b9f2f3e199
Reviewed-by: coleenp, kbarrett, dholmes
1003 lines
36 KiB
C++
1003 lines
36 KiB
C++
/*
|
|
* Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/parallel/mutableNUMASpace.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/spaceDecorator.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "utilities/align.hpp"
|
|
|
|
MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment), _must_use_large_pages(false) {
|
|
_lgrp_spaces = new (ResourceObj::C_HEAP, mtGC) GrowableArray<LGRPSpace*>(0, true);
|
|
_page_size = os::vm_page_size();
|
|
_adaptation_cycles = 0;
|
|
_samples_count = 0;
|
|
|
|
#ifdef LINUX
|
|
// Changing the page size can lead to freeing of memory. When using large pages
|
|
// and the memory has been both reserved and committed, Linux does not support
|
|
// freeing parts of it.
|
|
if (UseLargePages && !os::can_commit_large_page_memory()) {
|
|
_must_use_large_pages = true;
|
|
}
|
|
#endif // LINUX
|
|
|
|
update_layout(true);
|
|
}
|
|
|
|
MutableNUMASpace::~MutableNUMASpace() {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
delete lgrp_spaces()->at(i);
|
|
}
|
|
delete lgrp_spaces();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void MutableNUMASpace::mangle_unused_area() {
|
|
// This method should do nothing.
|
|
// It can be called on a numa space during a full compaction.
|
|
}
|
|
void MutableNUMASpace::mangle_unused_area_complete() {
|
|
// This method should do nothing.
|
|
// It can be called on a numa space during a full compaction.
|
|
}
|
|
void MutableNUMASpace::mangle_region(MemRegion mr) {
|
|
// This method should do nothing because numa spaces are not mangled.
|
|
}
|
|
void MutableNUMASpace::set_top_for_allocations(HeapWord* v) {
|
|
assert(false, "Do not mangle MutableNUMASpace's");
|
|
}
|
|
void MutableNUMASpace::set_top_for_allocations() {
|
|
// This method should do nothing.
|
|
}
|
|
void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) {
|
|
// This method should do nothing.
|
|
}
|
|
void MutableNUMASpace::check_mangled_unused_area_complete() {
|
|
// This method should do nothing.
|
|
}
|
|
#endif // NOT_PRODUCT
|
|
|
|
// There may be unallocated holes in the middle chunks
|
|
// that should be filled with dead objects to ensure parsability.
|
|
void MutableNUMASpace::ensure_parsability() {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
if (s->top() < top()) { // For all spaces preceding the one containing top()
|
|
if (s->free_in_words() > 0) {
|
|
HeapWord* cur_top = s->top();
|
|
size_t words_left_to_fill = pointer_delta(s->end(), s->top());;
|
|
while (words_left_to_fill > 0) {
|
|
size_t words_to_fill = MIN2(words_left_to_fill, CollectedHeap::filler_array_max_size());
|
|
assert(words_to_fill >= CollectedHeap::min_fill_size(),
|
|
"Remaining size (" SIZE_FORMAT ") is too small to fill (based on " SIZE_FORMAT " and " SIZE_FORMAT ")",
|
|
words_to_fill, words_left_to_fill, CollectedHeap::filler_array_max_size());
|
|
CollectedHeap::fill_with_object(cur_top, words_to_fill);
|
|
if (!os::numa_has_static_binding()) {
|
|
size_t touched_words = words_to_fill;
|
|
#ifndef ASSERT
|
|
if (!ZapUnusedHeapArea) {
|
|
touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
|
|
touched_words);
|
|
}
|
|
#endif
|
|
MemRegion invalid;
|
|
HeapWord *crossing_start = align_up(cur_top, os::vm_page_size());
|
|
HeapWord *crossing_end = align_down(cur_top + touched_words, os::vm_page_size());
|
|
if (crossing_start != crossing_end) {
|
|
// If object header crossed a small page boundary we mark the area
|
|
// as invalid rounding it to a page_size().
