jdk-24/hotspot/src/share/vm/interpreter/abstractInterpreter.hpp
Coleen Phillimore cafb36661d 8003426: Remove UseFastAccessors and UseFastEmptyMethods except for zero
These options have been long disabled in Xmixed mode because they prevent these small methods from being inlined and are subject to bit rot, and we don't need more macro assembler code to maintain and change if the constant pool cache format changes.

Reviewed-by: simonis, kvn
2014-08-12 10:48:55 -04:00

293 lines
14 KiB
C++

/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_INTERPRETER_ABSTRACTINTERPRETER_HPP
#define SHARE_VM_INTERPRETER_ABSTRACTINTERPRETER_HPP
#include "asm/macroAssembler.hpp"
#include "code/stubs.hpp"
#include "interpreter/bytecodes.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/top.hpp"
// This file contains the platform-independent parts
// of the abstract interpreter and the abstract interpreter generator.
// Organization of the interpreter(s). There exists two different interpreters in hotpot
// an assembly language version (aka template interpreter) and a high level language version
// (aka c++ interpreter). Th division of labor is as follows:
// Template Interpreter C++ Interpreter Functionality
//
// templateTable* bytecodeInterpreter* actual interpretation of bytecodes
//
// templateInterpreter* cppInterpreter* generation of assembly code that creates
// and manages interpreter runtime frames.
// Also code for populating interpreter
// frames created during deoptimization.
//
// For both template and c++ interpreter. There are common files for aspects of the interpreter
// that are generic to both interpreters. This is the layout:
//
// abstractInterpreter.hpp: generic description of the interpreter.
// interpreter*: generic frame creation and handling.
//
//------------------------------------------------------------------------------------------------------------------------
// The C++ interface to the bytecode interpreter(s).
class InterpreterMacroAssembler;
class AbstractInterpreter: AllStatic {
friend class VMStructs;
friend class Interpreter;
friend class CppInterpreterGenerator;
public:
enum MethodKind {
zerolocals, // method needs locals initialization
zerolocals_synchronized, // method needs locals initialization & is synchronized
native, // native method
native_synchronized, // native method & is synchronized
empty, // empty method (code: _return)
accessor, // accessor method (code: _aload_0, _getfield, _(a|i)return)
abstract, // abstract method (throws an AbstractMethodException)
method_handle_invoke_FIRST, // java.lang.invoke.MethodHandles::invokeExact, etc.
method_handle_invoke_LAST = (method_handle_invoke_FIRST
+ (vmIntrinsics::LAST_MH_SIG_POLY
- vmIntrinsics::FIRST_MH_SIG_POLY)),
java_lang_math_sin, // implementation of java.lang.Math.sin (x)
java_lang_math_cos, // implementation of java.lang.Math.cos (x)
java_lang_math_tan, // implementation of java.lang.Math.tan (x)
java_lang_math_abs, // implementation of java.lang.Math.abs (x)
java_lang_math_sqrt, // implementation of java.lang.Math.sqrt (x)
java_lang_math_log, // implementation of java.lang.Math.log (x)
java_lang_math_log10, // implementation of java.lang.Math.log10 (x)
java_lang_math_pow, // implementation of java.lang.Math.pow (x,y)
java_lang_math_exp, // implementation of java.lang.Math.exp (x)
java_lang_ref_reference_get, // implementation of java.lang.ref.Reference.get()
java_util_zip_CRC32_update, // implementation of java.util.zip.CRC32.update()
java_util_zip_CRC32_updateBytes, // implementation of java.util.zip.CRC32.updateBytes()
java_util_zip_CRC32_updateByteBuffer, // implementation of java.util.zip.CRC32.updateByteBuffer()
number_of_method_entries,
invalid = -1
};
// Conversion from the part of the above enum to vmIntrinsics::_invokeExact, etc.
static vmIntrinsics::ID method_handle_intrinsic(MethodKind kind) {
if (kind >= method_handle_invoke_FIRST && kind <= method_handle_invoke_LAST)
return (vmIntrinsics::ID)( vmIntrinsics::FIRST_MH_SIG_POLY + (kind - method_handle_invoke_FIRST) );
else
return vmIntrinsics::_none;
}
enum SomeConstants {
number_of_result_handlers = 10 // number of result handlers for native calls
};
protected:
static StubQueue* _code; // the interpreter code (codelets)
static bool _notice_safepoints; // true if safepoints are activated
static address _native_entry_begin; // Region for native entry code
static address _native_entry_end;
// method entry points
static address _entry_table[number_of_method_entries]; // entry points for a given method
static address _native_abi_to_tosca[number_of_result_handlers]; // for native method result handlers
static address _slow_signature_handler; // the native method generic (slow) signature handler
static address _rethrow_exception_entry; // rethrows an activation in previous frame
friend class AbstractInterpreterGenerator;
friend class InterpreterGenerator;
friend class InterpreterMacroAssembler;
public:
// Initialization/debugging
static void initialize();
static StubQueue* code() { return _code; }
// Method activation
static MethodKind method_kind(methodHandle m);
static address entry_for_kind(MethodKind k) { assert(0 <= k && k < number_of_method_entries, "illegal kind"); return _entry_table[k]; }
static address entry_for_method(methodHandle m) { return entry_for_kind(method_kind(m)); }
// used for bootstrapping method handles:
static void set_entry_for_kind(MethodKind k, address e);
