jdk-24/test/jdk/java/foreign/callarranger/TestLinuxAArch64CallArranger.java
Jorn Vernee 32ac72c3d3 8312522: Implementation of Foreign Function & Memory API
Co-authored-by: Maurizio Cimadamore <mcimadamore@openjdk.org>
Co-authored-by: Jorn Vernee <jvernee@openjdk.org>
Co-authored-by: Per Minborg <pminborg@openjdk.org>
Reviewed-by: dholmes, psandoz, mcimadamore, alanb
2023-10-12 19:50:08 +00:00

480 lines
20 KiB
Java

/*
* Copyright (c) 2020, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @requires sun.arch.data.model == "64"
* @compile platform/PlatformLayouts.java
* @modules java.base/jdk.internal.foreign
* java.base/jdk.internal.foreign.abi
* java.base/jdk.internal.foreign.abi.aarch64
* @build CallArrangerTestBase
* @run testng TestLinuxAArch64CallArranger
*/
import java.lang.foreign.FunctionDescriptor;
import java.lang.foreign.MemoryLayout;
import java.lang.foreign.StructLayout;
import java.lang.foreign.MemorySegment;
import jdk.internal.foreign.abi.Binding;
import jdk.internal.foreign.abi.CallingSequence;
import jdk.internal.foreign.abi.LinkerOptions;
import jdk.internal.foreign.abi.StubLocations;
import jdk.internal.foreign.abi.VMStorage;
import jdk.internal.foreign.abi.aarch64.CallArranger;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.lang.invoke.MethodType;
import static java.lang.foreign.Linker.Option.firstVariadicArg;
import static java.lang.foreign.ValueLayout.ADDRESS;
import static jdk.internal.foreign.abi.Binding.*;
import static jdk.internal.foreign.abi.aarch64.AArch64Architecture.*;
import static jdk.internal.foreign.abi.aarch64.AArch64Architecture.Regs.*;
import static platform.PlatformLayouts.AArch64.*;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertFalse;
import static org.testng.Assert.assertTrue;
public class TestLinuxAArch64CallArranger extends CallArrangerTestBase {
private static final VMStorage TARGET_ADDRESS_STORAGE = StubLocations.TARGET_ADDRESS.storage(StorageType.PLACEHOLDER);
private static final VMStorage RETURN_BUFFER_STORAGE = StubLocations.RETURN_BUFFER.storage(StorageType.PLACEHOLDER);
@Test
public void testEmpty() {
MethodType mt = MethodType.methodType(void.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid();
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testInteger() {
MethodType mt = MethodType.methodType(void.class,
int.class, int.class, int.class, int.class,
int.class, int.class, int.class, int.class,
int.class, int.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(
C_INT, C_INT, C_INT, C_INT,
C_INT, C_INT, C_INT, C_INT,
C_INT, C_INT);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(r0, int.class) },
{ vmStore(r1, int.class) },
{ vmStore(r2, int.class) },
{ vmStore(r3, int.class) },
{ vmStore(r4, int.class) },
{ vmStore(r5, int.class) },
{ vmStore(r6, int.class) },
{ vmStore(r7, int.class) },
{ vmStore(stackStorage((short) 4, 0), int.class) },
{ vmStore(stackStorage((short) 4, 8), int.class) },
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testTwoIntTwoFloat() {
MethodType mt = MethodType.methodType(void.class,
int.class, int.class, float.class, float.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(
C_INT, C_INT, C_FLOAT, C_FLOAT);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(r0, int.class) },
{ vmStore(r1, int.class) },
{ vmStore(v0, float.class) },
{ vmStore(v1, float.class) },
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test(dataProvider = "structs")
public void testStruct(MemoryLayout struct, Binding[] expectedBindings) {
MethodType mt = MethodType.methodType(void.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
expectedBindings
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@DataProvider
public static Object[][] structs() {
MemoryLayout struct2 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT);
return new Object[][]{
// struct s { int32_t a, b; double c; };
{ MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE), new Binding[] {
dup(),
// s.a & s.b
bufferLoad(0, long.class), vmStore(r0, long.class),
// s.c --> note AArch64 passes this in an *integer* register
bufferLoad(8, long.class), vmStore(r1, long.class),
}},
// struct s { int32_t a, b; double c; int32_t d };
{ struct2, new Binding[] {
copy(struct2),
unboxAddress(),
vmStore(r0, long.class)
}},
// struct s { int32_t a[2]; float b[2] };
{ MemoryLayout.structLayout(C_INT, C_INT, C_FLOAT, C_FLOAT), new Binding[] {
dup(),
// s.a[0] & s.a[1]
bufferLoad(0, long.class), vmStore(r0, long.class),
// s.b[0] & s.b[1]
bufferLoad(8, long.class), vmStore(r1, long.class),
}},
// struct s { float a; /* padding */ double b };
{ MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(4), C_DOUBLE),
new Binding[] {
dup(),
// s.a
bufferLoad(0, long.class), vmStore(r0, long.class),
// s.b
bufferLoad(8, long.class), vmStore(r1, long.class),
}},
};
}
@Test
public void testMultipleStructs() {
MemoryLayout struct1 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT);
MemoryLayout struct2 = MemoryLayout.structLayout(C_LONG, C_LONG, C_LONG);
MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, int.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct1, struct2, C_INT);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{
copy(struct1),
