space is the return address that call_VM created.
// This hopefully explains the calculations here.
#ifdef _LP64
// We've pushed one address, correct last_Java_sp
lea(rax, Address(rsp, wordSize));
#else
lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64
call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
call_VM_leaf_base(entry_point, number_of_arguments);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 1);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 2);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
call_VM_leaf(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 2);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 3);
}
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
pass_arg3(this, arg_3);
LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
pass_arg2(this, arg_2);
LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
pass_arg1(this, arg_1);
pass_arg0(this, arg_0);
MacroAssembler::call_VM_leaf_base(entry_point, 4);
}
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
if (reachable(src1)) {
cmpl(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpl(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
assert(!src2.is_lval(), "use cmpptr");
if (reachable(src2)) {
cmpl(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
cmpl(src1, Address(rscratch1, 0));
}
}
void MacroAssembler::cmp32(Register src1, int32_t imm) {
Assembler::cmpl(src1, imm);
}
void MacroAssembler::cmp32(Register src1, Address src2) {
Assembler::cmpl(src1, src2);
}
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomisd(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomiss(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
if (reachable(src1)) {
cmpb(as_Address(src1), imm);
} else {
lea(rscratch1, src1);
cmpb(Address(rscratch1, 0), imm);
}
}
void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
if (src2.is_lval()) {
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
} else if (reachable(src2)) {
cmpq(src1, as_Address(src2));
} else {
lea(rscratch1, src2);
Assembler::cmpq(src1, Address(rscratch1, 0));
}
#else
if (src2.is_lval()) {
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
} else {
cmpl(src1, as_Address(src2));
}
#endif // _LP64
}
void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
// moves src2's literal address
movptr(rscratch1, src2);
Assembler::cmpq(src1, rscratch1);
#else
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}
void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
if (reachable(adr)) {
if (os::is_MP())
lock();
cmpxchgptr(reg, as_Address(adr));
} else {
lea(rscratch1, adr);
if (os::is_MP())
lock();
cmpxchgptr(reg, Address(rscratch1, 0));
}
}
void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}
void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::comiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::comiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
Condition negated_cond = negate_condition(cond);
Label L;
jcc(negated_cond, L);
atomic_incl(counter_addr);
bind(L);
}
int MacroAssembler::corrected_idivl(Register reg) {
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
// The function returns the (pc) offset of the idivl
// instruction - may be needed for implicit exceptions.
//
// normal case special case
//
// input : rax,: dividend min_int
// reg: divisor (may not be rax,/rdx) -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
const int min_int = 0x80000000;
Label normal_case, special_case;
// check for special case
cmpl(rax, min_int);
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
cmpl(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdql();
int idivl_offset = offset();
idivl(reg);
// normal and special case exit
bind(special_case);
return idivl_offset;
}
void MacroAssembler::decrementl(Register reg, int value) {
if (value == min_jint) {subl(reg, value) ; return; }
if (value < 0) { incrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(reg) ; return; }
/* else */ { subl(reg, value) ; return; }
}
void MacroAssembler::decrementl(Address dst, int value) {
if (value == min_jint) {subl(dst, value) ; return; }
if (value < 0) { incrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(dst) ; return; }
/* else */ { subl(dst, value) ; return; }
}
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
assert (shift_value > 0, "illegal shift value");
Label _is_positive;
testl (reg, reg);
jcc (Assembler::positive, _is_positive);
int offset = (1 << shift_value) - 1 ;
if (offset == 1) {
incrementl(reg);
} else {
addl(reg, offset);
}
bind (_is_positive);
sarl(reg, shift_value);
}
void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::divss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::divss(dst, Address(rscratch1, 0));
}
}
// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
void MacroAssembler::empty_FPU_stack() {
if (VM_Version::supports_mmx()) {
emms();
} else {
for (int i = 8; i-- > 0; ) ffree(i);
}
}
#endif // !LP64 || C1 || !C2
// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, var_size_in_bytes, t1);
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
jmp(slow_case);
} else {
Register end = t1;
Label retry;
bind(retry);
ExternalAddress heap_top((address) Universe::heap()->top_addr());
movptr(obj, heap_top);
if (var_size_in_bytes == noreg) {
lea(end, Address(obj, con_size_in_bytes));
} else {
lea(end, Address(obj, var_size_in_bytes, Address::times_1));
}
// if end < obj then we wrapped around => object too long => slow case
cmpptr(end, obj);
jcc(Assembler::below, slow_case);
cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
jcc(Assembler::above, slow_case);
// Compare obj with the top addr, and if still equal, store the new top addr in
// end at the address of the top addr pointer. Sets ZF if was equal, and clears
// it otherwise. Use lock prefix for atomicity on MPs.
locked_cmpxchgptr(end, heap_top);
jcc(Assembler::notEqual, retry);
}
}
void MacroAssembler::enter() {
push(rbp);
mov(rbp, rsp);
}
void MacroAssembler::fcmp(Register tmp) {
fcmp(tmp, 1, true, true);
}
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
assert(!pop_right || pop_left, "usage error");
if (VM_Version::supports_cmov()) {
assert(tmp == noreg, "unneeded temp");
if (pop_left) {
fucomip(index);
} else {
fucomi(index);
}
if (pop_right) {
fpop();
}
} else {
assert(tmp != noreg, "need temp");
if (pop_left) {
if (pop_right) {
fcompp();
} else {
fcomp(index);
}
} else {
fcom(index);
}
// convert FPU condition into eflags condition via rax,
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
}
// condition codes set as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
fcmp2int(dst, unordered_is_less, 1, true, true);
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrementl(dst);
}
bind(L);
}
void MacroAssembler::fld_d(AddressLiteral src) {
fld_d(as_Address(src));
}
void MacroAssembler::fld_s(AddressLiteral src) {
fld_s(as_Address(src));
}
void MacroAssembler::fld_x(AddressLiteral src) {
Assembler::fld_x(as_Address(src));
}
void MacroAssembler::fldcw(AddressLiteral src) {
Assembler::fldcw(as_Address(src));
}
void MacroAssembler::fpop() {
ffree();
fincstp();
}
void MacroAssembler::fremr(Register tmp) {
save_rax(tmp);
{ Label L;
bind(L);
fprem();
fwait(); fnstsw_ax();
#ifdef _LP64
testl(rax, 0x400);
jcc(Assembler::notEqual, L);
#else
sahf();
jcc(Assembler::parity, L);
#endif // _LP64
}
restore_rax(tmp);
// Result is in ST0.
// Note: fxch & fpop to get rid of ST1
// (otherwise FPU stack could overflow eventually)
fxch(1);
fpop();
}
void MacroAssembler::incrementl(AddressLiteral dst) {
if (reachable(dst)) {
incrementl(as_Address(dst));
} else {
lea(rscratch1, dst);
incrementl(Address(rscratch1, 0));
}
}
void MacroAssembler::incrementl(ArrayAddress dst) {
incrementl(as_Address(dst));
}
void MacroAssembler::incrementl(Register reg, int value) {
if (value == min_jint) {addl(reg, value) ; return; }
if (value < 0) { decrementl(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(reg) ; return; }
/* else */ { addl(reg, value) ; return; }
}
void MacroAssembler::incrementl(Address dst, int value) {
if (value == min_jint) {addl(dst, value) ; return; }
if (value < 0) { decrementl(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(dst) ; return; }
/* else */ { addl(dst, value) ; return; }
}
void MacroAssembler::jump(AddressLiteral dst) {
if (reachable(dst)) {
jmp_literal(dst.target(), dst.rspec());
} else {
lea(rscratch1, dst);
jmp(rscratch1);
}
}
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
if (reachable(dst)) {
InstructionMark im(this);
relocate(dst.reloc());
const int short_size = 2;
const int long_size = 6;
int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(offs - long_size);
}
} else {
#ifdef ASSERT
warning("reversing conditional branch");
#endif /* ASSERT */
Label skip;
jccb(reverse[cc], skip);
lea(rscratch1, dst);
Assembler::jmp(rscratch1);
bind(skip);
}
}
void MacroAssembler::ldmxcsr(AddressLiteral src) {
if (reachable(src)) {
Assembler::ldmxcsr(as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ldmxcsr(Address(rscratch1, 0));
}
}
int MacroAssembler::load_signed_byte(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
off = offset();
movsbl(dst, src); // movsxb
} else {
off = load_unsigned_byte(dst, src);
shll(dst, 24);
sarl(dst, 24);
}
return off;
}
// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
// This is dubious to me since it seems safe to do a signed 16 => 64 bit
// version but this is what 64bit has always done. This seems to imply
// that users are only using 32bits worth.
