jdk-24/test/jdk/java/util/DoubleSummaryStatistics/NegativeCompensation.java
2021-09-03 00:50:11 +00:00

73 lines
2.5 KiB
Java

/*
* Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8214761
* @run testng NegativeCompensation
* @summary When combining two DoubleSummaryStatistics, the compensation
* has to be subtracted.
*/
import java.util.DoubleSummaryStatistics;
import org.testng.annotations.Test;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertTrue;
public class NegativeCompensation {
static final double VAL = 1.000000001;
static final int LOG_ITER = 21;
@Test
public static void testErrorComparision() {
DoubleSummaryStatistics stat0 = new DoubleSummaryStatistics();
DoubleSummaryStatistics stat1 = new DoubleSummaryStatistics();
DoubleSummaryStatistics stat2 = new DoubleSummaryStatistics();
stat1.accept(VAL);
stat1.accept(VAL);
stat2.accept(VAL);
stat2.accept(VAL);
stat2.accept(VAL);
for (int i = 0; i < LOG_ITER; ++i) {
stat1.combine(stat2);
stat2.combine(stat1);
}
for (long i = 0, iend = stat2.getCount(); i < iend; ++i) {
stat0.accept(VAL);
}
double res = 0;
for(long i = 0, iend = stat2.getCount(); i < iend; ++i) {
res += VAL;
}
double absErrN = Math.abs(res - stat2.getSum());
double absErr = Math.abs(stat0.getSum() - stat2.getSum());
assertTrue(absErrN >= absErr,
"Naive sum error is not greater than or equal to Summary sum");
assertEquals(absErr, 0.0, "Absolute error is not zero");
}
}