|
|
HeapWord *start = MAX2(align_down(cur_top, page_size()), s->bottom());
|
|
HeapWord *end = MIN2(align_up(cur_top + touched_words, page_size()), s->end());
|
|
invalid = MemRegion(start, end);
|
|
}
|
|
|
|
ls->add_invalid_region(invalid);
|
|
}
|
|
cur_top += words_to_fill;
|
|
words_left_to_fill -= words_to_fill;
|
|
}
|
|
}
|
|
} else {
|
|
if (!os::numa_has_static_binding()) {
|
|
#ifdef ASSERT
|
|
MemRegion invalid(s->top(), s->end());
|
|
ls->add_invalid_region(invalid);
|
|
#else
|
|
if (ZapUnusedHeapArea) {
|
|
MemRegion invalid(s->top(), s->end());
|
|
ls->add_invalid_region(invalid);
|
|
} else {
|
|
return;
|
|
}
|
|
#endif
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t MutableNUMASpace::used_in_words() const {
|
|
size_t s = 0;
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
s += lgrp_spaces()->at(i)->space()->used_in_words();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
size_t MutableNUMASpace::free_in_words() const {
|
|
size_t s = 0;
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
s += lgrp_spaces()->at(i)->space()->free_in_words();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
|
|
guarantee(thr != NULL, "No thread");
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1) {
|
|
// This case can occur after the topology of the system has
|
|
// changed. Thread can change their location, the new home
|
|
// group will be determined during the first allocation
|
|
// attempt. For now we can safely assume that all spaces
|
|
// have equal size because the whole space will be reinitialized.
|
|
if (lgrp_spaces()->length() > 0) {
|
|
return capacity_in_bytes() / lgrp_spaces()->length();
|
|
} else {
|
|
assert(false, "There should be at least one locality group");
|
|
return 0;
|
|
}
|
|
}
|
|
// That's the normal case, where we know the locality group of the thread.
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
if (i == -1) {
|
|
return 0;
|
|
}
|
|
return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
|
|
}
|
|
|
|
size_t MutableNUMASpace::tlab_used(Thread *thr) const {
|
|
// Please see the comments for tlab_capacity().
|
|
guarantee(thr != NULL, "No thread");
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1) {
|
|
if (lgrp_spaces()->length() > 0) {
|
|
return (used_in_bytes()) / lgrp_spaces()->length();
|
|
} else {
|
|
assert(false, "There should be at least one locality group");
|
|
return 0;
|
|
}
|
|
}
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
if (i == -1) {
|
|
return 0;
|
|
}
|
|
return lgrp_spaces()->at(i)->space()->used_in_bytes();
|
|
}
|
|
|
|
|
|
size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
|
|
// Please see the comments for tlab_capacity().
|
|
guarantee(thr != NULL, "No thread");
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1) {
|
|
if (lgrp_spaces()->length() > 0) {
|
|
return free_in_bytes() / lgrp_spaces()->length();
|
|
} else {
|
|
assert(false, "There should be at least one locality group");
|
|
return 0;
|
|
}
|
|
}
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
if (i == -1) {
|
|
return 0;
|
|
}
|
|
return lgrp_spaces()->at(i)->space()->free_in_bytes();
|
|
}
|
|
|
|
|
|
size_t MutableNUMASpace::capacity_in_words(Thread* thr) const {
|
|
guarantee(thr != NULL, "No thread");
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1) {
|
|
if (lgrp_spaces()->length() > 0) {
|
|
return capacity_in_words() / lgrp_spaces()->length();
|
|
} else {
|
|
assert(false, "There should be at least one locality group");
|
|
return 0;
|
|
}
|
|
}
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
if (i == -1) {
|
|
return 0;
|
|
}
|
|
return lgrp_spaces()->at(i)->space()->capacity_in_words();
|
|
}
|
|
|
|
// Check if the NUMA topology has changed. Add and remove spaces if needed.
|
|
// The update can be forced by setting the force parameter equal to true.
|
|
bool MutableNUMASpace::update_layout(bool force) {
|
|
// Check if the topology had changed.
|
|
bool changed = os::numa_topology_changed();
|
|
if (force || changed) {
|
|
// Compute lgrp intersection. Add/remove spaces.
|
|
int lgrp_limit = (int)os::numa_get_groups_num();
|
|
int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC);
|
|
int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
|
|
assert(lgrp_num > 0, "There should be at least one locality group");
|
|
// Add new spaces for the new nodes
|
|
for (int i = 0; i < lgrp_num; i++) {
|
|
bool found = false;
|
|
for (int j = 0; j < lgrp_spaces()->length(); j++) {
|
|
if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
|
|
}
|
|
}
|
|
|
|
// Remove spaces for the removed nodes.
