1640 lines
57 KiB
C++
1640 lines
57 KiB
C++
/*
|
|
* Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
#include "incls/_precompiled.incl"
|
|
#include "incls/_interp_masm_x86_64.cpp.incl"
|
|
|
|
|
|
// Implementation of InterpreterMacroAssembler
|
|
|
|
#ifdef CC_INTERP
|
|
void InterpreterMacroAssembler::get_method(Register reg) {
|
|
movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
|
|
movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
#ifndef CC_INTERP
|
|
|
|
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
|
|
int number_of_arguments) {
|
|
// interpreter specific
|
|
//
|
|
// Note: No need to save/restore bcp & locals (r13 & r14) pointer
|
|
// since these are callee saved registers and no blocking/
|
|
// GC can happen in leaf calls.
|
|
// Further Note: DO NOT save/restore bcp/locals. If a caller has
|
|
// already saved them so that it can use esi/edi as temporaries
|
|
// then a save/restore here will DESTROY the copy the caller
|
|
// saved! There used to be a save_bcp() that only happened in
|
|
// the ASSERT path (no restore_bcp). Which caused bizarre failures
|
|
// when jvm built with ASSERTs.
|
|
#ifdef ASSERT
|
|
{
|
|
Label L;
|
|
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
|
|
jcc(Assembler::equal, L);
|
|
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
|
|
" last_sp != NULL");
|
|
bind(L);
|
|
}
|
|
#endif
|
|
// super call
|
|
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
|
|
// interpreter specific
|
|
// Used to ASSERT that r13/r14 were equal to frame's bcp/locals
|
|
// but since they may not have been saved (and we don't want to
|
|
// save thme here (see note above) the assert is invalid.
|
|
}
|
|
|
|
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
|
|
Register java_thread,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
int number_of_arguments,
|
|
bool check_exceptions) {
|
|
// interpreter specific
|
|
//
|
|
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
|
|
// really make a difference for these runtime calls, since they are
|
|
// slow anyway. Btw., bcp must be saved/restored since it may change
|
|
// due to GC.
|
|
// assert(java_thread == noreg , "not expecting a precomputed java thread");
|
|
save_bcp();
|
|
#ifdef ASSERT
|
|
{
|
|
Label L;
|
|
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
|
|
jcc(Assembler::equal, L);
|
|
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
|
|
" last_sp != NULL");
|
|
bind(L);
|
|
}
|
|
#endif /* ASSERT */
|
|
// super call
|
|
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
|
|
entry_point, number_of_arguments,
|
|
check_exceptions);
|
|
// interpreter specific
|
|
restore_bcp();
|
|
restore_locals();
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
|
|
if (JvmtiExport::can_pop_frame()) {
|
|
Label L;
|
|
// Initiate popframe handling only if it is not already being
|
|
// processed. If the flag has the popframe_processing bit set, it
|
|
// means that this code is called *during* popframe handling - we
|
|
// don't want to reenter.
|
|
// This method is only called just after the call into the vm in
|
|
// call_VM_base, so the arg registers are available.
|
|
movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
|
|
testl(c_rarg0, JavaThread::popframe_pending_bit);
|
|
jcc(Assembler::zero, L);
|
|
testl(c_rarg0, JavaThread::popframe_processing_bit);
|
|
jcc(Assembler::notZero, L);
|
|
// Call Interpreter::remove_activation_preserving_args_entry() to get the
|
|
// address of the same-named entrypoint in the generated interpreter code.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
|
|
jmp(rax);
|
|
bind(L);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
|
|
movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
|
|
const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
|
|
const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
|
|
const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
|
|
switch (state) {
|
|
case atos: movptr(rax, oop_addr);
|
|
movptr(oop_addr, (int32_t)NULL_WORD);
|
|
verify_oop(rax, state); break;
|
|
case ltos: movptr(rax, val_addr); break;
|
|
case btos: // fall through
|
|
case ctos: // fall through
|
|
case stos: // fall through
|
|
case itos: movl(rax, val_addr); break;
|
|
case ftos: movflt(xmm0, val_addr); break;
|
|
case dtos: movdbl(xmm0, val_addr); break;
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
// Clean up tos value in the thread object
|
|
movl(tos_addr, (int) ilgl);
|
|
movl(val_addr, (int32_t) NULL_WORD);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
|
|
if (JvmtiExport::can_force_early_return()) {
|
|
Label L;
|
|
movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
|
|
testptr(c_rarg0, c_rarg0);
|
|
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
|
|
|
|
// Initiate earlyret handling only if it is not already being processed.