off = offset();
movswl(dst, src); // movsxw
} else {
off = load_unsigned_short(dst, src);
shll(dst, 16);
sarl(dst, 16);
}
return off;
}
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzbl(dst, src); // movzxb
} else {
xorl(dst, dst);
off = offset();
movb(dst, src);
}
return off;
}
// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzwl(dst, src); // movzxw
} else {
xorl(dst, dst);
off = offset();
movw(dst, src);
}
return off;
}
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(dst2 != noreg, "second dest register required");
movl(dst, src);
movl(dst2, src.plus_disp(BytesPerInt));
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
switch (size_in_bytes) {
#ifndef _LP64
case 8:
assert(src2 != noreg, "second source register required");
movl(dst, src);
movl(dst.plus_disp(BytesPerInt), src2);
break;
#else
case 8: movq(dst, src); break;
#endif
case 4: movl(dst, src); break;
case 2: movw(dst, src); break;
case 1: movb(dst, src); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
if (reachable(dst)) {
movl(as_Address(dst), src);
} else {
lea(rscratch1, dst);
movl(Address(rscratch1, 0), src);
}
}
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
if (reachable(src)) {
movl(dst, as_Address(src));
} else {
lea(rscratch1, src);
movl(dst, Address(rscratch1, 0));
}
}
// C++ bool manipulation
void MacroAssembler::movbool(Register dst, Address src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, bool boolconst) {
if(sizeof(bool) == 1)
movb(dst, (int) boolconst);
else if(sizeof(bool) == 2)
movw(dst, (int) boolconst);
else if(sizeof(bool) == 4)
movl(dst, (int) boolconst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, Register src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
movb(as_Address(dst), src);
}
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
if (UseXmmLoadAndClearUpper) {
movsd (dst, as_Address(src));
} else {
movlpd(dst, as_Address(src));
}
} else {
lea(rscratch1, src);
if (UseXmmLoadAndClearUpper) {
movsd (dst, Address(rscratch1, 0));
} else {
movlpd(dst, Address(rscratch1, 0));
}
}
}
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movptr(Register dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Register dst, Address src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movptr(Address dst, Register src) {
LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::movss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::movss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::mulss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::mulss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check(offset)) {
// provoke OS NULL exception if reg = NULL by
// accessing M[reg] w/o changing any (non-CC) registers
// NOTE: cmpl is plenty here to provoke a segv
cmpptr(rax, Address(reg, 0));
// Note: should probably use testl(rax, Address(reg, 0));
// may be shorter code (however, this version of
// testl needs to be implemented first)
} else {
// nothing to do, (later) access of M[reg + offset]
// will provoke OS NULL exception if reg = NULL
}
}
void MacroAssembler::os_breakpoint() {
// instead of directly emitting a breakpoint, call os:breakpoint for better debugability
// (e.g., MSVC can't call ps() otherwise)
call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}
void MacroAssembler::pop_CPU_state() {
pop_FPU_state();
pop_IU_state();
}
void MacroAssembler::pop_FPU_state() {
NOT_LP64(frstor(Address(rsp, 0));)
LP64_ONLY(fxrstor(Address(rsp, 0));)
addptr(rsp, FPUStateSizeInWords * wordSize);
}
void MacroAssembler::pop_IU_state() {
popa();
LP64_ONLY(addq(rsp, 8));
popf();
}
// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
push_IU_state();
push_FPU_state();
}
void MacroAssembler::push_FPU_state() {
subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
fnsave(Address(rsp, 0));
fwait();
#else
fxsave(Address(rsp, 0));
#endif // LP64
}
void MacroAssembler::push_IU_state() {
// Push flags first because pusha kills them
pushf();
// Make sure rsp stays 16-byte aligned
LP64_ONLY(subq(rsp, 8));
pusha();
}
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// we must set sp to zero to clear frame
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
if (clear_fp) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
}
if (clear_pc)
movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
}
void MacroAssembler::restore_rax(Register tmp) {
if (tmp == noreg) pop(rax);
else if (tmp != rax) mov(rax, tmp);
}
void MacroAssembler::round_to(Register reg, int modulus) {
addptr(reg, modulus - 1);
andptr(reg, -modulus);
}
void MacroAssembler::save_rax(Register tmp) {
if (tmp == noreg) push(rax);
else if (tmp != rax) mov(tmp, rax);
}
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
movl(tmp, thread);
shrl(tmp, os::get_serialize_page_shift_count());
andl(tmp, (os::vm_page_size() - sizeof(int)));
Address index(noreg, tmp, Address::times_1);
ExternalAddress page(os::get_memory_serialize_page());
// Size of store must match masking code above
movl(as_Address(ArrayAddress(page, index)), tmp);
}
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
lea(Address(java_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
InternalAddress(last_java_pc));
}
movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
void MacroAssembler::shlptr(Register dst, int imm8) {
LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}
void MacroAssembler::shrptr(Register dst, int imm8) {
LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}
void MacroAssembler::sign_extend_byte(Register reg) {
if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
movsbl(reg, reg); // movsxb
} else {
shll(reg, 24);
sarl(reg, 24);
}
}
void MacroAssembler::sign_extend_short(Register reg) {
if (LP64_ONLY(true ||) VM_Version::is_P6()) {
movswl(reg, reg); // movsxw
} else {
shll(reg, 16);
sarl(reg, 16);
}
}
void MacroAssembler::testl(Register dst, AddressLiteral src) {
assert(reachable(src), "Address should be reachable");
testl(dst, as_Address(src));
}
void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::sqrtss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::sqrtss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subsd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subsd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::subss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::subss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomisd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomisd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
if (reachable(src)) {
Assembler::ucomiss(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::ucomiss(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorpd(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::xorpd(dst, Address(rscratch1, 0));
}
}
void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
// Used in sign-bit flipping with aligned address.
assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
if (reachable(src)) {
Assembler::xorps(dst, as_Address(src));
} else {
lea(rscratch1, src);
Assembler::xorps(dst, Address(rscratch1, 0));
}
}
// AVX 3-operands instructions
void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vaddss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vaddss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vandpd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vandpd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vandps(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vandps(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vdivss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vdivss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vmulss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vmulss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubsd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubsd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vsubss(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vsubss(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vxorpd(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vxorpd(dst, nds, Address(rscratch1, 0));
}
}
void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
if (reachable(src)) {
vxorps(dst, nds, as_Address(src));
} else {
lea(rscratch1, src);
vxorps(dst, nds, Address(rscratch1, 0));
}
}
//////////////////////////////////////////////////////////////////////////////////
#ifndef SERIALGC
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Label done;
Label runtime;
assert(pre_val != noreg, "check this code");
if (obj != noreg) {
assert_different_registers(obj, pre_val, tmp);
assert(pre_val != rax, "check this code");
}
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_active()));
Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
PtrQueue::byte_offset_of_buf()));
// Is marking active?
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
cmpl(in_progress, 0);
} else {
assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
cmpb(in_progress, 0);
}
jcc(Assembler::equal, done);
// Do we need to load the previous value?
if (obj != noreg) {
load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
cmpptr(pre_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
movptr(tmp, index); // tmp := *index_adr
cmpptr(tmp, 0); // tmp == 0?
jcc(Assembler::equal, runtime); // If yes, goto runtime
subptr(tmp, wordSize); // tmp := tmp - wordSize
movptr(index, tmp); // *index_adr := tmp
addptr(tmp, buffer); // tmp := tmp + *buffer_adr
// Record the previous value
movptr(Address(tmp, 0), pre_val);
jmp(done);
bind(runtime);
// save the live input values
if(tosca_live) push(rax);
if (obj != noreg && obj != rax)
push(obj);
if (pre_val != rax)
push(pre_val);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
NOT_LP64( push(thread); )
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
pass_arg1(this, thread);
pass_arg0(this, pre_val);
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
NOT_LP64( pop(thread); )
// save the live input values
if (pre_val != rax)
pop(pre_val);
if (obj != noreg && obj != rax)
pop(obj);
if(tosca_live) pop(rax);
bind(done);
}
void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_buf()));
BarrierSet* bs = Universe::heap()->barrier_set();
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
Label done;
Label runtime;
// Does store cross heap regions?
movptr(tmp, store_addr);
xorptr(tmp, new_val);
shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
jcc(Assembler::equal, done);
// crosses regions, storing NULL?
cmpptr(new_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// storing region crossing non-NULL, is card already dirty?
ExternalAddress cardtable((address) ct->byte_map_base);
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
#ifdef _LP64
const Register card_addr = tmp;
movq(card_addr, store_addr);
shrq(card_addr, CardTableModRefBS::card_shift);
lea(tmp2, cardtable);
// get the address of the card
addq(card_addr, tmp2);
#else
const Register card_index = tmp;
movl(card_index, store_addr);
shrl(card_index, CardTableModRefBS::card_shift);
Address index(noreg, card_index, Address::times_1);
const Register card_addr = tmp;
lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
#endif
cmpb(Address(card_addr, 0), 0);
jcc(Assembler::equal, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
movb(Address(card_addr, 0), 0);
cmpl(queue_index, 0);
jcc(Assembler::equal, runtime);
subl(queue_index, wordSize);
movptr(tmp2, buffer);
#ifdef _LP64
movslq(rscratch1, queue_index);
addq(tmp2, rscratch1);
movq(Address(tmp2, 0), card_addr);
#else
addl(tmp2, queue_index);
movl(Address(tmp2, 0), card_index);
#endif
jmp(done);
bind(runtime);
// save the live input values
push(store_addr);
push(new_val);
#ifdef _LP64
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
push(thread);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
pop(thread);
#endif
pop(new_val);
pop(store_addr);
bind(done);
}
#endif // SERIALGC
//////////////////////////////////////////////////////////////////////////////////
void MacroAssembler::store_check(Register obj) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
store_check_part_1(obj);
store_check_part_2(obj);
}
void MacroAssembler::store_check(Register obj, Address dst) {
store_check(obj);
}
// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
shrptr(obj, CardTableModRefBS::card_shift);
}
void MacroAssembler::store_check_part_2(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
// The calculation for byte_map_base is as follows:
// byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
// So this essentially converts an address to a displacement and
// it will never need to be relocated. On 64bit however the value may be too
// large for a 32bit displacement
intptr_t disp = (intptr_t) ct->byte_map_base;
if (is_simm32(disp)) {
Address cardtable(noreg, obj, Address::times_1, disp);
movb(cardtable, 0);
} else {
// By doing it as an ExternalAddress disp could be converted to a rip-relative
// displacement and done in a single instruction given favorable mapping and
// a smarter version of as_Address. Worst case it is two instructions which
// is no worse off then loading disp into a register and doing as a simple
// Address() as above.