|
|
for (int i = 0; i < lgrp_spaces()->length();) {
|
|
bool found = false;
|
|
for (int j = 0; j < lgrp_num; j++) {
|
|
if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
delete lgrp_spaces()->at(i);
|
|
lgrp_spaces()->remove_at(i);
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(int, lgrp_ids);
|
|
|
|
if (changed) {
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
|
|
thread->set_lgrp_id(-1);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Bias region towards the first-touching lgrp. Set the right page sizes.
|
|
void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) {
|
|
HeapWord *start = align_up(mr.start(), page_size());
|
|
HeapWord *end = align_down(mr.end(), page_size());
|
|
if (end > start) {
|
|
MemRegion aligned_region(start, end);
|
|
assert((intptr_t)aligned_region.start() % page_size() == 0 &&
|
|
(intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
|
|
assert(region().contains(aligned_region), "Sanity");
|
|
// First we tell the OS which page size we want in the given range. The underlying
|
|
// large page can be broken down if we require small pages.
|
|
os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
|
|
// Then we uncommit the pages in the range.
|
|
os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
|
|
// And make them local/first-touch biased.
|
|
os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id);
|
|
}
|
|
}
|
|
|
|
// Free all pages in the region.
|
|
void MutableNUMASpace::free_region(MemRegion mr) {
|
|
HeapWord *start = align_up(mr.start(), page_size());
|
|
HeapWord *end = align_down(mr.end(), page_size());
|
|
if (end > start) {
|
|
MemRegion aligned_region(start, end);
|
|
assert((intptr_t)aligned_region.start() % page_size() == 0 &&
|
|
(intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
|
|
assert(region().contains(aligned_region), "Sanity");
|
|
os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
|
|
}
|
|
}
|
|
|
|
// Update space layout. Perform adaptation.
|
|
void MutableNUMASpace::update() {
|
|
if (update_layout(false)) {
|
|
// If the topology has changed, make all chunks zero-sized.
|
|
// And clear the alloc-rate statistics.
|
|
// In future we may want to handle this more gracefully in order
|
|
// to avoid the reallocation of the pages as much as possible.
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
s->set_end(s->bottom());
|
|
s->set_top(s->bottom());
|
|
ls->clear_alloc_rate();
|
|
}
|
|
// A NUMA space is never mangled
|
|
initialize(region(),
|
|
SpaceDecorator::Clear,
|
|
SpaceDecorator::DontMangle);
|
|
} else {
|
|
bool should_initialize = false;
|
|
if (!os::numa_has_static_binding()) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
|
|
should_initialize = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (should_initialize ||
|
|
(UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
|
|
// A NUMA space is never mangled
|
|
initialize(region(),
|
|
SpaceDecorator::Clear,
|
|
SpaceDecorator::DontMangle);
|
|
}
|
|
}
|
|
|
|
if (NUMAStats) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
lgrp_spaces()->at(i)->accumulate_statistics(page_size());
|
|
}
|
|
}
|
|
|
|
scan_pages(NUMAPageScanRate);
|
|
}
|
|
|
|
// Scan pages. Free pages that have smaller size or wrong placement.
|
|
void MutableNUMASpace::scan_pages(size_t page_count)
|
|
{
|
|
size_t pages_per_chunk = page_count / lgrp_spaces()->length();
|
|
if (pages_per_chunk > 0) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
ls->scan_pages(page_size(), pages_per_chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Accumulate statistics about the allocation rate of each lgrp.
|
|
void MutableNUMASpace::accumulate_statistics() {
|
|
if (UseAdaptiveNUMAChunkSizing) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
lgrp_spaces()->at(i)->sample();
|
|
}
|
|
increment_samples_count();
|
|
}
|
|
|
|
if (NUMAStats) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
lgrp_spaces()->at(i)->accumulate_statistics(page_size());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the current size of a chunk.
|
|
// This function computes the size of the chunk based on the
|
|
// difference between chunk ends. This allows it to work correctly in
|
|
// case the whole space is resized and during the process of adaptive
|
|
// chunk resizing.
|
|
size_t MutableNUMASpace::current_chunk_size(int i) {
|
|
HeapWord *cur_end, *prev_end;
|
|
if (i == 0) {
|
|
prev_end = bottom();
|
|
} else {
|
|
prev_end = lgrp_spaces()->at(i - 1)->space()->end();
|
|
}
|
|
if (i == lgrp_spaces()->length() - 1) {
|
|
cur_end = end();
|
|
} else {
|
|
cur_end = lgrp_spaces()->at(i)->space()->end();
|
|
}
|
|
if (cur_end > prev_end) {
|
|
return pointer_delta(cur_end, prev_end, sizeof(char));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return the default chunk size by equally diving the space.