|
|
// If the flag has the earlyret_processing bit set, it means that this code
|
|
// is called *during* earlyret handling - we don't want to reenter.
|
|
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
|
|
cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
|
|
jcc(Assembler::notEqual, L);
|
|
|
|
// Call Interpreter::remove_activation_early_entry() to get the address of the
|
|
// same-named entrypoint in the generated interpreter code.
|
|
movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
|
|
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
|
|
jmp(rax);
|
|
bind(L);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
|
|
Register reg,
|
|
int bcp_offset) {
|
|
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
|
|
movl(reg, Address(r13, bcp_offset));
|
|
bswapl(reg);
|
|
shrl(reg, 16);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
|
|
Register index,
|
|
int bcp_offset) {
|
|
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
|
|
assert(cache != index, "must use different registers");
|
|
load_unsigned_short(index, Address(r13, bcp_offset));
|
|
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
|
|
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
|
|
// convert from field index to ConstantPoolCacheEntry index
|
|
shll(index, 2);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
|
|
Register tmp,
|
|
int bcp_offset) {
|
|
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
|
|
assert(cache != tmp, "must use different register");
|
|
load_unsigned_short(tmp, Address(r13, bcp_offset));
|
|
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
|
|
// convert from field index to ConstantPoolCacheEntry index
|
|
// and from word offset to byte offset
|
|
shll(tmp, 2 + LogBytesPerWord);
|
|
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
|
|
// skip past the header
|
|
addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
|
|
addptr(cache, tmp); // construct pointer to cache entry
|
|
}
|
|
|
|
|
|
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
|
|
// subtype of super_klass.
|
|
//
|
|
// Args:
|
|
// rax: superklass
|
|
// Rsub_klass: subklass
|
|
//
|
|
// Kills:
|
|
// rcx, rdi
|
|
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
|
|
Label& ok_is_subtype) {
|
|
assert(Rsub_klass != rax, "rax holds superklass");
|
|
assert(Rsub_klass != r14, "r14 holds locals");
|
|
assert(Rsub_klass != r13, "r13 holds bcp");
|
|
assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
|
|
assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
|
|
|
|
Label not_subtype, not_subtype_pop, loop;
|
|
|
|
// Profile the not-null value's klass.
|
|
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
|
|
|
|
// Load the super-klass's check offset into rcx
|
|
movl(rcx, Address(rax, sizeof(oopDesc) +
|
|
Klass::super_check_offset_offset_in_bytes()));
|
|
// Load from the sub-klass's super-class display list, or a 1-word
|
|
// cache of the secondary superclass list, or a failing value with a
|
|
// sentinel offset if the super-klass is an interface or
|
|
// exceptionally deep in the Java hierarchy and we have to scan the
|
|
// secondary superclass list the hard way. See if we get an
|
|
// immediate positive hit
|
|
cmpptr(rax, Address(Rsub_klass, rcx, Address::times_1));
|
|
jcc(Assembler::equal,ok_is_subtype);
|
|
|
|
// Check for immediate negative hit
|
|
cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
|
|
jcc( Assembler::notEqual, not_subtype );
|
|
// Check for self
|
|
cmpptr(Rsub_klass, rax);
|
|
jcc(Assembler::equal, ok_is_subtype);
|
|
|
|
// Now do a linear scan of the secondary super-klass chain.
|
|
movptr(rdi, Address(Rsub_klass, sizeof(oopDesc) +
|
|
Klass::secondary_supers_offset_in_bytes()));
|
|
// rdi holds the objArrayOop of secondary supers.
|
|
// Load the array length
|
|
movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
|
|
// Skip to start of data; also clear Z flag incase rcx is zero
|
|
addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
|
|
// Scan rcx words at [rdi] for occurance of rax
|
|
// Set NZ/Z based on last compare
|
|
|
|
// this part is kind tricky, as values in supers array could be 32 or 64 bit wide
|
|
// and we store values in objArrays always encoded, thus we need to encode value
|
|
// before repne
|
|
if (UseCompressedOops) {
|
|
push(rax);
|
|
encode_heap_oop(rax);
|
|
repne_scanl();
|
|
// Not equal?
|
|
jcc(Assembler::notEqual, not_subtype_pop);
|
|
// restore heap oop here for movq
|
|
pop(rax);
|
|
} else {
|
|
repne_scan();
|
|
jcc(Assembler::notEqual, not_subtype);
|
|
}
|
|
// Must be equal but missed in cache. Update cache.
