74235d9630
Reviewed-by: tschatzl, stefank
867 lines
30 KiB
C++
867 lines
30 KiB
C++
/*
|
|
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc_implementation/shared/gcTimer.hpp"
|
|
#include "gc_implementation/shared/gcTrace.hpp"
|
|
#include "gc_implementation/shared/spaceDecorator.hpp"
|
|
#include "gc_interface/collectedHeap.inline.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/blockOffsetTable.inline.hpp"
|
|
#include "memory/cardTableRS.hpp"
|
|
#include "memory/gcLocker.inline.hpp"
|
|
#include "memory/genCollectedHeap.hpp"
|
|
#include "memory/genMarkSweep.hpp"
|
|
#include "memory/genOopClosures.hpp"
|
|
#include "memory/genOopClosures.inline.hpp"
|
|
#include "memory/generation.hpp"
|
|
#include "memory/generation.inline.hpp"
|
|
#include "memory/space.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/events.hpp"
|
|
|
|
Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
|
|
_level(level),
|
|
_ref_processor(NULL) {
|
|
if (!_virtual_space.initialize(rs, initial_size)) {
|
|
vm_exit_during_initialization("Could not reserve enough space for "
|
|
"object heap");
|
|
}
|
|
// Mangle all of the the initial generation.
|
|
if (ZapUnusedHeapArea) {
|
|
MemRegion mangle_region((HeapWord*)_virtual_space.low(),
|
|
(HeapWord*)_virtual_space.high());
|
|
SpaceMangler::mangle_region(mangle_region);
|
|
}
|
|
_reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
|
|
(HeapWord*)_virtual_space.high_boundary());
|
|
}
|
|
|
|
GenerationSpec* Generation::spec() {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
|
|
return gch->_gen_specs[level()];
|
|
}
|
|
|
|
size_t Generation::max_capacity() const {
|
|
return reserved().byte_size();
|
|
}
|
|
|
|
void Generation::print_heap_change(size_t prev_used) const {
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print(" " SIZE_FORMAT
|
|
"->" SIZE_FORMAT
|
|
"(" SIZE_FORMAT ")",
|
|
prev_used, used(), capacity());
|
|
} else {
|
|
gclog_or_tty->print(" " SIZE_FORMAT "K"
|
|
"->" SIZE_FORMAT "K"
|
|
"(" SIZE_FORMAT "K)",
|
|
prev_used / K, used() / K, capacity() / K);
|
|
}
|
|
}
|
|
|
|
// By default we get a single threaded default reference processor;
|
|
// generations needing multi-threaded refs processing or discovery override this method.
|
|
void Generation::ref_processor_init() {
|
|
assert(_ref_processor == NULL, "a reference processor already exists");
|
|
assert(!_reserved.is_empty(), "empty generation?");
|
|
_ref_processor = new ReferenceProcessor(_reserved); // a vanilla reference processor
|
|
if (_ref_processor == NULL) {
|
|
vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
|
|
}
|
|
}
|
|
|
|
void Generation::print() const { print_on(tty); }
|
|
|
|
void Generation::print_on(outputStream* st) const {
|
|
st->print(" %-20s", name());
|
|
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
|
|
capacity()/K, used()/K);
|
|
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
|
|
_virtual_space.low_boundary(),
|
|
_virtual_space.high(),
|
|
_virtual_space.high_boundary());
|
|
}
|
|
|
|
void Generation::print_summary_info() { print_summary_info_on(tty); }
|
|
|
|
void Generation::print_summary_info_on(outputStream* st) {
|
|
StatRecord* sr = stat_record();
|
|
double time = sr->accumulated_time.seconds();
|
|
st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
|
|
"%d GC's, avg GC time %3.7f]",
|
|
level(), time, sr->invocations,
|
|
sr->invocations > 0 ? time / sr->invocations : 0.0);
|
|
}
|
|
|
|
// Utility iterator classes
|
|
|
|
class GenerationIsInReservedClosure : public SpaceClosure {
|
|
public:
|
|
const void* _p;
|
|
Space* sp;
|
|
virtual void do_space(Space* s) {
|
|
if (sp == NULL) {
|
|
if (s->is_in_reserved(_p)) sp = s;
|
|
}
|
|
}
|
|
GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
|
|
};
|
|
|
|
class GenerationIsInClosure : public SpaceClosure {
|
|
public:
|
|
const void* _p;
|
|
Space* sp;
|
|
virtual void do_space(Space* s) {
|
|
if (sp == NULL) {
|
|
if (s->is_in(_p)) sp = s;
|
|
}
|
|
}
|
|
GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
|
|
};
|
|
|
|
bool Generation::is_in(const void* p) const {
|
|
GenerationIsInClosure blk(p);
|
|
((Generation*)this)->space_iterate(&blk);
|
|
return blk.sp != NULL;
|
|
}
|
|
|
|
DefNewGeneration* Generation::as_DefNewGeneration() {
|
|
assert((kind() == Generation::DefNew) ||
|
|
(kind() == Generation::ParNew) ||
|
|
(kind() == Generation::ASParNew),
|
|
"Wrong youngest generation type");
|
|
return (DefNewGeneration*) this;
|
|
}
|
|
|
|
Generation* Generation::next_gen() const {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
int next = level() + 1;
|
|
if (next < gch->_n_gens) {
|
|
return gch->_gens[next];
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
size_t Generation::max_contiguous_available() const {
|
|
// The largest number of contiguous free words in this or any higher generation.