|
|
// page_size() aligned.
|
|
size_t MutableNUMASpace::default_chunk_size() {
|
|
return base_space_size() / lgrp_spaces()->length() * page_size();
|
|
}
|
|
|
|
// Produce a new chunk size. page_size() aligned.
|
|
// This function is expected to be called on sequence of i's from 0 to
|
|
// lgrp_spaces()->length().
|
|
size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
|
|
size_t pages_available = base_space_size();
|
|
for (int j = 0; j < i; j++) {
|
|
pages_available -= align_down(current_chunk_size(j), page_size()) / page_size();
|
|
}
|
|
pages_available -= lgrp_spaces()->length() - i - 1;
|
|
assert(pages_available > 0, "No pages left");
|
|
float alloc_rate = 0;
|
|
for (int j = i; j < lgrp_spaces()->length(); j++) {
|
|
alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
|
|
}
|
|
size_t chunk_size = 0;
|
|
if (alloc_rate > 0) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
chunk_size = (size_t)(ls->alloc_rate()->average() / alloc_rate * pages_available) * page_size();
|
|
}
|
|
chunk_size = MAX2(chunk_size, page_size());
|
|
|
|
if (limit > 0) {
|
|
limit = align_down(limit, page_size());
|
|
if (chunk_size > current_chunk_size(i)) {
|
|
size_t upper_bound = pages_available * page_size();
|
|
if (upper_bound > limit &&
|
|
current_chunk_size(i) < upper_bound - limit) {
|
|
// The resulting upper bound should not exceed the available
|
|
// amount of memory (pages_available * page_size()).
|
|
upper_bound = current_chunk_size(i) + limit;
|
|
}
|
|
chunk_size = MIN2(chunk_size, upper_bound);
|
|
} else {
|
|
size_t lower_bound = page_size();
|
|
if (current_chunk_size(i) > limit) { // lower_bound shouldn't underflow.
|
|
lower_bound = current_chunk_size(i) - limit;
|
|
}
|
|
chunk_size = MAX2(chunk_size, lower_bound);
|
|
}
|
|
}
|
|
assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
|
|
return chunk_size;
|
|
}
|
|
|
|
|
|
// Return the bottom_region and the top_region. Align them to page_size() boundary.
|
|
// |------------------new_region---------------------------------|
|
|
// |----bottom_region--|---intersection---|------top_region------|
|
|
void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
|
|
MemRegion* bottom_region, MemRegion *top_region) {
|
|
// Is there bottom?
|
|
if (new_region.start() < intersection.start()) { // Yes
|
|
// Try to coalesce small pages into a large one.
|
|
if (UseLargePages && page_size() >= alignment()) {
|
|
HeapWord* p = align_up(intersection.start(), alignment());
|
|
if (new_region.contains(p)
|
|
&& pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) {
|
|
if (intersection.contains(p)) {
|
|
intersection = MemRegion(p, intersection.end());
|
|
} else {
|
|
intersection = MemRegion(p, p);
|
|
}
|
|
}
|
|
}
|
|
*bottom_region = MemRegion(new_region.start(), intersection.start());
|
|
} else {
|
|
*bottom_region = MemRegion();
|
|
}
|
|
|
|
// Is there top?
|
|
if (intersection.end() < new_region.end()) { // Yes
|
|
// Try to coalesce small pages into a large one.
|
|
if (UseLargePages && page_size() >= alignment()) {
|
|
HeapWord* p = align_down(intersection.end(), alignment());
|
|
if (new_region.contains(p)
|
|
&& pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) {
|
|
if (intersection.contains(p)) {
|
|
intersection = MemRegion(intersection.start(), p);
|
|
} else {
|
|
intersection = MemRegion(p, p);
|
|
}
|
|
}
|
|
}
|
|
*top_region = MemRegion(intersection.end(), new_region.end());
|
|
} else {
|
|
*top_region = MemRegion();
|
|
}
|
|
}
|
|
|
|
// Try to merge the invalid region with the bottom or top region by decreasing
|
|
// the intersection area. Return the invalid_region aligned to the page_size()
|
|
// boundary if it's inside the intersection. Return non-empty invalid_region
|
|
// if it lies inside the intersection (also page-aligned).