|
|
movptr(Address(Rsub_klass, sizeof(oopDesc) +
|
|
Klass::secondary_super_cache_offset_in_bytes()), rax);
|
|
jmp(ok_is_subtype);
|
|
|
|
bind(not_subtype_pop);
|
|
// restore heap oop here for miss
|
|
if (UseCompressedOops) pop(rax);
|
|
bind(not_subtype);
|
|
profile_typecheck_failed(rcx); // blows rcx
|
|
}
|
|
|
|
|
|
|
|
// Java Expression Stack
|
|
|
|
#ifdef ASSERT
|
|
// Verifies that the stack tag matches. Must be called before the stack
|
|
// value is popped off the stack.
|
|
void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
|
|
if (TaggedStackInterpreter) {
|
|
frame::Tag tag = t;
|
|
if (t == frame::TagCategory2) {
|
|
tag = frame::TagValue;
|
|
Label hokay;
|
|
cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
|
|
jcc(Assembler::equal, hokay);
|
|
stop("Java Expression stack tag high value is bad");
|
|
bind(hokay);
|
|
}
|
|
Label okay;
|
|
cmpptr(Address(rsp, wordSize), (int32_t)tag);
|
|
jcc(Assembler::equal, okay);
|
|
// Also compare if the stack value is zero, then the tag might
|
|
// not have been set coming from deopt.
|
|
cmpptr(Address(rsp, 0), 0);
|
|
jcc(Assembler::equal, okay);
|
|
stop("Java Expression stack tag value is bad");
|
|
bind(okay);
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void InterpreterMacroAssembler::pop_ptr(Register r) {
|
|
debug_only(verify_stack_tag(frame::TagReference));
|
|
pop(r);
|
|
if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
|
|
pop(r);
|
|
if (TaggedStackInterpreter) pop(tag);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_i(Register r) {
|
|
// XXX can't use pop currently, upper half non clean
|
|
debug_only(verify_stack_tag(frame::TagValue));
|
|
movl(r, Address(rsp, 0));
|
|
addptr(rsp, wordSize);
|
|
if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_l(Register r) {
|
|
debug_only(verify_stack_tag(frame::TagCategory2));
|
|
movq(r, Address(rsp, 0));
|
|
addptr(rsp, 2 * Interpreter::stackElementSize());
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_f(XMMRegister r) {
|
|
debug_only(verify_stack_tag(frame::TagValue));
|
|
movflt(r, Address(rsp, 0));
|
|
addptr(rsp, wordSize);
|
|
if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop_d(XMMRegister r) {
|
|
debug_only(verify_stack_tag(frame::TagCategory2));
|
|
movdbl(r, Address(rsp, 0));
|
|
addptr(rsp, 2 * Interpreter::stackElementSize());
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_ptr(Register r) {
|
|
if (TaggedStackInterpreter) push(frame::TagReference);
|
|
push(r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
|
|
if (TaggedStackInterpreter) push(tag);
|
|
push(r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_i(Register r) {
|
|
if (TaggedStackInterpreter) push(frame::TagValue);
|
|
push(r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_l(Register r) {
|
|
if (TaggedStackInterpreter) {
|
|
push(frame::TagValue);
|
|
subptr(rsp, 1 * wordSize);
|
|
push(frame::TagValue);
|
|
subptr(rsp, 1 * wordSize);
|
|
} else {
|
|
subptr(rsp, 2 * wordSize);
|
|
}
|
|
movq(Address(rsp, 0), r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_f(XMMRegister r) {
|
|
if (TaggedStackInterpreter) push(frame::TagValue);
|
|
subptr(rsp, wordSize);
|
|
movflt(Address(rsp, 0), r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push_d(XMMRegister r) {
|
|
if (TaggedStackInterpreter) {
|
|
push(frame::TagValue);
|
|
subptr(rsp, 1 * wordSize);
|
|
push(frame::TagValue);
|
|
subptr(rsp, 1 * wordSize);
|
|
} else {
|
|
subptr(rsp, 2 * wordSize);
|
|
}
|
|
movdbl(Address(rsp, 0), r);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::pop(TosState state) {
|
|
switch (state) {
|
|
case atos: pop_ptr(); break;
|
|
case btos:
|
|
case ctos:
|
|
case stos:
|
|
case itos: pop_i(); break;
|
|
case ltos: pop_l(); break;
|
|
case ftos: pop_f(); break;
|
|
case dtos: pop_d(); break;
|
|
case vtos: /* nothing to do */ break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
verify_oop(rax, state);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::push(TosState state) {
|
|
verify_oop(rax, state);
|
|
switch (state) {
|
|
case atos: push_ptr(); break;
|
|
case btos:
|
|
case ctos:
|
|
case stos:
|
|
case itos: push_i(); break;
|
|
case ltos: push_l(); break;
|
|
case ftos: push_f(); break;
|
|
case dtos: push_d(); break;
|
|
case vtos: /* nothing to do */ break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// Tagged stack helpers for swap and dup
|
|
void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
|
|
Register tag) {
|
|
movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
|
|
if (TaggedStackInterpreter) {
|
|
movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
|
|
Register tag) {
|
|
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