|
|
size_t max = 0;
|
|
for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
|
|
size_t avail = gen->contiguous_available();
|
|
if (avail > max) {
|
|
max = avail;
|
|
}
|
|
}
|
|
return max;
|
|
}
|
|
|
|
bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
|
|
size_t available = max_contiguous_available();
|
|
bool res = (available >= max_promotion_in_bytes);
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr(
|
|
"Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
|
|
res? "":" not", available, res? ">=":"<",
|
|
max_promotion_in_bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Ignores "ref" and calls allocate().
|
|
oop Generation::promote(oop obj, size_t obj_size) {
|
|
assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
|
|
|
|
#ifndef PRODUCT
|
|
if (Universe::heap()->promotion_should_fail()) {
|
|
return NULL;
|
|
}
|
|
#endif // #ifndef PRODUCT
|
|
|
|
HeapWord* result = allocate(obj_size, false);
|
|
if (result != NULL) {
|
|
Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
|
|
return oop(result);
|
|
} else {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
return gch->handle_failed_promotion(this, obj, obj_size);
|
|
}
|
|
}
|
|
|
|
oop Generation::par_promote(int thread_num,
|
|
oop obj, markOop m, size_t word_sz) {
|
|
// Could do a bad general impl here that gets a lock. But no.
|
|
ShouldNotCallThis();
|
|
return NULL;
|
|
}
|
|
|
|
void Generation::par_promote_alloc_undo(int thread_num,
|
|
HeapWord* obj, size_t word_sz) {
|
|
// Could do a bad general impl here that gets a lock. But no.
|
|
guarantee(false, "No good general implementation.");
|
|
}
|
|
|
|
Space* Generation::space_containing(const void* p) const {
|
|
GenerationIsInReservedClosure blk(p);
|
|
// Cast away const
|
|
((Generation*)this)->space_iterate(&blk);
|
|
return blk.sp;
|
|
}
|
|
|
|
// Some of these are mediocre general implementations. Should be
|
|
// overridden to get better performance.