|
|
// |------------------new_region---------------------------------|
|
|
// |----------------|-------invalid---|--------------------------|
|
|
// |----bottom_region--|---intersection---|------top_region------|
|
|
void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
|
|
MemRegion *invalid_region) {
|
|
if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
|
|
*intersection = MemRegion(invalid_region->end(), intersection->end());
|
|
*invalid_region = MemRegion();
|
|
} else
|
|
if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
|
|
*intersection = MemRegion(intersection->start(), invalid_region->start());
|
|
*invalid_region = MemRegion();
|
|
} else
|
|
if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
|
|
*intersection = MemRegion(new_region.start(), new_region.start());
|
|
*invalid_region = MemRegion();
|
|
} else
|
|
if (intersection->contains(invalid_region)) {
|
|
// That's the only case we have to make an additional bias_region() call.
|
|
HeapWord* start = invalid_region->start();
|
|
HeapWord* end = invalid_region->end();
|
|
if (UseLargePages && page_size() >= alignment()) {
|
|
HeapWord *p = align_down(start, alignment());
|
|
if (new_region.contains(p)) {
|
|
start = p;
|
|
}
|
|
p = align_up(end, alignment());
|
|
if (new_region.contains(end)) {
|
|
end = p;
|
|
}
|
|
}
|
|
if (intersection->start() > start) {
|
|
*intersection = MemRegion(start, intersection->end());
|
|
}
|
|
if (intersection->end() < end) {
|
|
*intersection = MemRegion(intersection->start(), end);
|
|
}
|
|
*invalid_region = MemRegion(start, end);
|
|
}
|
|
}
|
|
|
|
void MutableNUMASpace::initialize(MemRegion mr,
|
|
bool clear_space,
|
|
bool mangle_space,
|
|
bool setup_pages) {
|
|
assert(clear_space, "Reallocation will destroy data!");
|
|
assert(lgrp_spaces()->length() > 0, "There should be at least one space");
|
|
|
|
MemRegion old_region = region(), new_region;
|
|
set_bottom(mr.start());
|
|
set_end(mr.end());
|
|
// Must always clear the space
|
|
clear(SpaceDecorator::DontMangle);
|
|
|
|
// Compute chunk sizes
|
|
size_t prev_page_size = page_size();
|
|
set_page_size(UseLargePages ? alignment() : os::vm_page_size());
|
|
HeapWord* rounded_bottom = align_up(bottom(), page_size());
|
|
HeapWord* rounded_end = align_down(end(), page_size());
|
|
size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
|
|
|
|
// Try small pages if the chunk size is too small
|
|
if (base_space_size_pages / lgrp_spaces()->length() == 0
|
|
&& page_size() > (size_t)os::vm_page_size()) {
|
|
// Changing the page size below can lead to freeing of memory. So we fail initialization.
|
|
if (_must_use_large_pages) {
|
|
vm_exit_during_initialization("Failed initializing NUMA with large pages. Too small heap size");
|
|
}
|
|
set_page_size(os::vm_page_size());
|
|
rounded_bottom = align_up(bottom(), page_size());
|
|
rounded_end = align_down(end(), page_size());
|
|
base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
|
|
}
|
|
guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
|
|
set_base_space_size(base_space_size_pages);
|
|
|
|
// Handle space resize
|
|
MemRegion top_region, bottom_region;
|
|
if (!old_region.equals(region())) {
|
|
new_region = MemRegion(rounded_bottom, rounded_end);
|
|
MemRegion intersection = new_region.intersection(old_region);
|
|
if (intersection.start() == NULL ||
|
|
intersection.end() == NULL ||
|
|
prev_page_size > page_size()) { // If the page size got smaller we have to change
|
|
// the page size preference for the whole space.
|
|
intersection = MemRegion(new_region.start(), new_region.start());
|
|
}
|
|
select_tails(new_region, intersection, &bottom_region, &top_region);
|
|
bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id());
|
|
bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id());
|
|
}
|
|
|
|
// Check if the space layout has changed significantly?
|
|
// This happens when the space has been resized so that either head or tail
|
|
// chunk became less than a page.
|
|
bool layout_valid = UseAdaptiveNUMAChunkSizing &&
|
|
current_chunk_size(0) > page_size() &&
|
|
current_chunk_size(lgrp_spaces()->length() - 1) > page_size();
|
|
|
|
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
old_region = s->region();
|
|
|
|
size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
|
|
if (i < lgrp_spaces()->length() - 1) {
|
|
if (!UseAdaptiveNUMAChunkSizing ||
|
|
(UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
|
|
samples_count() < AdaptiveSizePolicyReadyThreshold) {
|
|
// No adaptation. Divide the space equally.
