76002747d5
Reviewed-by: tschatzl, sjohanss
270 lines
6.9 KiB
C++
270 lines
6.9 KiB
C++
/*
|
|
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/numberSeq.hpp"
|
|
|
|
AbsSeq::AbsSeq(double alpha) :
|
|
_num(0), _sum(0.0), _sum_of_squares(0.0),
|
|
_davg(0.0), _dvariance(0.0), _alpha(alpha) {
|
|
}
|
|
|
|
void AbsSeq::add(double val) {
|
|
if (_num == 0) {
|
|
// if the sequence is empty, the davg is the same as the value
|
|
_davg = val;
|
|
// and the variance is 0
|
|
_dvariance = 0.0;
|
|
} else {
|
|
// otherwise, calculate both
|
|
// Formula from "Incremental calculation of weighted mean and variance" by Tony Finch
|
|
// diff := x - mean
|
|
// incr := alpha * diff
|
|
// mean := mean + incr
|
|
// variance := (1 - alpha) * (variance + diff * incr)
|
|
// PDF available at https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
|
|
double diff = val - _davg;
|
|
double incr = _alpha * diff;
|
|
_davg += incr;
|
|
_dvariance = (1.0 - _alpha) * (_dvariance + diff * incr);
|
|
}
|
|
}
|
|
|
|
double AbsSeq::avg() const {
|
|
if (_num == 0)
|
|
return 0.0;
|
|
else
|
|
return _sum / total();
|
|
}
|
|
|
|
double AbsSeq::variance() const {
|
|
if (_num <= 1)
|
|
return 0.0;
|
|
|
|
double x_bar = avg();
|
|
double result = _sum_of_squares / total() - x_bar * x_bar;
|
|
if (result < 0.0) {
|
|
// due to loss-of-precision errors, the variance might be negative
|
|
// by a small bit
|
|
|
|
// guarantee(-0.1 < result && result < 0.0,
|
|
// "if variance is negative, it should be very small");
|
|
result = 0.0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double AbsSeq::sd() const {
|
|
double var = variance();
|
|
guarantee( var >= 0.0, "variance should not be negative" );
|
|
return sqrt(var);
|
|
}
|
|
|
|
double AbsSeq::davg() const {
|
|
return _davg;
|
|
}
|
|
|
|
double AbsSeq::dvariance() const {
|
|
if (_num <= 1)
|
|
return 0.0;
|
|
|
|
double result = _dvariance;
|
|
if (result < 0.0) {
|
|
// due to loss-of-precision errors, the variance might be negative
|
|
// by a small bit
|
|
|
|
guarantee(-0.1 < result && result < 0.0,
|
|
"if variance is negative, it should be very small");
|
|
result = 0.0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
double AbsSeq::dsd() const {
|
|
double var = dvariance();
|
|
guarantee( var >= 0.0, "variance should not be negative" );
|
|
return sqrt(var);
|
|
}
|
|
|
|
NumberSeq::NumberSeq(double alpha) :
|
|
AbsSeq(alpha), _last(0.0), _maximum(0.0) {
|
|
}
|
|
|
|
bool NumberSeq::check_nums(NumberSeq *total, int n, NumberSeq **parts) {
|
|
for (int i = 0; i < n; ++i) {
|
|
if (parts[i] != NULL && total->num() != parts[i]->num())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void NumberSeq::add(double val) {
|
|
AbsSeq::add(val);
|
|
|
|
_last = val;
|
|
if (_num == 0) {
|
|
_maximum = val;
|
|
} else {
|
|
if (val > _maximum)
|
|
_maximum = val;
|
|
}
|
|
_sum += val;
|
|
_sum_of_squares += val * val;
|
|
++_num;
|
|
}
|
|
|
|
|
|
TruncatedSeq::TruncatedSeq(int length, double alpha):
|
|
AbsSeq(alpha), _length(length), _next(0) {
|
|
_sequence = NEW_C_HEAP_ARRAY(double, _length, mtInternal);
|
|
for (int i = 0; i < _length; ++i)
|
|
_sequence[i] = 0.0;
|
|
}
|
|
|
|
TruncatedSeq::~TruncatedSeq() {
|
|
FREE_C_HEAP_ARRAY(double, _sequence);
|
|
}
|
|
|
|
void TruncatedSeq::add(double val) {
|
|
AbsSeq::add(val);
|
|
|
|
// get the oldest value in the sequence...