// We can't do as ExternalAddress as the only style since if disp == 0 we'll
// assert since NULL isn't acceptable in a reloci (see 6644928). In any case
// in some cases we'll get a single instruction version.
ExternalAddress cardtable((address)disp);
Address index(noreg, obj, Address::times_1);
movb(as_Address(ArrayAddress(cardtable, index)), 0);
}
}
void MacroAssembler::subptr(Register dst, int32_t imm32) {
LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}
void MacroAssembler::subptr(Register dst, Register src) {
LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}
// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
if(sizeof(bool) == 1)
testb(dst, 0xff);
else if(sizeof(bool) == 2) {
// testw implementation needed for two byte bools
ShouldNotReachHere();
} else if(sizeof(bool) == 4)
testl(dst, dst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::testptr(Register dst, Register src) {
LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
}
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1,
Register t2,
Label& slow_case) {
assert_different_registers(obj, t1, t2);
assert_different_registers(obj, var_size_in_bytes, t1);
Register end = t2;
Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
verify_tlab();
NOT_LP64(get_thread(thread));
movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
if (var_size_in_bytes == noreg) {
lea(end, Address(obj, con_size_in_bytes));
} else {
lea(end, Address(obj, var_size_in_bytes, Address::times_1));
}
cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
jcc(Assembler::above, slow_case);
// update the tlab top pointer
movptr(Address(thread, JavaThread::tlab_top_offset()), end);
// recover var_size_in_bytes if necessary
if (var_size_in_bytes == end) {
subptr(var_size_in_bytes, obj);
}
verify_tlab();
}
// Preserves rbx, and rdx.
Register MacroAssembler::tlab_refill(Label& retry,
Label& try_eden,
Label& slow_case) {
Register top = rax;
Register t1 = rcx;
Register t2 = rsi;
Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
Label do_refill, discard_tlab;
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden.
jmp(slow_case);
}
NOT_LP64(get_thread(thread_reg));
movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
// calculate amount of free space
subptr(t1, top);
shrptr(t1, LogHeapWordSize);
// Retain tlab and allocate object in shared space if
// the amount free in the tlab is too large to discard.
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
jcc(Assembler::lessEqual, discard_tlab);
// Retain
// %%% yuck as movptr...
movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
if (TLABStats) {
// increment number of slow_allocations
addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
}
jmp(try_eden);
bind(discard_tlab);
if (TLABStats) {
// increment number of refills
addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
// accumulate wastage -- t1 is amount free in tlab
addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
}
// if tlab is currently allocated (top or end != null) then
// fill [top, end + alignment_reserve) with array object
testptr(top, top);
jcc(Assembler::zero, do_refill);
// set up the mark word
movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
// set the length to the remaining space
subptr(t1, typeArrayOopDesc::header_size(T_INT));
addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
// set klass to intArrayKlass
// dubious reloc why not an oop reloc?
movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
// store klass last. concurrent gcs assumes klass length is valid if
// klass field is not null.
store_klass(top, t1);
movptr(t1, top);
subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
incr_allocated_bytes(thread_reg, t1, 0);
// refill the tlab with an eden allocation
bind(do_refill);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shlptr(t1, LogHeapWordSize);
// allocate new tlab, address returned in top
eden_allocate(top, t1, 0, t2, slow_case);
// Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
if (UseTLAB) {
Label ok;
Register tsize = rsi;
assert_different_registers(tsize, thread_reg, t1);
push(tsize);
movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shlptr(tsize, LogHeapWordSize);
cmpptr(t1, tsize);
jcc(Assembler::equal, ok);
stop("assert(t1 != tlab size)");
should_not_reach_here();
bind(ok);
pop(tsize);
}
#endif
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
addptr(top, t1);
subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
verify_tlab();
jmp(retry);
return thread_reg; // for use by caller
}
void MacroAssembler::incr_allocated_bytes(Register thread,
Register var_size_in_bytes,
int con_size_in_bytes,
Register t1) {
if (!thread->is_valid()) {
#ifdef _LP64
thread = r15_thread;
#else
assert(t1->is_valid(), "need temp reg");
thread = t1;
get_thread(thread);
#endif
}
#ifdef _LP64
if (var_size_in_bytes->is_valid()) {
addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
} else {
addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
}
#else
if (var_size_in_bytes->is_valid()) {
addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
} else {
addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
}
adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
#endif
}
static const double pi_4 = 0.7853981633974483;
void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
// A hand-coded argument reduction for values in fabs(pi/4, pi/2)
// was attempted in this code; unfortunately it appears that the
// switch to 80-bit precision and back causes this to be
// unprofitable compared with simply performing a runtime call if
// the argument is out of the (-pi/4, pi/4) range.
Register tmp = noreg;
if (!VM_Version::supports_cmov()) {
// fcmp needs a temporary so preserve rbx,
tmp = rbx;
push(tmp);
}
Label slow_case, done;
ExternalAddress pi4_adr = (address)&pi_4;
if (reachable(pi4_adr)) {
// x ?<= pi/4
fld_d(pi4_adr);
fld_s(1); // Stack: X PI/4 X
fabs(); // Stack: |X| PI/4 X
fcmp(tmp);
jcc(Assembler::above, slow_case);
// fastest case: -pi/4 <= x <= pi/4
switch(trig) {
case 's':
fsin();
break;
case 'c':
fcos();
break;
case 't':
ftan();
break;
default:
assert(false, "bad intrinsic");
break;
}
jmp(done);
}
// slow case: runtime call
bind(slow_case);
// Preserve registers across runtime call
pusha();
int incoming_argument_and_return_value_offset = -1;
if (num_fpu_regs_in_use > 1) {
// Must preserve all other FPU regs (could alternatively convert
// SharedRuntime::dsin and dcos into assembly routines known not to trash
// FPU state, but can not trust C compiler)
NEEDS_CLEANUP;
// NOTE that in this case we also push the incoming argument to
// the stack and restore it later; we also use this stack slot to
// hold the return value from dsin or dcos.
for (int i = 0; i < num_fpu_regs_in_use; i++) {
subptr(rsp, sizeof(jdouble));
fstp_d(Address(rsp, 0));
}
incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
fld_d(Address(rsp, incoming_argument_and_return_value_offset));
}
subptr(rsp, sizeof(jdouble));
fstp_d(Address(rsp, 0));
#ifdef _LP64
movdbl(xmm0, Address(rsp, 0));
#endif // _LP64
// NOTE: we must not use call_VM_leaf here because that requires a
// complete interpreter frame in debug mode -- same bug as 4387334
// MacroAssembler::call_VM_leaf_base is perfectly safe and will
// do proper 64bit abi
NEEDS_CLEANUP;
// Need to add stack banging before this runtime call if it needs to
// be taken; however, there is no generic stack banging routine at
// the MacroAssembler level
switch(trig) {
case 's':
{
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
}
break;
case 'c':
{
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
}
break;
case 't':
{
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
}
break;
default:
assert(false, "bad intrinsic");
break;
}
#ifdef _LP64
movsd(Address(rsp, 0), xmm0);
fld_d(Address(rsp, 0));
#endif // _LP64
addptr(rsp, sizeof(jdouble));
if (num_fpu_regs_in_use > 1) {
// Must save return value to stack and then restore entire FPU stack
fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
for (int i = 0; i < num_fpu_regs_in_use; i++) {
fld_d(Address(rsp, 0));
addptr(rsp, sizeof(jdouble));
}
}
popa();
// Come here with result in F-TOS
bind(done);
if (tmp != noreg) {
pop(tmp);
}
}
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& L_no_such_interface) {
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
"caller must use same register for non-constant itable index as for method");
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
int itentry_off = itableMethodEntry::method_offset_in_bytes();
int scan_step = itableOffsetEntry::size() * wordSize;
int vte_size = vtableEntry::size() * wordSize;
Address::ScaleFactor times_vte_scale = Address::times_ptr;
assert(vte_size == wordSize, "else adjust times_vte_scale");
movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
// %%% Could store the aligned, prescaled offset in the klassoop.
lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
if (HeapWordsPerLong > 1) {
// Round up to align_object_offset boundary
// see code for instanceKlass::start_of_itable!
round_to(scan_temp, BytesPerLong);
}
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
// if (scan->interface() == intf) {
// result = (klass + scan->offset() + itable_index);
// }
// }
Label search, found_method;
for (int peel = 1; peel >= 0; peel--) {
movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
cmpptr(intf_klass, method_result);
if (peel) {
jccb(Assembler::equal, found_method);
} else {
jccb(Assembler::notEqual, search);
// (invert the test to fall through to found_method...)