|
|
chunk_byte_size = default_chunk_size();
|
|
} else
|
|
if (!layout_valid || NUMASpaceResizeRate == 0) {
|
|
// Fast adaptation. If no space resize rate is set, resize
|
|
// the chunks instantly.
|
|
chunk_byte_size = adaptive_chunk_size(i, 0);
|
|
} else {
|
|
// Slow adaptation. Resize the chunks moving no more than
|
|
// NUMASpaceResizeRate bytes per collection.
|
|
size_t limit = NUMASpaceResizeRate /
|
|
(lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
|
|
chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
|
|
}
|
|
|
|
assert(chunk_byte_size >= page_size(), "Chunk size too small");
|
|
assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
|
|
}
|
|
|
|
if (i == 0) { // Bottom chunk
|
|
if (i != lgrp_spaces()->length() - 1) {
|
|
new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
|
|
} else {
|
|
new_region = MemRegion(bottom(), end());
|
|
}
|
|
} else
|
|
if (i < lgrp_spaces()->length() - 1) { // Middle chunks
|
|
MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
|
|
new_region = MemRegion(ps->end(),
|
|
ps->end() + (chunk_byte_size >> LogHeapWordSize));
|
|
} else { // Top chunk
|
|
MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
|
|
new_region = MemRegion(ps->end(), end());
|
|
}
|
|
guarantee(region().contains(new_region), "Region invariant");
|
|
|
|
|
|
// The general case:
|
|
// |---------------------|--invalid---|--------------------------|
|
|
// |------------------new_region---------------------------------|
|
|
// |----bottom_region--|---intersection---|------top_region------|
|
|
// |----old_region----|
|
|
// The intersection part has all pages in place we don't need to migrate them.
|
|
// Pages for the top and bottom part should be freed and then reallocated.
|
|
|
|
MemRegion intersection = old_region.intersection(new_region);
|
|
|
|
if (intersection.start() == NULL || intersection.end() == NULL) {
|
|
intersection = MemRegion(new_region.start(), new_region.start());
|
|
}
|
|
|
|
if (!os::numa_has_static_binding()) {
|
|
MemRegion invalid_region = ls->invalid_region().intersection(new_region);
|
|
// Invalid region is a range of memory that could've possibly
|
|
// been allocated on the other node. That's relevant only on Solaris where
|
|
// there is no static memory binding.
|
|
if (!invalid_region.is_empty()) {
|
|
merge_regions(new_region, &intersection, &invalid_region);
|
|
free_region(invalid_region);
|
|
ls->set_invalid_region(MemRegion());
|
|
}
|
|
}
|
|
|
|
select_tails(new_region, intersection, &bottom_region, &top_region);
|
|
|
|
if (!os::numa_has_static_binding()) {
|
|
// If that's a system with the first-touch policy then it's enough
|
|
// to free the pages.
|
|
free_region(bottom_region);
|
|
free_region(top_region);
|
|
} else {
|
|
// In a system with static binding we have to change the bias whenever
|
|
// we reshape the heap.
|
|
bias_region(bottom_region, ls->lgrp_id());
|
|
bias_region(top_region, ls->lgrp_id());
|
|
}
|
|
|
|
// Clear space (set top = bottom) but never mangle.
|
|
s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages);
|
|
|
|
set_adaptation_cycles(samples_count());
|
|
}
|
|
}
|
|
|
|
// Set the top of the whole space.
|
|
// Mark the the holes in chunks below the top() as invalid.
|
|
void MutableNUMASpace::set_top(HeapWord* value) {
|
|
bool found_top = false;
|
|
for (int i = 0; i < lgrp_spaces()->length();) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
HeapWord *top = MAX2(align_down(s->top(), page_size()), s->bottom());
|
|
|
|
if (s->contains(value)) {
|
|
// Check if setting the chunk's top to a given value would create a hole less than
|
|
// a minimal object; assuming that's not the last chunk in which case we don't care.
|
|
if (i < lgrp_spaces()->length() - 1) {
|
|
size_t remainder = pointer_delta(s->end(), value);
|
|
const size_t min_fill_size = CollectedHeap::min_fill_size();
|
|
if (remainder < min_fill_size && remainder > 0) {
|
|
// Add a minimum size filler object; it will cross the chunk boundary.