|
|
|
|
class GenerationBlockStartClosure : public SpaceClosure {
|
|
public:
|
|
const void* _p;
|
|
HeapWord* _start;
|
|
virtual void do_space(Space* s) {
|
|
if (_start == NULL && s->is_in_reserved(_p)) {
|
|
_start = s->block_start(_p);
|
|
}
|
|
}
|
|
GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
|
|
};
|
|
|
|
HeapWord* Generation::block_start(const void* p) const {
|
|
GenerationBlockStartClosure blk(p);
|
|
// Cast away const
|
|
((Generation*)this)->space_iterate(&blk);
|
|
return blk._start;
|
|
}
|
|
|
|
class GenerationBlockSizeClosure : public SpaceClosure {
|
|
public:
|
|
const HeapWord* _p;
|
|
size_t size;
|
|
virtual void do_space(Space* s) {
|
|
if (size == 0 && s->is_in_reserved(_p)) {
|
|
size = s->block_size(_p);
|
|
}
|
|
}
|
|
GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
|
|
};
|
|
|
|
size_t Generation::block_size(const HeapWord* p) const {
|
|
GenerationBlockSizeClosure blk(p);
|
|
// Cast away const
|
|
((Generation*)this)->space_iterate(&blk);
|
|
assert(blk.size > 0, "seems reasonable");
|
|
return blk.size;
|
|
}
|
|
|
|
class GenerationBlockIsObjClosure : public SpaceClosure {
|
|
public:
|
|
const HeapWord* _p;
|
|
bool is_obj;
|
|
virtual void do_space(Space* s) {
|
|
if (!is_obj && s->is_in_reserved(_p)) {
|
|
is_obj |= s->block_is_obj(_p);
|
|
}
|
|
}
|
|
GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
|
|
};
|
|
|
|
bool Generation::block_is_obj(const HeapWord* p) const {
|
|
GenerationBlockIsObjClosure blk(p);
|
|
// Cast away const
|
|
((Generation*)this)->space_iterate(&blk);
|
|
return blk.is_obj;
|
|
}
|
|
|
|
class GenerationOopIterateClosure : public SpaceClosure {
|
|
public:
|
|
ExtendedOopClosure* _cl;
|
|
virtual void do_space(Space* s) {
|
|
s->oop_iterate(_cl);
|
|
}
|
|
GenerationOopIterateClosure(ExtendedOopClosure* cl) :
|
|
_cl(cl) {}
|
|
};
|
|
|
|
void Generation::oop_iterate(ExtendedOopClosure* cl) {
|
|
GenerationOopIterateClosure blk(cl);
|
|
space_iterate(&blk);
|
|
}
|
|
|
|
void Generation::younger_refs_in_space_iterate(Space* sp,
|
|
OopsInGenClosure* cl) {
|
|
GenRemSet* rs = SharedHeap::heap()->rem_set();
|
|
rs->younger_refs_in_space_iterate(sp, cl);
|
|
}
|
|
|
|
class GenerationObjIterateClosure : public SpaceClosure {
|
|
private:
|
|
ObjectClosure* _cl;
|
|
public:
|
|
virtual void do_space(Space* s) {
|
|
s->object_iterate(_cl);
|
|
}
|
|
GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
|
|
};
|
|
|
|
void Generation::object_iterate(ObjectClosure* cl) {
|
|
GenerationObjIterateClosure blk(cl);
|
|
space_iterate(&blk);
|
|
}
|
|
|
|
class GenerationSafeObjIterateClosure : public SpaceClosure {
|
|
private:
|
|
ObjectClosure* _cl;
|
|
public:
|
|
virtual void do_space(Space* s) {
|
|
s->safe_object_iterate(_cl);
|
|
}
|
|
GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
|
|
};
|
|
|
|
void Generation::safe_object_iterate(ObjectClosure* cl) {
|
|
GenerationSafeObjIterateClosure blk(cl);
|
|
space_iterate(&blk);
|
|
}
|
|
|
|
void Generation::prepare_for_compaction(CompactPoint* cp) {
|
|
// Generic implementation, can be specialized
|
|
CompactibleSpace* space = first_compaction_space();
|
|
while (space != NULL) {
|
|
space->prepare_for_compaction(cp);
|
|
space = space->next_compaction_space();
|
|
}
|
|
}
|
|
|
|
class AdjustPointersClosure: public SpaceClosure {
|
|
public:
|
|
void do_space(Space* sp) {
|
|
sp->adjust_pointers();
|
|
}
|
|
};
|
|
|
|
void Generation::adjust_pointers() {
|
|
// Note that this is done over all spaces, not just the compactible
|
|
// ones.
|
|
AdjustPointersClosure blk;
|
|
space_iterate(&blk, true);
|
|
}
|
|
|
|
void Generation::compact() {
|
|
CompactibleSpace* sp = first_compaction_space();
|
|
while (sp != NULL) {
|
|
sp->compact();
|
|
sp = sp->next_compaction_space();
|
|
}
|
|
}
|
|
|
|
CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
|
|
int level,
|
|
GenRemSet* remset) :
|
|
Generation(rs, initial_byte_size, level), _rs(remset),
|
|
_shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
|
|
_used_at_prologue()
|
|
{
|
|
HeapWord* start = (HeapWord*)rs.base();
|
|
size_t reserved_byte_size = rs.size();
|
|
assert((uintptr_t(start) & 3) == 0, "bad alignment");
|
|
assert((reserved_byte_size & 3) == 0, "bad alignment");
|
|
MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
|
|
_bts = new BlockOffsetSharedArray(reserved_mr,
|
|
heap_word_size(initial_byte_size));
|
|
MemRegion committed_mr(start, heap_word_size(initial_byte_size));
|
|
_rs->resize_covered_region(committed_mr);
|
|
if (_bts == NULL)
|
|
vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
|
|
|
|
// Verify that the start and end of this generation is the start of a card.