|
|
if (TaggedStackInterpreter) {
|
|
movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
|
|
}
|
|
}
|
|
|
|
|
|
// Tagged local support
|
|
void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
|
|
if (TaggedStackInterpreter) {
|
|
if (tag == frame::TagCategory2) {
|
|
movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
|
|
(int32_t)frame::TagValue);
|
|
movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
|
|
(int32_t)frame::TagValue);
|
|
} else {
|
|
movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
|
|
if (TaggedStackInterpreter) {
|
|
if (tag == frame::TagCategory2) {
|
|
movptr(Address(r14, idx, Address::times_8,
|
|
Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
|
|
movptr(Address(r14, idx, Address::times_8,
|
|
Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
|
|
} else {
|
|
movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
|
|
(int32_t)tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
|
|
if (TaggedStackInterpreter) {
|
|
// can only be TagValue or TagReference
|
|
movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::tag_local(Register tag, int n) {
|
|
if (TaggedStackInterpreter) {
|
|
// can only be TagValue or TagReference
|
|
movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
|
|
if (TaggedStackInterpreter) {
|
|
frame::Tag t = tag;
|
|
if (tag == frame::TagCategory2) {
|
|
Label nbl;
|
|
t = frame::TagValue; // change to what is stored in locals
|
|
cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
|
|
jcc(Assembler::equal, nbl);
|
|
stop("Local tag is bad for long/double");
|
|
bind(nbl);
|
|
}
|
|
Label notBad;
|
|
cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
|
|
jcc(Assembler::equal, notBad);
|
|
// Also compare if the local value is zero, then the tag might
|
|
// not have been set coming from deopt.
|
|
cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
|
|
jcc(Assembler::equal, notBad);
|
|
stop("Local tag is bad");
|
|
bind(notBad);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
|
|
if (TaggedStackInterpreter) {
|
|
frame::Tag t = tag;
|
|
if (tag == frame::TagCategory2) {
|
|
Label nbl;
|
|
t = frame::TagValue; // change to what is stored in locals
|
|
cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
|
|
jcc(Assembler::equal, nbl);
|
|
stop("Local tag is bad for long/double");
|
|
bind(nbl);
|
|
}
|
|
Label notBad;
|
|
cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
|
|
jcc(Assembler::equal, notBad);
|
|
// Also compare if the local value is zero, then the tag might
|
|
// not have been set coming from deopt.
|
|
cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
|
|
jcc(Assembler::equal, notBad);
|
|
stop("Local tag is bad");
|
|
bind(notBad);
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
|
|
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 0);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
|
|
Register arg_1) {
|
|
if (c_rarg0 != arg_1) {
|
|
mov(c_rarg0, arg_1);
|
|
}
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 1);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
|
|
Register arg_1,
|
|
Register arg_2) {
|
|
assert(c_rarg0 != arg_2, "smashed argument");
|
|
assert(c_rarg1 != arg_1, "smashed argument");
|
|
if (c_rarg0 != arg_1) {
|
|
mov(c_rarg0, arg_1);
|
|
}
|
|
if (c_rarg1 != arg_2) {
|
|
mov(c_rarg1, arg_2);
|
|
}
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 2);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
|
|
Register arg_1,
|
|
Register arg_2,
|
|
Register arg_3) {
|
|
assert(c_rarg0 != arg_2, "smashed argument");
|
|
assert(c_rarg0 != arg_3, "smashed argument");
|
|
assert(c_rarg1 != arg_1, "smashed argument");
|
|
assert(c_rarg1 != arg_3, "smashed argument");
|
|
assert(c_rarg2 != arg_1, "smashed argument");
|
|
assert(c_rarg2 != arg_2, "smashed argument");
|
|
if (c_rarg0 != arg_1) {
|
|
mov(c_rarg0, arg_1);
|
|
}
|
|
if (c_rarg1 != arg_2) {
|
|
mov(c_rarg1, arg_2);
|
|
}
|
|
if (c_rarg2 != arg_3) {
|
|
mov(c_rarg2, arg_3);
|
|
}
|
|
MacroAssembler::call_VM_leaf_base(entry_point, 3);
|
|
}
|
|
|
|
// Jump to from_interpreted entry of a call unless single stepping is possible
|
|
// in this thread in which case we must call the i2i entry
|
|
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
|
|
// set sender sp
|
|
lea(r13, Address(rsp, wordSize));
|
|
// record last_sp
|
|
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
|
|
|
|
if (JvmtiExport::can_post_interpreter_events()) {
|
|
Label run_compiled_code;
|
|
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
|
|
// compiled code in threads for which the event is enabled. Check here for
|
|
// interp_only_mode if these events CAN be enabled.