}
if (!peel) break;
bind(search);
// Check that the previous entry is non-null. A null entry means that
// the receiver class doesn't implement the interface, and wasn't the
// same as when the caller was compiled.
testptr(method_result, method_result);
jcc(Assembler::zero, L_no_such_interface);
addptr(scan_temp, scan_step);
}
bind(found_method);
// Got a hit.
movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}
void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success) {
Label L_failure;
check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL);
check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
bind(L_failure);
}
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset) {
assert_different_registers(sub_klass, super_klass, temp_reg);
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
if (super_check_offset.is_register()) {
assert_different_registers(sub_klass, super_klass,
super_check_offset.as_register());
} else if (must_load_sco) {
assert(temp_reg != noreg, "supply either a temp or a register offset");
}
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
Address super_check_offset_addr(super_klass, sco_offset);
// Hacked jcc, which "knows" that L_fallthrough, at least, is in
// range of a jccb. If this routine grows larger, reconsider at
// least some of these.
#define local_jcc(assembler_cond, label) \
if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \
else jcc( assembler_cond, label) /*omit semi*/
// Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label) \
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
else jmp(label) /*omit semi*/
// If the pointers are equal, we are done (e.g., String[] elements).
// This self-check enables sharing of secondary supertype arrays among
// non-primary types such as array-of-interface. Otherwise, each such
// type would need its own customized SSA.
// We move this check to the front of the fast path because many
// type checks are in fact trivially successful in this manner,
// so we get a nicely predicted branch right at the start of the check.
cmpptr(sub_klass, super_klass);
local_jcc(Assembler::equal, *L_success);
// Check the supertype display:
if (must_load_sco) {
// Positive movl does right thing on LP64.
movl(temp_reg, super_check_offset_addr);
super_check_offset = RegisterOrConstant(temp_reg);
}
Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
cmpptr(super_klass, super_check_addr); // load displayed supertype
// This check has worked decisively for primary supers.
// Secondary supers are sought in the super_cache ('super_cache_addr').
// (Secondary supers are interfaces and very deeply nested subtypes.)
// This works in the same check above because of a tricky aliasing
// between the super_cache and the primary super display elements.
// (The 'super_check_addr' can address either, as the case requires.)
// Note that the cache is updated below if it does not help us find
// what we need immediately.
// So if it was a primary super, we can just fail immediately.
// Otherwise, it's the slow path for us (no success at this point).
if (super_check_offset.is_register()) {
local_jcc(Assembler::equal, *L_success);
cmpl(super_check_offset.as_register(), sc_offset);
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_slow_path);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_slow_path);
}
} else if (super_check_offset.as_constant() == sc_offset) {
// Need a slow path; fast failure is impossible.
if (L_slow_path == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_slow_path);
final_jmp(*L_success);
}
} else {
// No slow path; it's a fast decision.
if (L_failure == &L_fallthrough) {
local_jcc(Assembler::equal, *L_success);
} else {
local_jcc(Assembler::notEqual, *L_failure);
final_jmp(*L_success);
}
}
bind(L_fallthrough);
#undef local_jcc
#undef final_jmp
}
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes) {
assert_different_registers(sub_klass, super_klass, temp_reg);
if (temp2_reg != noreg)
assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
// a couple of useful fields in sub_klass:
int ss_offset = in_bytes(Klass::secondary_supers_offset());
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
Address secondary_supers_addr(sub_klass, ss_offset);
Address super_cache_addr( sub_klass, sc_offset);
// Do a linear scan of the secondary super-klass chain.
// This code is rarely used, so simplicity is a virtue here.
// The repne_scan instruction uses fixed registers, which we must spill.
// Don't worry too much about pre-existing connections with the input regs.
assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
// Get super_klass value into rax (even if it was in rdi or rcx).
bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
if (super_klass != rax || UseCompressedOops) {
if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
mov(rax, super_klass);
}
if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
#ifndef PRODUCT
int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
ExternalAddress pst_counter_addr((address) pst_counter);
NOT_LP64( incrementl(pst_counter_addr) );
LP64_ONLY( lea(rcx, pst_counter_addr) );
LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT
// We will consult the secondary-super array.
movptr(rdi, secondary_supers_addr);
// Load the array length. (Positive movl does right thing on LP64.)
movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
// Skip to start of data.
addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
// Scan RCX words at [RDI] for an occurrence of RAX.
// Set NZ/Z based on last compare.
// Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
// not change flags (only scas instruction which is repeated sets flags).
// Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
#ifdef _LP64
// This part is tricky, as values in supers array could be 32 or 64 bit wide
// and we store values in objArrays always encoded, thus we need to encode
// the value of rax before repne. Note that rax is dead after the repne.
if (UseCompressedOops) {
encode_heap_oop_not_null(rax); // Changes flags.
// The superclass is never null; it would be a basic system error if a null
// pointer were to sneak in here. Note that we have already loaded the
// Klass::super_check_offset from the super_klass in the fast path,
// so if there is a null in that register, we are already in the afterlife.
testl(rax,rax); // Set Z = 0
repne_scanl();
} else
#endif // _LP64
{
testptr(rax,rax); // Set Z = 0
repne_scan();
}
// Unspill the temp. registers:
if (pushed_rdi) pop(rdi);
if (pushed_rcx) pop(rcx);
if (pushed_rax) pop(rax);
if (set_cond_codes) {
// Special hack for the AD files: rdi is guaranteed non-zero.
assert(!pushed_rdi, "rdi must be left non-NULL");
// Also, the condition codes are properly set Z/NZ on succeed/failure.
}
if (L_failure == &L_fallthrough)
jccb(Assembler::notEqual, *L_failure);
else jcc(Assembler::notEqual, *L_failure);
// Success. Cache the super we found and proceed in triumph.
movptr(super_cache_addr, super_klass);
if (L_success != &L_fallthrough) {
jmp(*L_success);
}
#undef IS_A_TEMP
bind(L_fallthrough);
}
void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
if (VM_Version::supports_cmov()) {
cmovl(cc, dst, src);
} else {
Label L;
jccb(negate_condition(cc), L);
movl(dst, src);
bind(L);
}
}
void MacroAssembler::verify_oop(Register reg, const char* s) {
if (!VerifyOops) return;
// Pass register number to verify_oop_subroutine
char* b = new char[strlen(s) + 50];
sprintf(b, "verify_oop: %s: %s", reg->name(), s);
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
push(reg); // pass register argument
ExternalAddress buffer((address) b);
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (oop, message) and restores rax, r10
}
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset) {
intptr_t value = *delayed_value_addr;
if (value != 0)
return RegisterOrConstant(value + offset);
// load indirectly to solve generation ordering problem
movptr(tmp, ExternalAddress((address) delayed_value_addr));
#ifdef ASSERT
{ Label L;
testptr(tmp, tmp);
if (WizardMode) {
jcc(Assembler::notZero, L);
char* buf = new char[40];
sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
stop(buf);
} else {
jccb(Assembler::notZero, L);
hlt();
}
bind(L);
}
#endif
if (offset != 0)
addptr(tmp, offset);
return RegisterOrConstant(tmp);
}
// registers on entry:
// - rax ('check' register): required MethodType
// - rcx: method handle
// - rdx, rsi, or ?: killable temp
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type) {
Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
// compare method type against that of the receiver
if (UseCompressedOops) {
load_heap_oop(temp_reg, type_addr);
cmpptr(mtype_reg, temp_reg);
} else {
cmpptr(mtype_reg, type_addr);
}
jcc(Assembler::notEqual, wrong_method_type);
}
// A method handle has a "vmslots" field which gives the size of its
// argument list in JVM stack slots. This field is either located directly
// in every method handle, or else is indirectly accessed through the
// method handle's MethodType. This macro hides the distinction.
void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg) {
assert_different_registers(vmslots_reg, mh_reg, temp_reg);
// load mh.type.form.vmslots
Register temp2_reg = vmslots_reg;
load_heap_oop(temp2_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
}
// registers on entry:
// - rcx: method handle
// - rdx: killable temp (interpreted only)
// - rax: killable temp (compiled only)
void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
assert(mh_reg == rcx, "caller must put MH object in rcx");
assert_different_registers(mh_reg, temp_reg);
// pick out the interpreted side of the handler
// NOTE: vmentry is not an oop!
movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
// off we go...
jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
// for the various stubs which take control at this point,
// see MethodHandles::generate_method_handle_stub
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
int stackElementSize = Interpreter::stackElementSize;
int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
#ifdef ASSERT
int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
assert(offset1 - offset == stackElementSize, "correct arithmetic");
#endif
Register scale_reg = noreg;
Address::ScaleFactor scale_factor = Address::no_scale;
if (arg_slot.is_constant()) {
offset += arg_slot.as_constant() * stackElementSize;
} else {
scale_reg = arg_slot.as_register();
scale_factor = Address::times(stackElementSize);
}
offset += wordSize; // return PC is on stack
return Address(rsp, scale_reg, scale_factor, offset);
}
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
if (!VerifyOops) return;
// Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
// Pass register number to verify_oop_subroutine
char* b = new char[strlen(s) + 50];
sprintf(b, "verify_oop_addr: %s", s);
#ifdef _LP64
push(rscratch1); // save r10, trashed by movptr()
#endif
push(rax); // save rax,
// addr may contain rsp so we will have to adjust it based on the push
// we just did (and on 64 bit we do two pushes)
// NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
// stores rax into addr which is backwards of what was intended.
if (addr.uses(rsp)) {
lea(rax, addr);
pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
} else {
pushptr(addr);
}
ExternalAddress buffer((address) b);
// pass msg argument
// avoid using pushptr, as it modifies scratch registers
// and our contract is not to modify anything
movptr(rax, buffer.addr());
push(rax);
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments (addr, message) and restores rax, r10.