|
|
// If this wasn't true, a single card could span more than on generation,
|
|
// which would cause problems when we commit/uncommit memory, and when we
|
|
// clear and dirty cards.
|
|
guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
|
|
if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
|
|
// Don't check at the very end of the heap as we'll assert that we're probing off
|
|
// the end if we try.
|
|
guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
|
|
}
|
|
_min_heap_delta_bytes = MinHeapDeltaBytes;
|
|
_capacity_at_prologue = initial_byte_size;
|
|
_used_at_prologue = 0;
|
|
}
|
|
|
|
bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
|
|
assert_locked_or_safepoint(Heap_lock);
|
|
if (bytes == 0) {
|
|
return true; // That's what grow_by(0) would return
|
|
}
|
|
size_t aligned_bytes = ReservedSpace::page_align_size_up(bytes);
|
|
if (aligned_bytes == 0){
|
|
// The alignment caused the number of bytes to wrap. An expand_by(0) will
|
|
// return true with the implication that an expansion was done when it
|
|
// was not. A call to expand implies a best effort to expand by "bytes"
|
|
// but not a guarantee. Align down to give a best effort. This is likely
|
|
// the most that the generation can expand since it has some capacity to
|
|
// start with.
|
|
aligned_bytes = ReservedSpace::page_align_size_down(bytes);
|
|
}
|
|
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
|
|
bool success = false;
|
|
if (aligned_expand_bytes > aligned_bytes) {
|
|
success = grow_by(aligned_expand_bytes);
|
|
}
|
|
if (!success) {
|
|
success = grow_by(aligned_bytes);
|
|
}
|
|
if (!success) {
|
|
success = grow_to_reserved();
|
|
}
|
|
if (PrintGC && Verbose) {
|
|
if (success && GC_locker::is_active_and_needs_gc()) {
|
|
gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
|
|
// No young generation references, clear this generation's cards.
|
|
void CardGeneration::clear_remembered_set() {
|
|
_rs->clear(reserved());
|
|
}
|
|
|
|
|
|
// Objects in this generation may have moved, invalidate this
|
|
// generation's cards.
|
|
void CardGeneration::invalidate_remembered_set() {
|
|
_rs->invalidate(used_region());
|
|
}
|
|
|
|
|
|
void CardGeneration::compute_new_size() {
|
|
assert(_shrink_factor <= 100, "invalid shrink factor");
|
|
size_t current_shrink_factor = _shrink_factor;
|
|
_shrink_factor = 0;
|
|
|
|
// We don't have floating point command-line arguments
|
|
// Note: argument processing ensures that MinHeapFreeRatio < 100.
|
|
const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
|
|
const double maximum_used_percentage = 1.0 - minimum_free_percentage;
|
|
|
|
// Compute some numbers about the state of the heap.