|
|
get_thread(temp);
|
|
// interp_only is an int, on little endian it is sufficient to test the byte only
|
|
// Is a cmpl faster (ce
|
|
cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
|
|
jcc(Assembler::zero, run_compiled_code);
|
|
jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
|
|
bind(run_compiled_code);
|
|
}
|
|
|
|
jmp(Address(method, methodOopDesc::from_interpreted_offset()));
|
|
|
|
}
|
|
|
|
|
|
// The following two routines provide a hook so that an implementation
|
|
// can schedule the dispatch in two parts. amd64 does not do this.
|
|
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
|
|
// Nothing amd64 specific to be done here
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
|
|
dispatch_next(state, step);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_base(TosState state,
|
|
address* table,
|
|
bool verifyoop) {
|
|
verify_FPU(1, state);
|
|
if (VerifyActivationFrameSize) {
|
|
Label L;
|
|
mov(rcx, rbp);
|
|
subptr(rcx, rsp);
|
|
int32_t min_frame_size =
|
|
(frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
|
|
wordSize;
|
|
cmpptr(rcx, (int32_t)min_frame_size);
|
|
jcc(Assembler::greaterEqual, L);
|
|
stop("broken stack frame");
|
|
bind(L);
|
|
}
|
|
if (verifyoop) {
|
|
verify_oop(rax, state);
|
|
}
|
|
lea(rscratch1, ExternalAddress((address)table));
|
|
jmp(Address(rscratch1, rbx, Address::times_8));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_only(TosState state) {
|
|
dispatch_base(state, Interpreter::dispatch_table(state));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
|
|
dispatch_base(state, Interpreter::normal_table(state));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
|
|
dispatch_base(state, Interpreter::normal_table(state), false);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
|
|
// load next bytecode (load before advancing r13 to prevent AGI)
|
|
load_unsigned_byte(rbx, Address(r13, step));
|
|
// advance r13
|
|
increment(r13, step);
|
|
dispatch_base(state, Interpreter::dispatch_table(state));
|
|
}
|
|
|
|
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
|
|
// load current bytecode
|
|
load_unsigned_byte(rbx, Address(r13, 0));
|
|
dispatch_base(state, table);
|
|
}
|
|
|
|
// remove activation
|
|
//
|
|
// Unlock the receiver if this is a synchronized method.
|
|
// Unlock any Java monitors from syncronized blocks.
|
|
// Remove the activation from the stack.
|
|
//
|
|
// If there are locked Java monitors
|
|
// If throw_monitor_exception
|
|
// throws IllegalMonitorStateException
|
|
// Else if install_monitor_exception
|
|
// installs IllegalMonitorStateException
|
|
// Else
|
|
// no error processing
|
|
void InterpreterMacroAssembler::remove_activation(
|
|
TosState state,
|
|
Register ret_addr,
|
|
bool throw_monitor_exception,
|
|
bool install_monitor_exception,
|
|
bool notify_jvmdi) {
|
|
// Note: Registers rdx xmm0 may be in use for the
|
|
// result check if synchronized method
|
|
Label unlocked, unlock, no_unlock;
|
|
|
|
// get the value of _do_not_unlock_if_synchronized into rdx
|
|
const Address do_not_unlock_if_synchronized(r15_thread,
|
|
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
|
|
movbool(rdx, do_not_unlock_if_synchronized);
|
|
movbool(do_not_unlock_if_synchronized, false); // reset the flag
|
|
|
|
// get method access flags
|
|
movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
|
|
movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
|
|
testl(rcx, JVM_ACC_SYNCHRONIZED);
|
|
jcc(Assembler::zero, unlocked);
|
|
|
|
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
|
|
// is set.