}
void MacroAssembler::verify_tlab() {
#ifdef ASSERT
if (UseTLAB && VerifyOops) {
Label next, ok;
Register t1 = rsi;
Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
push(t1);
NOT_LP64(push(thread_reg));
NOT_LP64(get_thread(thread_reg));
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
jcc(Assembler::aboveEqual, next);
stop("assert(top >= start)");
should_not_reach_here();
bind(next);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
jcc(Assembler::aboveEqual, ok);
stop("assert(top <= end)");
should_not_reach_here();
bind(ok);
NOT_LP64(pop(thread_reg));
pop(t1);
}
#endif
}
class ControlWord {
public:
int32_t _value;
int rounding_control() const { return (_value >> 10) & 3 ; }
int precision_control() const { return (_value >> 8) & 3 ; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// rounding control
const char* rc;
switch (rounding_control()) {
case 0: rc = "round near"; break;
case 1: rc = "round down"; break;
case 2: rc = "round up "; break;
case 3: rc = "chop "; break;
};
// precision control
const char* pc;
switch (precision_control()) {
case 0: pc = "24 bits "; break;
case 1: pc = "reserved"; break;
case 2: pc = "53 bits "; break;
case 3: pc = "64 bits "; break;
};
// flags
char f[9];
f[0] = ' ';
f[1] = ' ';
f[2] = (precision ()) ? 'P' : 'p';
f[3] = (underflow ()) ? 'U' : 'u';
f[4] = (overflow ()) ? 'O' : 'o';
f[5] = (zero_divide ()) ? 'Z' : 'z';
f[6] = (denormalized()) ? 'D' : 'd';
f[7] = (invalid ()) ? 'I' : 'i';
f[8] = '\x0';
// output
printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
}
};
class StatusWord {
public:
int32_t _value;
bool busy() const { return ((_value >> 15) & 1) != 0; }
bool C3() const { return ((_value >> 14) & 1) != 0; }
bool C2() const { return ((_value >> 10) & 1) != 0; }
bool C1() const { return ((_value >> 9) & 1) != 0; }
bool C0() const { return ((_value >> 8) & 1) != 0; }
int top() const { return (_value >> 11) & 7 ; }
bool error_status() const { return ((_value >> 7) & 1) != 0; }
bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// condition codes
char c[5];
c[0] = (C3()) ? '3' : '-';
c[1] = (C2()) ? '2' : '-';
c[2] = (C1()) ? '1' : '-';
c[3] = (C0()) ? '0' : '-';
c[4] = '\x0';
// flags
char f[9];
f[0] = (error_status()) ? 'E' : '-';
f[1] = (stack_fault ()) ? 'S' : '-';
f[2] = (precision ()) ? 'P' : '-';
f[3] = (underflow ()) ? 'U' : '-';
f[4] = (overflow ()) ? 'O' : '-';
f[5] = (zero_divide ()) ? 'Z' : '-';
f[6] = (denormalized()) ? 'D' : '-';
f[7] = (invalid ()) ? 'I' : '-';
f[8] = '\x0';
// output
printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
}
};
class TagWord {
public:
int32_t _value;
int tag_at(int i) const { return (_value >> (i*2)) & 3; }
void print() const {
printf("%04x", _value & 0xFFFF);
}
};
class FPU_Register {
public:
int32_t _m0;
int32_t _m1;
int16_t _ex;
bool is_indefinite() const {
return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
}
void print() const {
char sign = (_ex < 0) ? '-' : '+';
const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
};
};
class FPU_State {
public:
enum {
register_size = 10,
number_of_registers = 8,
register_mask = 7
};
ControlWord _control_word;
StatusWord _status_word;
TagWord _tag_word;
int32_t _error_offset;
int32_t _error_selector;
int32_t _data_offset;
int32_t _data_selector;
int8_t _register[register_size * number_of_registers];
int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
const char* tag_as_string(int tag) const {
switch (tag) {
case 0: return "valid";
case 1: return "zero";
case 2: return "special";
case 3: return "empty";
}
ShouldNotReachHere();
return NULL;
}
void print() const {
// print computation registers
{ int t = _status_word.top();
for (int i = 0; i < number_of_registers; i++) {
int j = (i - t) & register_mask;
printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
st(j)->print();
printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
}
}
printf("\n");
// print control registers
printf("ctrl = "); _control_word.print(); printf("\n");
printf("stat = "); _status_word .print(); printf("\n");
printf("tags = "); _tag_word .print(); printf("\n");
}
};
class Flag_Register {
public:
int32_t _value;
bool overflow() const { return ((_value >> 11) & 1) != 0; }
bool direction() const { return ((_value >> 10) & 1) != 0; }
bool sign() const { return ((_value >> 7) & 1) != 0; }
bool zero() const { return ((_value >> 6) & 1) != 0; }
bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
bool parity() const { return ((_value >> 2) & 1) != 0; }
bool carry() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// flags
char f[8];
f[0] = (overflow ()) ? 'O' : '-';
f[1] = (direction ()) ? 'D' : '-';
f[2] = (sign ()) ? 'S' : '-';
f[3] = (zero ()) ? 'Z' : '-';
f[4] = (auxiliary_carry()) ? 'A' : '-';
f[5] = (parity ()) ? 'P' : '-';
f[6] = (carry ()) ? 'C' : '-';
f[7] = '\x0';
// output
printf("%08x flags = %s", _value, f);
}
};
class IU_Register {
public:
int32_t _value;
void print() const {
printf("%08x %11d", _value, _value);
}
};
class IU_State {
public:
Flag_Register _eflags;
IU_Register _rdi;
IU_Register _rsi;
IU_Register _rbp;
IU_Register _rsp;
IU_Register _rbx;
IU_Register _rdx;
IU_Register _rcx;
IU_Register _rax;
void print() const {
// computation registers
printf("rax, = "); _rax.print(); printf("\n");
printf("rbx, = "); _rbx.print(); printf("\n");
printf("rcx = "); _rcx.print(); printf("\n");
printf("rdx = "); _rdx.print(); printf("\n");
printf("rdi = "); _rdi.print(); printf("\n");
printf("rsi = "); _rsi.print(); printf("\n");
printf("rbp, = "); _rbp.print(); printf("\n");
printf("rsp = "); _rsp.print(); printf("\n");
printf("\n");
// control registers
printf("flgs = "); _eflags.print(); printf("\n");
}
};
class CPU_State {
public:
FPU_State _fpu_state;
IU_State _iu_state;
void print() const {
printf("--------------------------------------------------\n");
_iu_state .print();
printf("\n");
_fpu_state.print();
printf("--------------------------------------------------\n");
}
};
static void _print_CPU_state(CPU_State* state) {
state->print();
};
void MacroAssembler::print_CPU_state() {
push_CPU_state();
push(rsp); // pass CPU state
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
addptr(rsp, wordSize); // discard argument
pop_CPU_state();
}
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
static int counter = 0;
FPU_State* fs = &state->_fpu_state;
counter++;
// For leaf calls, only verify that the top few elements remain empty.