|
|
const size_t used_after_gc = used();
|
|
const size_t capacity_after_gc = capacity();
|
|
|
|
const double min_tmp = used_after_gc / maximum_used_percentage;
|
|
size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
|
|
// Don't shrink less than the initial generation size
|
|
minimum_desired_capacity = MAX2(minimum_desired_capacity,
|
|
spec()->init_size());
|
|
assert(used_after_gc <= minimum_desired_capacity, "sanity check");
|
|
|
|
if (PrintGC && Verbose) {
|
|
const size_t free_after_gc = free();
|
|
const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
|
|
gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
|
|
gclog_or_tty->print_cr(" "
|
|
" minimum_free_percentage: %6.2f"
|
|
" maximum_used_percentage: %6.2f",
|
|
minimum_free_percentage,
|
|
maximum_used_percentage);
|
|
gclog_or_tty->print_cr(" "
|
|
" free_after_gc : %6.1fK"
|
|
" used_after_gc : %6.1fK"
|
|
" capacity_after_gc : %6.1fK",
|
|
free_after_gc / (double) K,
|
|
used_after_gc / (double) K,
|
|
capacity_after_gc / (double) K);
|
|
gclog_or_tty->print_cr(" "
|
|
" free_percentage: %6.2f",
|
|
free_percentage);
|
|
}
|
|
|
|
if (capacity_after_gc < minimum_desired_capacity) {
|
|
// If we have less free space than we want then expand
|
|
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
|
|
// Don't expand unless it's significant
|
|
if (expand_bytes >= _min_heap_delta_bytes) {
|
|
expand(expand_bytes, 0); // safe if expansion fails
|
|
}
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr(" expanding:"
|
|
" minimum_desired_capacity: %6.1fK"
|
|
" expand_bytes: %6.1fK"
|
|
" _min_heap_delta_bytes: %6.1fK",
|
|
minimum_desired_capacity / (double) K,
|
|
expand_bytes / (double) K,
|
|
_min_heap_delta_bytes / (double) K);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No expansion, now see if we want to shrink
|
|
size_t shrink_bytes = 0;
|
|
// We would never want to shrink more than this
|
|
size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
|
|
|
|
if (MaxHeapFreeRatio < 100) {
|
|
const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
|
|
const double minimum_used_percentage = 1.0 - maximum_free_percentage;
|
|
const double max_tmp = used_after_gc / minimum_used_percentage;
|
|
size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
|
|
maximum_desired_capacity = MAX2(maximum_desired_capacity,
|
|
spec()->init_size());
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr(" "
|
|
" maximum_free_percentage: %6.2f"
|
|
" minimum_used_percentage: %6.2f",
|
|
maximum_free_percentage,
|
|
minimum_used_percentage);
|
|
gclog_or_tty->print_cr(" "
|
|
" _capacity_at_prologue: %6.1fK"
|
|
" minimum_desired_capacity: %6.1fK"
|
|
" maximum_desired_capacity: %6.1fK",
|
|
_capacity_at_prologue / (double) K,
|
|
minimum_desired_capacity / (double) K,
|
|
maximum_desired_capacity / (double) K);
|
|
}
|
|
assert(minimum_desired_capacity <= maximum_desired_capacity,
|
|
"sanity check");
|
|
|
|
if (capacity_after_gc > maximum_desired_capacity) {
|
|
// Capacity too large, compute shrinking size
|
|
shrink_bytes = capacity_after_gc - maximum_desired_capacity;
|
|
// We don't want shrink all the way back to initSize if people call
|
|
// System.gc(), because some programs do that between "phases" and then
|
|
// we'd just have to grow the heap up again for the next phase. So we
|
|
// damp the shrinking: 0% on the first call, 10% on the second call, 40%
|
|
// on the third call, and 100% by the fourth call. But if we recompute
|
|
// size without shrinking, it goes back to 0%.
|
|
shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
|
|
assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
|
|
if (current_shrink_factor == 0) {
|
|
_shrink_factor = 10;
|
|
} else {
|
|
_shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
|
|
}
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr(" "
|
|
" shrinking:"
|
|
" initSize: %.1fK"
|
|
" maximum_desired_capacity: %.1fK",
|
|
spec()->init_size() / (double) K,
|
|
maximum_desired_capacity / (double) K);
|
|
gclog_or_tty->print_cr(" "
|
|
" shrink_bytes: %.1fK"
|
|
" current_shrink_factor: %d"
|
|
" new shrink factor: %d"
|
|
" _min_heap_delta_bytes: %.1fK",
|
|
shrink_bytes / (double) K,
|
|
current_shrink_factor,
|
|
_shrink_factor,
|
|
_min_heap_delta_bytes / (double) K);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (capacity_after_gc > _capacity_at_prologue) {
|
|
// We might have expanded for promotions, in which case we might want to
|
|
// take back that expansion if there's room after GC. That keeps us from
|
|
// stretching the heap with promotions when there's plenty of room.
|
|
size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
|
|
expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
|
|
// We have two shrinking computations, take the largest
|
|
shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
|
|
assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr(" "
|
|
" aggressive shrinking:"
|
|
" _capacity_at_prologue: %.1fK"
|
|
" capacity_after_gc: %.1fK"
|
|
" expansion_for_promotion: %.1fK"
|
|
" shrink_bytes: %.1fK",
|
|
capacity_after_gc / (double) K,
|
|
_capacity_at_prologue / (double) K,
|
|
expansion_for_promotion / (double) K,
|
|
shrink_bytes / (double) K);
|
|
}
|
|
}
|
|
// Don't shrink unless it's significant
|
|
if (shrink_bytes >= _min_heap_delta_bytes) {
|
|
shrink(shrink_bytes);
|
|
}
|
|
}
|
|
|
|
// Currently nothing to do.