|
|
testbool(rdx);
|
|
jcc(Assembler::notZero, no_unlock);
|
|
|
|
// unlock monitor
|
|
push(state); // save result
|
|
|
|
// BasicObjectLock will be first in list, since this is a
|
|
// synchronized method. However, need to check that the object has
|
|
// not been unlocked by an explicit monitorexit bytecode.
|
|
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
|
|
wordSize - (int) sizeof(BasicObjectLock));
|
|
// We use c_rarg1 so that if we go slow path it will be the correct
|
|
// register for unlock_object to pass to VM directly
|
|
lea(c_rarg1, monitor); // address of first monitor
|
|
|
|
movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
|
|
testptr(rax, rax);
|
|
jcc(Assembler::notZero, unlock);
|
|
|
|
pop(state);
|
|
if (throw_monitor_exception) {
|
|
// Entry already unlocked, need to throw exception
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address,
|
|
InterpreterRuntime::throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
// Monitor already unlocked during a stack unroll. If requested,
|
|
// install an illegal_monitor_state_exception. Continue with
|
|
// stack unrolling.
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address,
|
|
InterpreterRuntime::new_illegal_monitor_state_exception));
|
|
}
|
|
jmp(unlocked);
|
|
}
|
|
|
|
bind(unlock);
|
|
unlock_object(c_rarg1);
|
|
pop(state);
|
|
|
|
// Check that for block-structured locking (i.e., that all locked
|
|
// objects has been unlocked)
|
|
bind(unlocked);
|
|
|
|
// rax: Might contain return value
|
|
|
|
// Check that all monitors are unlocked
|
|
{
|
|
Label loop, exception, entry, restart;
|
|
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
|
|
const Address monitor_block_top(
|
|
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
|
|
const Address monitor_block_bot(
|
|
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
|
|
|
|
bind(restart);
|
|
// We use c_rarg1 so that if we go slow path it will be the correct
|
|
// register for unlock_object to pass to VM directly
|
|
movptr(c_rarg1, monitor_block_top); // points to current entry, starting
|
|
// with top-most entry
|
|
lea(rbx, monitor_block_bot); // points to word before bottom of
|
|
// monitor block
|
|
jmp(entry);
|
|
|
|
// Entry already locked, need to throw exception
|
|
bind(exception);
|
|
|
|
if (throw_monitor_exception) {
|
|
// Throw exception
|
|
MacroAssembler::call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::
|
|
throw_illegal_monitor_state_exception));
|
|
should_not_reach_here();
|
|
} else {
|
|
// Stack unrolling. Unlock object and install illegal_monitor_exception.
|
|
// Unlock does not block, so don't have to worry about the frame.
|
|
// We don't have to preserve c_rarg1 since we are going to throw an exception.