// We only need 1 empty at the top for C2 code.
if( stack_depth < 0 ) {
if( fs->tag_for_st(7) != 3 ) {
printf("FPR7 not empty\n");
state->print();
assert(false, "error");
return false;
}
return true; // All other stack states do not matter
}
assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
"bad FPU control word");
// compute stack depth
int i = 0;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++;
int d = i;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
// verify findings
if (i != FPU_State::number_of_registers) {
// stack not contiguous
printf("%s: stack not contiguous at ST%d\n", s, i);
state->print();
assert(false, "error");
return false;
}
// check if computed stack depth corresponds to expected stack depth
if (stack_depth < 0) {
// expected stack depth is -stack_depth or less
if (d > -stack_depth) {
// too many elements on the stack
printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
state->print();
assert(false, "error");
return false;
}
} else {
// expected stack depth is stack_depth
if (d != stack_depth) {
// wrong stack depth
printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
state->print();
assert(false, "error");
return false;
}
}
// everything is cool
return true;
}
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
if (!VerifyFPU) return;
push_CPU_state();
push(rsp); // pass CPU state
ExternalAddress msg((address) s);
// pass message string s
pushptr(msg.addr());
push(stack_depth); // pass stack depth
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
addptr(rsp, 3 * wordSize); // discard arguments
// check for error
{ Label L;
testl(rax, rax);
jcc(Assembler::notZero, L);
int3(); // break if error condition
bind(L);
}
pop_CPU_state();
}
void MacroAssembler::load_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
decode_heap_oop_not_null(dst);
} else
#endif
movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
}
void MacroAssembler::load_prototype_header(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
assert (Universe::heap() != NULL, "java heap should be initialized");
movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
if (Universe::narrow_oop_shift() != 0) {
assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
if (LogMinObjAlignmentInBytes == Address::times_8) {
movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
} else {
// OK to use shift since we don't need to preserve flags.
shlq(dst, LogMinObjAlignmentInBytes);
movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
}
} else {
movq(dst, Address(dst, Klass::prototype_header_offset()));
}
} else
#endif
{
movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
movptr(dst, Address(dst, Klass::prototype_header_offset()));
}
}
void MacroAssembler::store_klass(Register dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
encode_heap_oop_not_null(src);
movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
} else
#endif
movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
}
void MacroAssembler::load_heap_oop(Register dst, Address src) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop(dst);
} else
#endif
movptr(dst, src);
}
// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop_not_null(dst);
} else
#endif
movptr(dst, src);
}
void MacroAssembler::store_heap_oop(Address dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
assert(!dst.uses(src), "not enough registers");
encode_heap_oop(src);
movl(dst, src);
} else
#endif
movptr(dst, src);
}
// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, (int32_t)NULL_WORD);
} else {
movslq(dst, (int32_t)NULL_WORD);
}
#else
movl(dst, (int32_t)NULL_WORD);
#endif
}
#ifdef _LP64
void MacroAssembler::store_klass_gap(Register dst, Register src) {
if (UseCompressedOops) {
// Store to klass gap in destination
movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
}
}
#ifdef ASSERT
void MacroAssembler::verify_heapbase(const char* msg) {
assert (UseCompressedOops, "should be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
if (CheckCompressedOops) {
Label ok;
push(rscratch1); // cmpptr trashes rscratch1
cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
jcc(Assembler::equal, ok);
stop(msg);
bind(ok);
pop(rscratch1);
}
}
#endif
// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
#endif
verify_oop(r, "broken oop in encode_heap_oop");
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
return;
}
testq(r, r);
cmovq(Assembler::equal, r, r12_heapbase);
subq(r, r12_heapbase);
shrq(r, LogMinObjAlignmentInBytes);
}
void MacroAssembler::encode_heap_oop_not_null(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(r, r);
jcc(Assembler::notEqual, ok);
stop("null oop passed to encode_heap_oop_not_null");
bind(ok);
}
#endif
verify_oop(r, "broken oop in encode_heap_oop_not_null");
if (Universe::narrow_oop_base() != NULL) {
subq(r, r12_heapbase);
}
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(r, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
if (CheckCompressedOops) {
Label ok;
testq(src, src);
jcc(Assembler::notEqual, ok);
stop("null oop passed to encode_heap_oop_not_null2");
bind(ok);
}
#endif
verify_oop(src, "broken oop in encode_heap_oop_not_null2");
if (dst != src) {
movq(dst, src);
}
if (Universe::narrow_oop_base() != NULL) {
subq(dst, r12_heapbase);
}
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shrq(dst, LogMinObjAlignmentInBytes);
}
}
void MacroAssembler::decode_heap_oop(Register r) {
#ifdef ASSERT
verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
#endif
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
}
} else {
Label done;
shlq(r, LogMinObjAlignmentInBytes);
jccb(Assembler::equal, done);
addq(r, r12_heapbase);
bind(done);
}
verify_oop(r, "broken oop in decode_heap_oop");
}
void MacroAssembler::decode_heap_oop_not_null(Register r) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_oop_shift() != 0) {
assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
shlq(r, LogMinObjAlignmentInBytes);
if (Universe::narrow_oop_base() != NULL) {
addq(r, r12_heapbase);
}
} else {
assert (Universe::narrow_oop_base() == NULL, "sanity");
}
}
void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
// Note: it will change flags
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
// Cannot assert, unverified entry point counts instructions (see .ad file)
// vtableStubs also counts instructions in pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
if (Universe::narrow_oop_shift() != 0) {
assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
if (LogMinObjAlignmentInBytes == Address::times_8) {
leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
} else {
if (dst != src) {
movq(dst, src);
}
shlq(dst, LogMinObjAlignmentInBytes);
if (Universe::narrow_oop_base() != NULL) {
addq(dst, r12_heapbase);
}
}
} else {
assert (Universe::narrow_oop_base() == NULL, "sanity");
if (dst != src) {
movq(dst, src);
}
}
}
void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
mov_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
assert (UseCompressedOops, "should only be used for compressed headers");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}
void MacroAssembler::reinit_heapbase() {
if (UseCompressedOops) {
movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
}
}
#endif // _LP64
// IndexOf for constant substrings with size >= 8 chars
// which don't need to be loaded through stack.
void MacroAssembler::string_indexofC8(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 is required");
// This method uses pcmpestri inxtruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
// Load substring.
movdqu(vec, Address(str2, 0));
movl(cnt2, int_cnt2);
movptr(result, str1); // string addr
if (int_cnt2 > 8) {
jmpb(SCAN_TO_SUBSTR);
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
movdqu(vec, Address(str2, 0));
negptr(cnt2); // Jumped here with negative cnt2, convert to positive
bind(RELOAD_STR);
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
// cnt2 is number of substring reminding elements and
// cnt1 is number of string reminding elements when cmp failed.
// Restored cnt1 = cnt1 - cnt2 + int_cnt2
subl(cnt1, cnt2);
addl(cnt1, int_cnt2);
movl(cnt2, int_cnt2); // Now restore cnt2
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 2);
} // (int_cnt2 > 8)
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
pcmpestri(vec, Address(result, 0), 0x0d);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, 8);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// Matched whole vector if first element matched (tmp(rcx) == 0).
if (int_cnt2 == 8) {
jccb(Assembler::overflow, RET_FOUND); // OF == 1
} else { // int_cnt2 > 8
jccb(Assembler::overflow, FOUND_SUBSTR);
}
// After pcmpestri tmp(rcx) contains matched element index
// Compute start addr of substr
lea(result, Address(result, tmp, Address::times_2));
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
if (int_cnt2 == 8) {
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
} else { // int_cnt2 > 8
jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
}
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmpb(EXIT);
if (int_cnt2 > 8) {
// This code is optimized for the case when whole substring
// is matched if its head is matched.
bind(MATCH_SUBSTR_HEAD);
pcmpestri(vec, Address(result, 0), 0x0d);
// Reload only string if does not match
jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
Label CONT_SCAN_SUBSTR;
// Compare the rest of substring (> 8 chars).
bind(FOUND_SUBSTR);
// First 8 chars are already matched.
negptr(cnt2);
addptr(cnt2, 8);
bind(SCAN_SUBSTR);
subl(cnt1, 8);
cmpl(cnt2, -8); // Do not read beyond substring
jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring:
// cnt1 = cnt1 - cnt2 + 8
addl(cnt1, cnt2); // cnt2 is negative
addl(cnt1, 8);
movl(cnt2, 8); negptr(cnt2);
bind(CONT_SCAN_SUBSTR);
if (int_cnt2 < (int)G) {
movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
} else {
// calculate index in register to avoid integer overflow (int_cnt2*2)
movl(tmp, int_cnt2);
addptr(tmp, cnt2);
movdqu(vec, Address(str2, tmp, Address::times_2, 0));
pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
}
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
addptr(cnt2, 8);
jcc(Assembler::negative, SCAN_SUBSTR);
// Fall through if found full substring
} // (int_cnt2 > 8)
bind(RET_FOUND);
// Found result if we matched full small substring.
// Compute substr offset
subptr(result, str1);
shrl(result, 1); // index
bind(EXIT);
} // string_indexofC8
// Small strings are loaded through stack if they cross page boundary.
void MacroAssembler::string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp) {
ShortBranchVerifier sbv(this);
assert(UseSSE42Intrinsics, "SSE4.2 is required");
//
// int_cnt2 is length of small (< 8 chars) constant substring
// or (-1) for non constant substring in which case its length
// is in cnt2 register.
//
// Note, inline_string_indexOf() generates checks:
// if (substr.count > string.count) return -1;
// if (substr.count == 0) return 0;
//
assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
// This method uses pcmpestri inxtruction with bound registers
// inputs:
// xmm - substring
// rax - substring length (elements count)
// mem - scanned string
// rdx - string length (elements count)
// 0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
// outputs:
// rcx - matched index in string
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
FOUND_CANDIDATE;
{ //========================================================
// We don't know where these strings are located
// and we can't read beyond them. Load them through stack.
Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
movptr(tmp, rsp); // save old SP
if (int_cnt2 > 0) { // small (< 8 chars) constant substring
if (int_cnt2 == 1) { // One char
load_unsigned_short(result, Address(str2, 0));
movdl(vec, result); // move 32 bits
} else if (int_cnt2 == 2) { // Two chars
movdl(vec, Address(str2, 0)); // move 32 bits
} else if (int_cnt2 == 4) { // Four chars
movq(vec, Address(str2, 0)); // move 64 bits
} else { // cnt2 = { 3, 5, 6, 7 }
// Array header size is 12 bytes in 32-bit VM
// + 6 bytes for 3 chars == 18 bytes,
// enough space to load vec and shift.
assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
movdqu(vec, Address(str2, (int_cnt2*2)-16));
psrldq(vec, 16-(int_cnt2*2));
}
} else { // not constant substring
cmpl(cnt2, 8);
jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
// We can read beyond string if srt+16 does not cross page boundary
// since heaps are aligned and mapped by pages.
assert(os::vm_page_size() < (int)G, "default page should be small");
movl(result, str2); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, CHECK_STR);
// Move small strings to stack to allow load 16 bytes into vec.
subptr(rsp, 16);
int stk_offset = wordSize-2;
push(cnt2);
bind(COPY_SUBSTR);
load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
decrement(cnt2);
jccb(Assembler::notZero, COPY_SUBSTR);
pop(cnt2);
movptr(str2, rsp); // New substring address
} // non constant
bind(CHECK_STR);
cmpl(cnt1, 8);
jccb(Assembler::aboveEqual, BIG_STRINGS);
// Check cross page boundary.
movl(result, str1); // We need only low 32 bits
andl(result, (os::vm_page_size()-1));
cmpl(result, (os::vm_page_size()-16));
jccb(Assembler::belowEqual, BIG_STRINGS);
subptr(rsp, 16);
int stk_offset = -2;
if (int_cnt2 < 0) { // not constant
push(cnt2);
stk_offset += wordSize;
}
movl(cnt2, cnt1);
bind(COPY_STR);
load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
decrement(cnt2);
jccb(Assembler::notZero, COPY_STR);
if (int_cnt2 < 0) { // not constant
pop(cnt2);
}
movptr(str1, rsp); // New string address
bind(BIG_STRINGS);
// Load substring.
if (int_cnt2 < 0) { // -1
movdqu(vec, Address(str2, 0));
push(cnt2); // substr count
push(str2); // substr addr
push(str1); // string addr
} else {
// Small (< 8 chars) constant substrings are loaded already.
movl(cnt2, int_cnt2);
}
push(tmp); // original SP
} // Finished loading
//========================================================
// Start search
//
movptr(result, str1); // string addr
if (int_cnt2 < 0) { // Only for non constant substring
jmpb(SCAN_TO_SUBSTR);
// SP saved at sp+0
// String saved at sp+1*wordSize
// Substr saved at sp+2*wordSize
// Substr count saved at sp+3*wordSize
// Reload substr for rescan, this code
// is executed only for large substrings (> 8 chars)
bind(RELOAD_SUBSTR);
movptr(str2, Address(rsp, 2*wordSize));
movl(cnt2, Address(rsp, 3*wordSize));
movdqu(vec, Address(str2, 0));
// We came here after the beginning of the substring was
// matched but the rest of it was not so we need to search
// again. Start from the next element after the previous match.
subptr(str1, result); // Restore counter
shrl(str1, 1);
addl(cnt1, str1);
decrementl(cnt1); // Shift to next element
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 2);
} // non constant
// Scan string for start of substr in 16-byte vectors
bind(SCAN_TO_SUBSTR);
assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
pcmpestri(vec, Address(result, 0), 0x0d);
jccb(Assembler::below, FOUND_CANDIDATE); // CF == 1
subl(cnt1, 8);
jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
cmpl(cnt1, cnt2);
jccb(Assembler::negative, RET_NOT_FOUND); // Left less then substring
addptr(result, 16);
bind(ADJUST_STR);
cmpl(cnt1, 8); // Do not read beyond string
jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
// Back-up string to avoid reading beyond string.
lea(result, Address(result, cnt1, Address::times_2, -16));
movl(cnt1, 8);
jmpb(SCAN_TO_SUBSTR);
// Found a potential substr
bind(FOUND_CANDIDATE);
// After pcmpestri tmp(rcx) contains matched element index
// Make sure string is still long enough
subl(cnt1, tmp);
cmpl(cnt1, cnt2);
jccb(Assembler::greaterEqual, FOUND_SUBSTR);
// Left less then substring.
bind(RET_NOT_FOUND);
movl(result, -1);
jmpb(CLEANUP);
bind(FOUND_SUBSTR);
// Compute start addr of substr
lea(result, Address(result, tmp, Address::times_2));
if (int_cnt2 > 0) { // Constant substring
// Repeat search for small substring (< 8 chars)
// from new point without reloading substring.
// Have to check that we don't read beyond string.
cmpl(tmp, 8-int_cnt2);
jccb(Assembler::greater, ADJUST_STR);
// Fall through if matched whole substring.
} else { // non constant
assert(int_cnt2 == -1, "should be != 0");
addl(tmp, cnt2);
// Found result if we matched whole substring.
cmpl(tmp, 8);
jccb(Assembler::lessEqual, RET_FOUND);
// Repeat search for small substring (<= 8 chars)
// from new point 'str1' without reloading substring.
cmpl(cnt2, 8);
// Have to check that we don't read beyond string.
jccb(Assembler::lessEqual, ADJUST_STR);
Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
// Compare the rest of substring (> 8 chars).
movptr(str1, result);
cmpl(tmp, cnt2);
// First 8 chars are already matched.
jccb(Assembler::equal, CHECK_NEXT);
bind(SCAN_SUBSTR);
pcmpestri(vec, Address(str1, 0), 0x0d);
// Need to reload strings pointers if not matched whole vector
jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
bind(CHECK_NEXT);
subl(cnt2, 8);
jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
addptr(str1, 16);
addptr(str2, 16);
subl(cnt1, 8);
cmpl(cnt2, 8); // Do not read beyond substring
jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
// Back-up strings to avoid reading beyond substring.
lea(str2, Address(str2, cnt2, Address::times_2, -16));
lea(str1, Address(str1, cnt2, Address::times_2, -16));
subl(cnt1, cnt2);
movl(cnt2, 8);
addl(cnt1, 8);
bind(CONT_SCAN_SUBSTR);
movdqu(vec, Address(str2, 0));
jmpb(SCAN_SUBSTR);
bind(RET_FOUND_LONG);
movptr(str1, Address(rsp, wordSize));
} // non constant
bind(RET_FOUND);
// Compute substr offset
subptr(result, str1);
shrl(result, 1); // index
bind(CLEANUP);
pop(rsp); // restore SP
} // string_indexof
// Compare strings.
void MacroAssembler::string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
XMMRegister vec1) {
ShortBranchVerifier sbv(this);
Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
// Compute the minimum of the string lengths and the
// difference of the string lengths (stack).
// Do the conditional move stuff
movl(result, cnt1);
subl(cnt1, cnt2);
push(cnt1);
cmov32(Assembler::lessEqual, cnt2, result);
// Is the minimum length zero?
testl(cnt2, cnt2);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
// Load first characters
load_unsigned_short(result, Address(str1, 0));
load_unsigned_short(cnt1, Address(str2, 0));
// Compare first characters
subl(result, cnt1);
jcc(Assembler::notZero, POP_LABEL);
decrementl(cnt2);
jcc(Assembler::zero, LENGTH_DIFF_LABEL);
{
// Check after comparing first character to see if strings are equivalent
Label LSkip2;
// Check if the strings start at same location
cmpptr(str1, str2);
jccb(Assembler::notEqual, LSkip2);
// Check if the length difference is zero (from stack)
cmpl(Address(rsp, 0), 0x0);
jcc(Assembler::equal, LENGTH_DIFF_LABEL);
// Strings might not be equivalent
bind(LSkip2);
}
Address::ScaleFactor scale = Address::times_2;
int stride = 8;
// Advance to next element
addptr(str1, 16/stride);
addptr(str2, 16/stride);
if (UseSSE42Intrinsics) {
Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
int pcmpmask = 0x19;
// Setup to compare 16-byte vectors
movl(result, cnt2);
andl(cnt2, ~(stride - 1)); // cnt2 holds the vector count
jccb(Assembler::zero, COMPARE_TAIL);
lea(str1, Address(str1, result, scale));
lea(str2, Address(str2, result, scale));
negptr(result);
// pcmpestri
// inputs:
// vec1- substring
// rax - negative string length (elements count)
// mem - scaned string
// rdx - string length (elements count)
// pcmpmask - cmp mode: 11000 (string compare with negated result)
// + 00 (unsigned bytes) or + 01 (unsigned shorts)
// outputs:
// rcx - first mismatched element index
assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
// After pcmpestri cnt1(rcx) contains mismatched element index
jccb(Assembler::below, VECTOR_NOT_EQUAL); // CF==1
addptr(result, stride);
subptr(cnt2, stride);
jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
// compare wide vectors tail
testl(result, result);
jccb(Assembler::zero, LENGTH_DIFF_LABEL);
movl(cnt2, stride);
movl(result, stride);
negptr(result);
movdqu(vec1, Address(str1, result, scale));
pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
// Mismatched characters in the vectors
bind(VECTOR_NOT_EQUAL);
addptr(result, cnt1);
movptr(cnt2, result);
load_unsigned_short(result, Address(str1, cnt2, scale));
load_unsigned_short(cnt1, Address(str2, cnt2, scale));
subl(result, cnt1);
jmpb(POP_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(cnt2, result);
// Fallthru to tail compare
}
// Shift str2 and str1 to the end of the arrays, negate min
lea(str1, Address(str1, cnt2, scale, 0));
lea(str2, Address(str2, cnt2, scale, 0));
negptr(cnt2);
// Compare the rest of the elements
bind(WHILE_HEAD_LABEL);
load_unsigned_short(result, Address(str1, cnt2, scale, 0));
load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
subl(result, cnt1);
jccb(Assembler::notZero, POP_LABEL);
increment(cnt2);
jccb(Assembler::notZero, WHILE_HEAD_LABEL);
// Strings are equal up to min length. Return the length difference.