|
|
void CardGeneration::prepare_for_verify() {}
|
|
|
|
|
|
void OneContigSpaceCardGeneration::collect(bool full,
|
|
bool clear_all_soft_refs,
|
|
size_t size,
|
|
bool is_tlab) {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
|
|
SpecializationStats::clear();
|
|
// Temporarily expand the span of our ref processor, so
|
|
// refs discovery is over the entire heap, not just this generation
|
|
ReferenceProcessorSpanMutator
|
|
x(ref_processor(), gch->reserved_region());
|
|
|
|
STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
|
|
gc_timer->register_gc_start();
|
|
|
|
SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
|
|
gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
|
|
|
|
GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
|
|
|
|
gc_timer->register_gc_end();
|
|
|
|
gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
|
|
|
|
SpecializationStats::print();
|
|
}
|
|
|
|
HeapWord*
|
|
OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
|
|
bool is_tlab,
|
|
bool parallel) {
|
|
assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
|
|
if (parallel) {
|
|
MutexLocker x(ParGCRareEvent_lock);
|
|
HeapWord* result = NULL;
|
|
size_t byte_size = word_size * HeapWordSize;
|
|
while (true) {
|
|
expand(byte_size, _min_heap_delta_bytes);
|
|
if (GCExpandToAllocateDelayMillis > 0) {
|
|
os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
|
|
}
|
|
result = _the_space->par_allocate(word_size);
|
|
if ( result != NULL) {
|
|
return result;
|
|
} else {
|
|
// If there's not enough expansion space available, give up.
|
|
if (_virtual_space.uncommitted_size() < byte_size) {
|
|
return NULL;
|
|
}
|
|
// else try again
|
|
}
|
|
}
|
|
} else {
|
|
expand(word_size*HeapWordSize, _min_heap_delta_bytes);
|
|
return _the_space->allocate(word_size);
|
|
}
|
|
}
|
|
|
|
bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
|
|
GCMutexLocker x(ExpandHeap_lock);
|
|
return CardGeneration::expand(bytes, expand_bytes);
|
|
}
|
|
|
|
|
|
void OneContigSpaceCardGeneration::shrink(size_t bytes) {
|
|
assert_locked_or_safepoint(ExpandHeap_lock);
|
|
size_t size = ReservedSpace::page_align_size_down(bytes);
|
|
if (size > 0) {
|
|
shrink_by(size);
|
|
}
|
|
}
|
|
|
|
|
|
size_t OneContigSpaceCardGeneration::capacity() const {
|
|
return _the_space->capacity();
|
|
}
|
|
|
|
|
|
size_t OneContigSpaceCardGeneration::used() const {
|
|
return _the_space->used();
|
|
}
|
|
|
|
|
|
size_t OneContigSpaceCardGeneration::free() const {
|
|
return _the_space->free();
|
|
}
|
|
|
|
MemRegion OneContigSpaceCardGeneration::used_region() const {
|
|
return the_space()->used_region();
|
|
}
|
|
|
|
size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
|
|
return _the_space->free();
|
|
}
|
|
|
|
size_t OneContigSpaceCardGeneration::contiguous_available() const {
|
|
return _the_space->free() + _virtual_space.uncommitted_size();
|
|
}
|
|
|
|
bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
|
|
assert_locked_or_safepoint(ExpandHeap_lock);
|
|
bool result = _virtual_space.expand_by(bytes);
|
|
if (result) {
|
|
size_t new_word_size =
|
|
heap_word_size(_virtual_space.committed_size());
|
|
MemRegion mr(_the_space->bottom(), new_word_size);
|
|
// Expand card table
|
|
Universe::heap()->barrier_set()->resize_covered_region(mr);
|
|
// Expand shared block offset array
|
|
_bts->resize(new_word_size);
|
|
|
|
// Fix for bug #4668531
|
|
if (ZapUnusedHeapArea) {
|
|
MemRegion mangle_region(_the_space->end(),
|
|
(HeapWord*)_virtual_space.high());
|
|
SpaceMangler::mangle_region(mangle_region);
|
|
}
|
|
|
|
// Expand space -- also expands space's BOT
|
|
// (which uses (part of) shared array above)
|
|
_the_space->set_end((HeapWord*)_virtual_space.high());
|
|
|
|
// update the space and generation capacity counters
|
|
update_counters();
|
|
|
|
if (Verbose && PrintGC) {
|
|
size_t new_mem_size = _virtual_space.committed_size();