|
|
|
|
push(state);
|
|
unlock_object(c_rarg1);
|
|
pop(state);
|
|
|
|
if (install_monitor_exception) {
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address,
|
|
InterpreterRuntime::
|
|
new_illegal_monitor_state_exception));
|
|
}
|
|
|
|
jmp(restart);
|
|
}
|
|
|
|
bind(loop);
|
|
// check if current entry is used
|
|
cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
|
|
jcc(Assembler::notEqual, exception);
|
|
|
|
addptr(c_rarg1, entry_size); // otherwise advance to next entry
|
|
bind(entry);
|
|
cmpptr(c_rarg1, rbx); // check if bottom reached
|
|
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
|
|
}
|
|
|
|
bind(no_unlock);
|
|
|
|
// jvmti support
|
|
if (notify_jvmdi) {
|
|
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
|
|
} else {
|
|
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
|
|
}
|
|
|
|
// remove activation
|
|
// get sender sp
|
|
movptr(rbx,
|
|
Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
|
|
leave(); // remove frame anchor
|
|
pop(ret_addr); // get return address
|
|
mov(rsp, rbx); // set sp to sender sp
|
|
}
|
|
|
|
#endif // C_INTERP
|
|
|
|
// Lock object
|
|
//
|
|
// Args:
|
|
// c_rarg1: BasicObjectLock to be used for locking
|
|
//
|
|
// Kills:
|
|
// rax
|
|
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
|
|
// rscratch1, rscratch2 (scratch regs)
|
|
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
|
|
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
|
|
|
|
if (UseHeavyMonitors) {
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
|
|
lock_reg);
|
|
} else {
|
|
Label done;
|
|
|
|
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
|
|
const Register obj_reg = c_rarg3; // Will contain the oop
|
|
|
|
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
|
|
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
|
|
const int mark_offset = lock_offset +
|
|
BasicLock::displaced_header_offset_in_bytes();
|
|
|
|
Label slow_case;
|
|
|
|
// Load object pointer into obj_reg %c_rarg3
|
|
movptr(obj_reg, Address(lock_reg, obj_offset));
|
|
|
|
if (UseBiasedLocking) {
|
|
biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
|
|
}
|
|
|
|
// Load immediate 1 into swap_reg %rax
|
|
movl(swap_reg, 1);
|
|
|
|
// Load (object->mark() | 1) into swap_reg %rax
|
|
orptr(swap_reg, Address(obj_reg, 0));
|
|
|
|
// Save (object->mark() | 1) into BasicLock's displaced header
|
|
movptr(Address(lock_reg, mark_offset), swap_reg);
|
|
|
|
assert(lock_offset == 0,
|
|
"displached header must be first word in BasicObjectLock");
|
|
|
|
if (os::is_MP()) lock();
|
|
cmpxchgptr(lock_reg, Address(obj_reg, 0));
|
|
if (PrintBiasedLockingStatistics) {
|
|
cond_inc32(Assembler::zero,
|
|
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
|
|
}
|
|
jcc(Assembler::zero, done);
|
|
|
|
// Test if the oopMark is an obvious stack pointer, i.e.,
|
|
// 1) (mark & 7) == 0, and
|
|
// 2) rsp <= mark < mark + os::pagesize()
|
|
//
|
|
// These 3 tests can be done by evaluating the following
|
|
// expression: ((mark - rsp) & (7 - os::vm_page_size())),
|
|
// assuming both stack pointer and pagesize have their
|
|
// least significant 3 bits clear.
|
|
// NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
|
|
subptr(swap_reg, rsp);
|
|
andptr(swap_reg, 7 - os::vm_page_size());
|
|
|
|
// Save the test result, for recursive case, the result is zero
|
|
movptr(Address(lock_reg, mark_offset), swap_reg);
|
|
|
|
if (PrintBiasedLockingStatistics) {
|
|
cond_inc32(Assembler::zero,
|
|
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
|
|
}
|
|
jcc(Assembler::zero, done);
|
|
|
|
bind(slow_case);
|
|
|
|
// Call the runtime routine for slow case
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
|
|
lock_reg);
|
|
|
|
bind(done);
|
|
}
|
|
}
|
|
|
|
|
|
// Unlocks an object. Used in monitorexit bytecode and
|
|
// remove_activation. Throws an IllegalMonitorException if object is
|
|
// not locked by current thread.
|
|
//
|
|
// Args:
|
|
// c_rarg1: BasicObjectLock for lock
|
|
//
|
|
// Kills:
|
|
// rax
|
|
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
|
|
// rscratch1, rscratch2 (scratch regs)
|
|
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
|
|
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
|
|
|
|
if (UseHeavyMonitors) {
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
|
|
lock_reg);
|
|
} else {
|
|
Label done;
|
|
|
|
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
|
|
const Register header_reg = c_rarg2; // Will contain the old oopMark
|
|
const Register obj_reg = c_rarg3; // Will contain the oop
|
|
|
|
save_bcp(); // Save in case of exception
|
|
|
|
// Convert from BasicObjectLock structure to object and BasicLock
|
|
// structure Store the BasicLock address into %rax
|
|
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
|
|
|
|
// Load oop into obj_reg(%c_rarg3)
|
|
movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
|
|
|
|
// Free entry
|
|
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
|
|
|
|
if (UseBiasedLocking) {
|
|
biased_locking_exit(obj_reg, header_reg, done);
|
|
}
|
|
|
|
// Load the old header from BasicLock structure
|
|
movptr(header_reg, Address(swap_reg,
|
|
BasicLock::displaced_header_offset_in_bytes()));
|
|
|
|
// Test for recursion
|
|
testptr(header_reg, header_reg);
|
|
|
|
// zero for recursive case
|
|
jcc(Assembler::zero, done);
|
|
|
|
// Atomic swap back the old header
|
|
if (os::is_MP()) lock();
|
|
cmpxchgptr(header_reg, Address(obj_reg, 0));
|
|
|
|
// zero for recursive case
|
|
jcc(Assembler::zero, done);
|
|
|
|
// Call the runtime routine for slow case.