|
|
CollectedHeap::fill_with_object(value, min_fill_size);
|
|
value += min_fill_size;
|
|
assert(!s->contains(value), "Should be in the next chunk");
|
|
// Restart the loop from the same chunk, since the value has moved
|
|
// to the next one.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!os::numa_has_static_binding() && top < value && top < s->end()) {
|
|
ls->add_invalid_region(MemRegion(top, value));
|
|
}
|
|
s->set_top(value);
|
|
found_top = true;
|
|
} else {
|
|
if (found_top) {
|
|
s->set_top(s->bottom());
|
|
} else {
|
|
if (!os::numa_has_static_binding() && top < s->end()) {
|
|
ls->add_invalid_region(MemRegion(top, s->end()));
|
|
}
|
|
s->set_top(s->end());
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
MutableSpace::set_top(value);
|
|
}
|
|
|
|
void MutableNUMASpace::clear(bool mangle_space) {
|
|
MutableSpace::set_top(bottom());
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
// Never mangle NUMA spaces because the mangling will
|
|
// bind the memory to a possibly unwanted lgroup.
|
|
lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Linux supports static memory binding, therefore the most part of the
|
|
logic dealing with the possible invalid page allocation is effectively
|
|
disabled. Besides there is no notion of the home node in Linux. A
|
|
thread is allowed to migrate freely. Although the scheduler is rather
|
|
reluctant to move threads between the nodes. We check for the current
|
|
node every allocation. And with a high probability a thread stays on
|
|
the same node for some time allowing local access to recently allocated
|
|
objects.
|
|
*/
|
|
|
|
HeapWord* MutableNUMASpace::allocate(size_t size) {
|
|
Thread* thr = Thread::current();
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1 || !os::numa_has_group_homing()) {
|
|
lgrp_id = os::numa_get_group_id();
|
|
thr->set_lgrp_id(lgrp_id);
|
|
}
|
|
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
|
|
// It is possible that a new CPU has been hotplugged and
|
|
// we haven't reshaped the space accordingly.
|
|
if (i == -1) {
|
|
i = os::random() % lgrp_spaces()->length();
|
|
}
|
|
|
|
LGRPSpace* ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
HeapWord *p = s->allocate(size);
|
|
|
|
if (p != NULL) {
|
|
size_t remainder = s->free_in_words();
|
|
if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
|
|
s->set_top(s->top() - size);
|
|
p = NULL;
|
|
}
|
|
}
|
|
if (p != NULL) {
|
|
if (top() < s->top()) { // Keep _top updated.
|
|
MutableSpace::set_top(s->top());
|
|
}
|
|
}
|
|
// Make the page allocation happen here if there is no static binding..
|
|
if (p != NULL && !os::numa_has_static_binding()) {
|
|
for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
|
|
*(int*)i = 0;
|
|
}
|
|
}
|
|
if (p == NULL) {
|
|
ls->set_allocation_failed();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// This version is lock-free.
|
|
HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
|
|
Thread* thr = Thread::current();
|
|
int lgrp_id = thr->lgrp_id();
|
|
if (lgrp_id == -1 || !os::numa_has_group_homing()) {
|
|
lgrp_id = os::numa_get_group_id();
|
|
thr->set_lgrp_id(lgrp_id);
|
|
}
|
|
|
|
int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
|
|
// It is possible that a new CPU has been hotplugged and
|
|
// we haven't reshaped the space accordingly.
|
|
if (i == -1) {
|
|
i = os::random() % lgrp_spaces()->length();
|
|
}
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
MutableSpace *s = ls->space();
|
|
HeapWord *p = s->cas_allocate(size);
|
|
if (p != NULL) {
|
|
size_t remainder = pointer_delta(s->end(), p + size);
|
|
if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
|
|
if (s->cas_deallocate(p, size)) {
|
|
// We were the last to allocate and created a fragment less than
|
|
// a minimal object.
|
|
p = NULL;
|
|
} else {
|
|
guarantee(false, "Deallocation should always succeed");
|
|
}
|
|
}
|
|
}
|
|
if (p != NULL) {
|
|
HeapWord* cur_top, *cur_chunk_top = p + size;
|
|
while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
|
|
if (Atomic::cmpxchg(cur_chunk_top, top_addr(), cur_top) == cur_top) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make the page allocation happen here if there is no static binding.