static void print_method_kind(MethodKind kind) PRODUCT_RETURN;
static bool can_be_compiled(methodHandle m);
// Runtime support
// length = invoke bytecode length (to advance to next bytecode)
static address deopt_entry(TosState state, int length) { ShouldNotReachHere(); return NULL; }
static address return_entry(TosState state, int length, Bytecodes::Code code) { ShouldNotReachHere(); return NULL; }
static address rethrow_exception_entry() { return _rethrow_exception_entry; }
// Activation size in words for a method that is just being called.
// Parameters haven't been pushed so count them too.
static int size_top_interpreter_activation(Method* method);
// Deoptimization support
// Compute the entry address for continuation after
static address deopt_continue_after_entry(Method* method,
address bcp,
int callee_parameters,
bool is_top_frame);
// Compute the entry address for reexecution
static address deopt_reexecute_entry(Method* method, address bcp);
// Deoptimization should reexecute this bytecode
static bool bytecode_should_reexecute(Bytecodes::Code code);
// deoptimization support
static int size_activation(int max_stack,
int temps,
int extra_args,
int monitors,
int callee_params,
int callee_locals,
bool is_top_frame);
static void layout_activation(Method* method,
int temps,
int popframe_args,
int monitors,
int caller_actual_parameters,
int callee_params,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame);
// Runtime support
static bool is_not_reached( methodHandle method, int bci);
// Safepoint support
static void notice_safepoints() { ShouldNotReachHere(); } // stops the thread when reaching a safepoint
static void ignore_safepoints() { ShouldNotReachHere(); } // ignores safepoints
// Support for native calls
static address slow_signature_handler() { return _slow_signature_handler; }
static address result_handler(BasicType type) { return _native_abi_to_tosca[BasicType_as_index(type)]; }
static int BasicType_as_index(BasicType type); // computes index into result_handler_by_index table
static bool in_native_entry(address pc) { return _native_entry_begin <= pc && pc < _native_entry_end; }
// Debugging/printing
static void print(); // prints the interpreter code
public:
// Interpreter helpers
const static int stackElementWords = 1;
const static int stackElementSize = stackElementWords * wordSize;
const static int logStackElementSize = LogBytesPerWord;
// Local values relative to locals[n]
static int local_offset_in_bytes(int n) {
return ((frame::interpreter_frame_expression_stack_direction() * n) * stackElementSize);
}
// access to stacked values according to type:
static oop* oop_addr_in_slot(intptr_t* slot_addr) {
return (oop*) slot_addr;
}
static jint* int_addr_in_slot(intptr_t* slot_addr) {
if ((int) sizeof(jint) < wordSize && !Bytes::is_Java_byte_ordering_different())
// big-endian LP64
return (jint*)(slot_addr + 1) - 1;
else
return (jint*) slot_addr;
}
static jlong long_in_slot(intptr_t* slot_addr) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
return *(jlong*) slot_addr;
} else {
return Bytes::get_native_u8((address)slot_addr);
}
}
static void set_long_in_slot(intptr_t* slot_addr, jlong value) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
*(jlong*) slot_addr = value;
} else {
Bytes::put_native_u8((address)slot_addr, value);
}
}
static void get_jvalue_in_slot(intptr_t* slot_addr, BasicType type, jvalue* value) {
switch (type) {
case T_BOOLEAN: value->z = *int_addr_in_slot(slot_addr); break;
case T_CHAR: value->c = *int_addr_in_slot(slot_addr); break;
case T_BYTE: value->b = *int_addr_in_slot(slot_addr); break;
case T_SHORT: value->s = *int_addr_in_slot(slot_addr); break;
case T_INT: value->i = *int_addr_in_slot(slot_addr); break;
case T_LONG: value->j = long_in_slot(slot_addr); break;
case T_FLOAT: value->f = *(jfloat*)int_addr_in_slot(slot_addr); break;
case T_DOUBLE: value->d = jdouble_cast(long_in_slot(slot_addr)); break;
case T_OBJECT: value->l = (jobject)*oop_addr_in_slot(slot_addr); break;
default: ShouldNotReachHere();
}
}
static void set_jvalue_in_slot(intptr_t* slot_addr, BasicType type, jvalue* value) {
switch (type) {
case T_BOOLEAN: *int_addr_in_slot(slot_addr) = (value->z != 0); break;
case T_CHAR: *int_addr_in_slot(slot_addr) = value->c; break;
case T_BYTE: *int_addr_in_slot(slot_addr) = value->b; break;
case T_SHORT: *int_addr_in_slot(slot_addr) = value->s; break;
case T_INT: *int_addr_in_slot(slot_addr) = value->i; break;
case T_LONG: set_long_in_slot(slot_addr, value->j); break;
case T_FLOAT: *(jfloat*)int_addr_in_slot(slot_addr) = value->f; break;
case T_DOUBLE: set_long_in_slot(slot_addr, jlong_cast(value->d)); break;
case T_OBJECT: *oop_addr_in_slot(slot_addr) = (oop) value->l; break;
default: ShouldNotReachHere();
}
}
};
//------------------------------------------------------------------------------------------------------------------------
// The interpreter generator.
class Template;
class AbstractInterpreterGenerator: public StackObj {
protected:
InterpreterMacroAssembler* _masm;
// shared code sequences
// Converter for native abi result to tosca result
address generate_result_handler_for(BasicType type);
address generate_slow_signature_handler();
void bang_stack_shadow_pages(bool native_call);
void generate_all();
void initialize_method_handle_entries();
public:
AbstractInterpreterGenerator(StubQueue* _code);
};
#endif // SHARE_VM_INTERPRETER_ABSTRACTINTERPRETER_HPP