bind(LENGTH_DIFF_LABEL);
pop(result);
jmpb(DONE_LABEL);
// Discard the stored length difference
bind(POP_LABEL);
pop(cnt1);
// That's it
bind(DONE_LABEL);
}
// Compare char[] arrays aligned to 4 bytes or substrings.
void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register result, Register chr,
XMMRegister vec1, XMMRegister vec2) {
ShortBranchVerifier sbv(this);
Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
// Check the input args
cmpptr(ary1, ary2);
jcc(Assembler::equal, TRUE_LABEL);
if (is_array_equ) {
// Need additional checks for arrays_equals.
testptr(ary1, ary1);
jcc(Assembler::zero, FALSE_LABEL);
testptr(ary2, ary2);
jcc(Assembler::zero, FALSE_LABEL);
// Check the lengths
movl(limit, Address(ary1, length_offset));
cmpl(limit, Address(ary2, length_offset));
jcc(Assembler::notEqual, FALSE_LABEL);
}
// count == 0
testl(limit, limit);
jcc(Assembler::zero, TRUE_LABEL);
if (is_array_equ) {
// Load array address
lea(ary1, Address(ary1, base_offset));
lea(ary2, Address(ary2, base_offset));
}
shll(limit, 1); // byte count != 0
movl(result, limit); // copy
if (UseSSE42Intrinsics) {
// With SSE4.2, use double quad vector compare
Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
// Compare 16-byte vectors
andl(result, 0x0000000e); // tail count (in bytes)
andl(limit, 0xfffffff0); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_TAIL);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_WIDE_VECTORS);
movdqu(vec1, Address(ary1, limit, Address::times_1));
movdqu(vec2, Address(ary2, limit, Address::times_1));
pxor(vec1, vec2);
ptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
addptr(limit, 16);
jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
testl(result, result);
jccb(Assembler::zero, TRUE_LABEL);
movdqu(vec1, Address(ary1, result, Address::times_1, -16));
movdqu(vec2, Address(ary2, result, Address::times_1, -16));
pxor(vec1, vec2);
ptest(vec1, vec1);
jccb(Assembler::notZero, FALSE_LABEL);
jmpb(TRUE_LABEL);
bind(COMPARE_TAIL); // limit is zero
movl(limit, result);
// Fallthru to tail compare
}
// Compare 4-byte vectors
andl(limit, 0xfffffffc); // vector count (in bytes)
jccb(Assembler::zero, COMPARE_CHAR);
lea(ary1, Address(ary1, limit, Address::times_1));
lea(ary2, Address(ary2, limit, Address::times_1));
negptr(limit);
bind(COMPARE_VECTORS);
movl(chr, Address(ary1, limit, Address::times_1));
cmpl(chr, Address(ary2, limit, Address::times_1));
jccb(Assembler::notEqual, FALSE_LABEL);
addptr(limit, 4);
jcc(Assembler::notZero, COMPARE_VECTORS);
// Compare trailing char (final 2 bytes), if any
bind(COMPARE_CHAR);
testl(result, 0x2); // tail char
jccb(Assembler::zero, TRUE_LABEL);
load_unsigned_short(chr, Address(ary1, 0));
load_unsigned_short(limit, Address(ary2, 0));
cmpl(chr, limit);
jccb(Assembler::notEqual, FALSE_LABEL);
bind(TRUE_LABEL);
movl(result, 1); // return true
jmpb(DONE);
bind(FALSE_LABEL);
xorl(result, result); // return false
// That's it
bind(DONE);
}
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void MacroAssembler::generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp) {
ShortBranchVerifier sbv(this);
assert_different_registers(to, value, count, rtmp);
Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
Label L_fill_2_bytes, L_fill_4_bytes;
int shift = -1;
switch (t) {
case T_BYTE:
shift = 2;
break;
case T_SHORT:
shift = 1;
break;
case T_INT:
shift = 0;
break;
default: ShouldNotReachHere();
}
if (t == T_BYTE) {
andl(value, 0xff);
movl(rtmp, value);
shll(rtmp, 8);
orl(value, rtmp);
}
if (t == T_SHORT) {
andl(value, 0xffff);
}
if (t == T_BYTE || t == T_SHORT) {
movl(rtmp, value);
shll(rtmp, 16);
orl(value, rtmp);
}
cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
// align source address at 4 bytes address boundary
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays
testptr(to, 1);
jccb(Assembler::zero, L_skip_align1);
movb(Address(to, 0), value);
increment(to);
decrement(count);
BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
testptr(to, 2);
jccb(Assembler::zero, L_skip_align2);
movw(Address(to, 0), value);
addptr(to, 2);
subl(count, 1<<(shift-1));
BIND(L_skip_align2);
}
if (UseSSE < 2) {
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
// Fill 32-byte chunks
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
for (int i = 0; i < 32; i += 4) {
movl(Address(to, i), value);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movl(Address(to, 0), value);
movl(Address(to, 4), value);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
// fall through to fill 4 bytes
} else {
Label L_fill_32_bytes;
if (!UseUnalignedLoadStores) {
// align to 8 bytes, we know we are 4 byte aligned to start
testptr(to, 4);
jccb(Assembler::zero, L_fill_32_bytes);
movl(Address(to, 0), value);
addptr(to, 4);
subl(count, 1<<shift);
}
BIND(L_fill_32_bytes);
{
assert( UseSSE >= 2, "supported cpu only" );
Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
// Fill 32-byte chunks
movdl(xtmp, value);
pshufd(xtmp, xtmp, 0);
subl(count, 8 << shift);
jcc(Assembler::less, L_check_fill_8_bytes);
align(16);
BIND(L_fill_32_bytes_loop);
if (UseUnalignedLoadStores) {
movdqu(Address(to, 0), xtmp);
movdqu(Address(to, 16), xtmp);
} else {
movq(Address(to, 0), xtmp);
movq(Address(to, 8), xtmp);
movq(Address(to, 16), xtmp);
movq(Address(to, 24), xtmp);
}
addptr(to, 32);
subl(count, 8 << shift);
jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
BIND(L_check_fill_8_bytes);
addl(count, 8 << shift);
jccb(Assembler::zero, L_exit);
jmpb(L_fill_8_bytes);
//
// length is too short, just fill qwords
//
BIND(L_fill_8_bytes_loop);
movq(Address(to, 0), xtmp);
addptr(to, 8);
BIND(L_fill_8_bytes);
subl(count, 1 << (shift + 1));
jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
}
}
// fill trailing 4 bytes
BIND(L_fill_4_bytes);
testl(count, 1<<shift);
jccb(Assembler::zero, L_fill_2_bytes);
movl(Address(to, 0), value);
if (t == T_BYTE || t == T_SHORT) {
addptr(to, 4);
BIND(L_fill_2_bytes);
// fill trailing 2 bytes
testl(count, 1<<(shift-1));
jccb(Assembler::zero, L_fill_byte);
movw(Address(to, 0), value);
if (t == T_BYTE) {
addptr(to, 2);
BIND(L_fill_byte);
// fill trailing byte
testl(count, 1);
jccb(Assembler::zero, L_exit);
movb(Address(to, 0), value);
} else {
BIND(L_fill_byte);
}
} else {
BIND(L_fill_2_bytes);
}
BIND(L_exit);
}
#undef BIND
#undef BLOCK_COMMENT
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
case Assembler::zero: return Assembler::notZero;
case Assembler::notZero: return Assembler::zero;
case Assembler::less: return Assembler::greaterEqual;
case Assembler::lessEqual: return Assembler::greater;
case Assembler::greater: return Assembler::lessEqual;
case Assembler::greaterEqual: return Assembler::less;
case Assembler::below: return Assembler::aboveEqual;
case Assembler::belowEqual: return Assembler::above;
case Assembler::above: return Assembler::belowEqual;
case Assembler::aboveEqual: return Assembler::below;
case Assembler::overflow: return Assembler::noOverflow;
case Assembler::noOverflow: return Assembler::overflow;
case Assembler::negative: return Assembler::positive;
case Assembler::positive: return Assembler::negative;
case Assembler::parity: return Assembler::noParity;
case Assembler::noParity: return Assembler::parity;
}
ShouldNotReachHere(); return Assembler::overflow;
}
SkipIfEqual::SkipIfEqual(
MacroAssembler* masm, const bool* flag_addr, bool value) {
_masm = masm;
_masm->cmp8(ExternalAddress((address)flag_addr), value);
_masm->jcc(Assembler::equal, _label);
}
SkipIfEqual::~SkipIfEqual() {
_masm->bind(_label);
}