|
|
size_t old_mem_size = new_mem_size - bytes;
|
|
gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
|
|
SIZE_FORMAT "K to " SIZE_FORMAT "K",
|
|
name(), old_mem_size/K, bytes/K, new_mem_size/K);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
bool OneContigSpaceCardGeneration::grow_to_reserved() {
|
|
assert_locked_or_safepoint(ExpandHeap_lock);
|
|
bool success = true;
|
|
const size_t remaining_bytes = _virtual_space.uncommitted_size();
|
|
if (remaining_bytes > 0) {
|
|
success = grow_by(remaining_bytes);
|
|
DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
|
|
}
|
|
return success;
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
|
|
assert_locked_or_safepoint(ExpandHeap_lock);
|
|
// Shrink committed space
|
|
_virtual_space.shrink_by(bytes);
|
|
// Shrink space; this also shrinks the space's BOT
|
|
_the_space->set_end((HeapWord*) _virtual_space.high());
|
|
size_t new_word_size = heap_word_size(_the_space->capacity());
|
|
// Shrink the shared block offset array
|
|
_bts->resize(new_word_size);
|
|
MemRegion mr(_the_space->bottom(), new_word_size);
|
|
// Shrink the card table
|
|
Universe::heap()->barrier_set()->resize_covered_region(mr);
|
|
|
|
if (Verbose && PrintGC) {
|
|
size_t new_mem_size = _virtual_space.committed_size();
|
|
size_t old_mem_size = new_mem_size + bytes;
|
|
gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
|
|
name(), old_mem_size/K, new_mem_size/K);
|
|
}
|
|
}
|
|
|
|
// Currently nothing to do.
|
|
void OneContigSpaceCardGeneration::prepare_for_verify() {}
|
|
|
|
|
|
// Override for a card-table generation with one contiguous
|
|
// space. NOTE: For reasons that are lost in the fog of history,
|
|
// this code is used when you iterate over perm gen objects,
|
|
// even when one uses CDS, where the perm gen has a couple of
|
|
// other spaces; this is because CompactingPermGenGen derives
|
|
// from OneContigSpaceCardGeneration. This should be cleaned up,
|
|
// see CR 6897789..
|
|
void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
|
|
_the_space->object_iterate(blk);
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
|
|
bool usedOnly) {
|
|
blk->do_space(_the_space);
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
|
|
blk->set_generation(this);
|
|
younger_refs_in_space_iterate(_the_space, blk);
|
|
blk->reset_generation();
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::save_marks() {
|
|
_the_space->set_saved_mark();
|
|
}
|
|
|
|
|
|
void OneContigSpaceCardGeneration::reset_saved_marks() {
|
|
_the_space->reset_saved_mark();
|
|
}
|
|
|
|
|
|
bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
|
|
return _the_space->saved_mark_at_top();
|
|
}
|
|
|
|
#define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
|
|
\
|
|
void OneContigSpaceCardGeneration:: \
|
|
oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
|
|
blk->set_generation(this); \
|
|
_the_space->oop_since_save_marks_iterate##nv_suffix(blk); \
|
|
blk->reset_generation(); \
|
|
save_marks(); \
|
|
}
|
|
|
|
ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
|
|
|
|
#undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
|
|
|
|
|
|
void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
|
|
_last_gc = WaterMark(the_space(), the_space()->top());
|
|
|
|
// update the generation and space performance counters
|
|
update_counters();
|
|
if (ZapUnusedHeapArea) {
|
|
the_space()->check_mangled_unused_area_complete();
|
|
}
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::record_spaces_top() {
|
|
assert(ZapUnusedHeapArea, "Not mangling unused space");
|
|
the_space()->set_top_for_allocations();
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::verify() {
|
|
the_space()->verify();
|
|
}
|
|
|
|
void OneContigSpaceCardGeneration::print_on(outputStream* st) const {
|
|
Generation::print_on(st);
|
|
st->print(" the");
|
|
the_space()->print_on(st);
|
|
}
|