|
|
if (p != NULL && !os::numa_has_static_binding() ) {
|
|
for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
|
|
*(int*)i = 0;
|
|
}
|
|
}
|
|
if (p == NULL) {
|
|
ls->set_allocation_failed();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void MutableNUMASpace::print_short_on(outputStream* st) const {
|
|
MutableSpace::print_short_on(st);
|
|
st->print(" (");
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
|
|
lgrp_spaces()->at(i)->space()->print_short_on(st);
|
|
if (i < lgrp_spaces()->length() - 1) {
|
|
st->print(", ");
|
|
}
|
|
}
|
|
st->print(")");
|
|
}
|
|
|
|
void MutableNUMASpace::print_on(outputStream* st) const {
|
|
MutableSpace::print_on(st);
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
LGRPSpace *ls = lgrp_spaces()->at(i);
|
|
st->print(" lgrp %d", ls->lgrp_id());
|
|
ls->space()->print_on(st);
|
|
if (NUMAStats) {
|
|
for (int i = 0; i < lgrp_spaces()->length(); i++) {
|
|
lgrp_spaces()->at(i)->accumulate_statistics(page_size());
|
|
}
|
|
st->print(" local/remote/unbiased/uncommitted: " SIZE_FORMAT "K/"
|
|
SIZE_FORMAT "K/" SIZE_FORMAT "K/" SIZE_FORMAT
|
|
"K, large/small pages: " SIZE_FORMAT "/" SIZE_FORMAT "\n",
|
|
ls->space_stats()->_local_space / K,
|
|
ls->space_stats()->_remote_space / K,
|
|
ls->space_stats()->_unbiased_space / K,
|
|
ls->space_stats()->_uncommited_space / K,
|
|
ls->space_stats()->_large_pages,
|
|
ls->space_stats()->_small_pages);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MutableNUMASpace::verify() {
|
|
// This can be called after setting an arbitrary value to the space's top,
|
|
// so an object can cross the chunk boundary. We ensure the parsability
|
|
// of the space and just walk the objects in linear fashion.
|
|
ensure_parsability();
|
|
MutableSpace::verify();
|
|
}
|
|
|
|
// Scan pages and gather stats about page placement and size.
|
|
void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
|
|
clear_space_stats();
|
|
char *start = (char*)align_up(space()->bottom(), page_size);
|
|
char* end = (char*)align_down(space()->end(), page_size);
|
|
if (start < end) {
|
|
for (char *p = start; p < end;) {
|
|
os::page_info info;
|
|
if (os::get_page_info(p, &info)) {
|
|
if (info.size > 0) {
|
|
if (info.size > (size_t)os::vm_page_size()) {
|
|
space_stats()->_large_pages++;
|
|
} else {
|
|
space_stats()->_small_pages++;
|
|
}
|
|
if (info.lgrp_id == lgrp_id()) {
|
|
space_stats()->_local_space += info.size;
|
|
} else {
|
|
space_stats()->_remote_space += info.size;
|
|
}
|
|
p += info.size;
|
|
} else {
|
|
p += os::vm_page_size();
|
|
space_stats()->_uncommited_space += os::vm_page_size();
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
|
|
pointer_delta(space()->end(), end, sizeof(char));
|
|
|
|
}
|
|
|
|
// Scan page_count pages and verify if they have the right size and right placement.
|
|
// If invalid pages are found they are freed in hope that subsequent reallocation
|
|
// will be more successful.
|
|
void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
|
|
{
|
|
char* range_start = (char*)align_up(space()->bottom(), page_size);
|
|
char* range_end = (char*)align_down(space()->end(), page_size);
|
|
|
|
if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
|
|
set_last_page_scanned(range_start);
|
|
}
|
|
|
|
char *scan_start = last_page_scanned();
|
|
char* scan_end = MIN2(scan_start + page_size * page_count, range_end);
|
|
|
|
os::page_info page_expected, page_found;
|
|
page_expected.size = page_size;
|
|
page_expected.lgrp_id = lgrp_id();
|
|
|
|
char *s = scan_start;
|
|
while (s < scan_end) {
|
|
char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
|
|
if (e == NULL) {
|
|
break;
|
|
}
|
|
if (e != scan_end) {
|
|
assert(e < scan_end, "e: " PTR_FORMAT " scan_end: " PTR_FORMAT, p2i(e), p2i(scan_end));
|
|
|
|
if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
|
|
&& page_expected.size != 0) {
|
|
os::free_memory(s, pointer_delta(e, s, sizeof(char)), page_size);
|
|
}
|
|
page_expected = page_found;
|
|
}
|
|
s = e;
|
|
}
|
|
|
|
set_last_page_scanned(scan_end);
|
|
}
|