unboxAddress(),
vmStore(r0, long.class)
},
{
copy(struct2),
unboxAddress(),
vmStore(r1, long.class)
},
{ vmStore(r2, int.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testReturnStruct1() {
MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG, C_FLOAT);
MethodType mt = MethodType.methodType(MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(struct);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertTrue(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), FunctionDescriptor.ofVoid(ADDRESS, C_POINTER));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{
unboxAddress(),
vmStore(r8, long.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testReturnStruct2() {
MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG);
MethodType mt = MethodType.methodType(MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(struct);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(struct),
dup(),
vmLoad(r0, long.class),
bufferStore(0, long.class),
dup(),
vmLoad(r1, long.class),
bufferStore(8, long.class),
});
}
@Test
public void testStructHFA1() {
MemoryLayout hfa = MemoryLayout.structLayout(C_FLOAT, C_FLOAT);
MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(hfa, C_FLOAT, C_INT, hfa);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(v0, float.class) },
{ vmStore(r0, int.class) },
{
dup(),
bufferLoad(0, float.class),
vmStore(v1, float.class),
bufferLoad(4, float.class),
vmStore(v2, float.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(hfa),
dup(),
vmLoad(v0, float.class),
bufferStore(0, float.class),
dup(),
vmLoad(v1, float.class),
bufferStore(4, float.class),
});
}
@Test
public void testStructHFA3() {
MemoryLayout struct = MemoryLayout.structLayout(C_FLOAT, C_FLOAT, C_FLOAT);
MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct, struct, struct);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{
dup(),
bufferLoad(0, float.class),
vmStore(v0, float.class),
dup(),
bufferLoad(4, float.class),
vmStore(v1, float.class),
bufferLoad(8, float.class),
vmStore(v2, float.class)
},
{
dup(),
bufferLoad(0, float.class),
vmStore(v3, float.class),
dup(),
bufferLoad(4, float.class),
vmStore(v4, float.class),
bufferLoad(8, float.class),
vmStore(v5, float.class)
},
{
dup(),
bufferLoad(0, long.class),
vmStore(stackStorage((short) 8, 0), long.class),
bufferLoad(8, int.class),
vmStore(stackStorage((short) 4, 8), int.class),
}
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testStructStackSpill() {
// A large (> 16 byte) struct argument that is spilled to the
// stack should be passed as a pointer to a copy and occupy one
// stack slot.
MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT);
MethodType mt = MethodType.methodType(
void.class, MemorySegment.class, MemorySegment.class, int.class, int.class,
int.class, int.class, int.class, int.class, MemorySegment.class, int.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(
struct, struct, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, struct, C_INT);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ copy(struct), unboxAddress(), vmStore(r0, long.class) },
{ copy(struct), unboxAddress(), vmStore(r1, long.class) },
{ vmStore(r2, int.class) },
{ vmStore(r3, int.class) },
{ vmStore(r4, int.class) },
{ vmStore(r5, int.class) },
{ vmStore(r6, int.class) },
{ vmStore(r7, int.class) },
{ copy(struct), unboxAddress(), vmStore(stackStorage((short) 8, 0), long.class) },
{ vmStore(stackStorage((short) 4, 8), int.class) },
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testVarArgsInRegs() {
MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_FLOAT);
FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_FLOAT);
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false, LinkerOptions.forDowncall(fd, firstVariadicArg(1)));
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fdExpected);
// This is identical to the non-variadic calling sequence
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(r0, int.class) },
{ vmStore(r1, int.class) },
{ vmStore(v0, float.class) },
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testFloatArrayStruct() {
// should be classified as HFA
StructLayout S10 = MemoryLayout.structLayout(
MemoryLayout.sequenceLayout(4, C_DOUBLE)
);
MethodType mt = MethodType.methodType(MemorySegment.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(S10, S10);
FunctionDescriptor fdExpected = FunctionDescriptor.of(S10, ADDRESS, ADDRESS, S10); // uses return buffer
CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fdExpected);
// This is identical to the non-variadic calling sequence
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ dup(),
bufferLoad(0, double.class),
vmStore(v0, double.class),
dup(),
bufferLoad(8, double.class),
vmStore(v1, double.class),
dup(),
bufferLoad(16, double.class),
vmStore(v2, double.class),
bufferLoad(24, double.class),
vmStore(v3, double.class) },
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(S10),
dup(),
vmLoad(v0, double.class),
bufferStore(0, double.class),
dup(),
vmLoad(v1, double.class),
bufferStore(8, double.class),
dup(),
vmLoad(v2, double.class),
bufferStore(16, double.class),
dup(),
vmLoad(v3, double.class),
bufferStore(24, double.class),
});
}
}