|
|
double old_val = _sequence[_next];
|
|
// ...remove it from the sum and sum of squares
|
|
_sum -= old_val;
|
|
_sum_of_squares -= old_val * old_val;
|
|
|
|
// ...and update them with the new value
|
|
_sum += val;
|
|
_sum_of_squares += val * val;
|
|
|
|
// now replace the old value with the new one
|
|
_sequence[_next] = val;
|
|
_next = (_next + 1) % _length;
|
|
|
|
// only increase it if the buffer is not full
|
|
if (_num < _length)
|
|
++_num;
|
|
|
|
guarantee( variance() > -1.0, "variance should be >= 0" );
|
|
}
|
|
|
|
// can't easily keep track of this incrementally...
|
|
double TruncatedSeq::maximum() const {
|
|
if (_num == 0)
|
|
return 0.0;
|
|
double ret = _sequence[0];
|
|
for (int i = 1; i < _num; ++i) {
|
|
double val = _sequence[i];
|
|
if (val > ret)
|
|
ret = val;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
double TruncatedSeq::last() const {
|
|
if (_num == 0)
|
|
return 0.0;
|
|
unsigned last_index = (_next + _length - 1) % _length;
|
|
return _sequence[last_index];
|
|
}
|
|
|
|
double TruncatedSeq::oldest() const {
|
|
if (_num == 0)
|
|
return 0.0;
|
|
else if (_num < _length)
|
|
// index 0 always oldest value until the array is full
|
|
return _sequence[0];
|
|
else {
|
|
// since the array is full, _next is over the oldest value
|
|
return _sequence[_next];
|
|
}
|
|
}
|
|
|
|
double TruncatedSeq::predict_next() const {
|
|
if (_num == 0)
|
|
return 0.0;
|
|
|
|
double num = (double) _num;
|
|
double x_squared_sum = 0.0;
|
|
double x_sum = 0.0;
|
|
double y_sum = 0.0;
|
|
double xy_sum = 0.0;
|
|
double x_avg = 0.0;
|
|
double y_avg = 0.0;
|
|
|
|
int first = (_next + _length - _num) % _length;
|
|
for (int i = 0; i < _num; ++i) {
|
|
double x = (double) i;
|
|
double y = _sequence[(first + i) % _length];
|
|
|
|
x_squared_sum += x * x;
|
|
x_sum += x;
|
|
y_sum += y;
|
|
xy_sum += x * y;
|
|
}
|
|
x_avg = x_sum / num;
|
|
y_avg = y_sum / num;
|
|
|
|
double Sxx = x_squared_sum - x_sum * x_sum / num;
|
|
double Sxy = xy_sum - x_sum * y_sum / num;
|
|
double b1 = Sxy / Sxx;
|
|
double b0 = y_avg - b1 * x_avg;
|
|
|
|
return b0 + b1 * num;
|
|
}
|
|
|
|
|
|
// Printing/Debugging Support
|
|
|
|
void AbsSeq::dump() { dump_on(tty); }
|
|
|
|
void AbsSeq::dump_on(outputStream* s) {
|
|
s->print_cr("\t _num = %d, _sum = %7.3f, _sum_of_squares = %7.3f",
|
|
_num, _sum, _sum_of_squares);
|
|
s->print_cr("\t _davg = %7.3f, _dvariance = %7.3f, _alpha = %7.3f",
|
|
_davg, _dvariance, _alpha);
|
|
}
|
|
|
|
void NumberSeq::dump_on(outputStream* s) {
|
|
AbsSeq::dump_on(s);
|
|
s->print_cr("\t\t _last = %7.3f, _maximum = %7.3f", _last, _maximum);
|
|
}
|
|
|
|
void TruncatedSeq::dump_on(outputStream* s) {
|
|
AbsSeq::dump_on(s);
|
|
s->print_cr("\t\t _length = %d, _next = %d", _length, _next);
|
|
for (int i = 0; i < _length; i++) {
|
|
if (i%5 == 0) {
|
|
s->cr();
|
|
s->print("\t");
|
|
}
|
|
s->print("\t[%d]=%7.3f", i, _sequence[i]);
|
|
}
|
|
s->cr();
|
|
}
|