|
|
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
|
|
obj_reg); // restore obj
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
|
|
lock_reg);
|
|
|
|
bind(done);
|
|
|
|
restore_bcp();
|
|
}
|
|
}
|
|
|
|
#ifndef CC_INTERP
|
|
|
|
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
|
|
Label& zero_continue) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
|
|
testptr(mdp, mdp);
|
|
jcc(Assembler::zero, zero_continue);
|
|
}
|
|
|
|
|
|
// Set the method data pointer for the current bcp.
|
|
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Label zero_continue;
|
|
push(rax);
|
|
push(rbx);
|
|
|
|
get_method(rbx);
|
|
// Test MDO to avoid the call if it is NULL.
|
|
movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
|
|
testptr(rax, rax);
|
|
jcc(Assembler::zero, zero_continue);
|
|
|
|
// rbx: method
|
|
// r13: bcp
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
|
|
// rax: mdi
|
|
|
|
movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
|
|
testptr(rbx, rbx);
|
|
jcc(Assembler::zero, zero_continue);
|
|
addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
|
|
addptr(rbx, rax);
|
|
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
|
|
|
|
bind(zero_continue);
|
|
pop(rbx);
|
|
pop(rax);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_method_data_pointer() {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
#ifdef ASSERT
|
|
Label verify_continue;
|
|
push(rax);
|
|
push(rbx);
|
|
push(c_rarg3);
|
|
push(c_rarg2);
|
|
test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
|
|
get_method(rbx);
|
|
|
|
// If the mdp is valid, it will point to a DataLayout header which is
|
|
// consistent with the bcp. The converse is highly probable also.
|
|
load_unsigned_short(c_rarg2,
|
|
Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
|
|
addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
|
|
lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
|
|
cmpptr(c_rarg2, r13);
|
|
jcc(Assembler::equal, verify_continue);
|
|
// rbx: method
|
|
// r13: bcp
|
|
// c_rarg3: mdp
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
|
|
rbx, r13, c_rarg3);
|
|
bind(verify_continue);
|
|
pop(c_rarg2);
|
|
pop(c_rarg3);
|
|
pop(rbx);
|
|
pop(rax);
|
|
#endif // ASSERT
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
|
|
int constant,
|
|
Register value) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Address data(mdp_in, constant);
|
|
movptr(data, value);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
|
|
int constant,
|
|
bool decrement) {
|
|
// Counter address
|
|
Address data(mdp_in, constant);
|
|
|
|
increment_mdp_data_at(data, decrement);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
|
|
bool decrement) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
// %%% this does 64bit counters at best it is wasting space
|
|
// at worst it is a rare bug when counters overflow
|
|
|
|
if (decrement) {
|
|
// Decrement the register. Set condition codes.
|
|
addptr(data, (int32_t) -DataLayout::counter_increment);
|
|
// If the decrement causes the counter to overflow, stay negative
|
|
Label L;
|
|
jcc(Assembler::negative, L);
|
|
addptr(data, (int32_t) DataLayout::counter_increment);
|
|
bind(L);
|
|
} else {
|
|
assert(DataLayout::counter_increment == 1,
|
|
"flow-free idiom only works with 1");
|
|
// Increment the register. Set carry flag.
|
|
addptr(data, DataLayout::counter_increment);
|
|
// If the increment causes the counter to overflow, pull back by 1.
|
|
sbbptr(data, (int32_t)0);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
|
|
Register reg,
|
|
int constant,
|
|
bool decrement) {
|
|
Address data(mdp_in, reg, Address::times_1, constant);
|
|
|
|
increment_mdp_data_at(data, decrement);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
|
|
int flag_byte_constant) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
int header_offset = in_bytes(DataLayout::header_offset());
|
|
int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
|
|
// Set the flag
|
|
orl(Address(mdp_in, header_offset), header_bits);
|
|
}
|
|
|
|
|
|
|
|
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
|
|
int offset,
|
|
Register value,
|
|
Register test_value_out,
|
|
Label& not_equal_continue) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
if (test_value_out == noreg) {
|
|
cmpptr(value, Address(mdp_in, offset));
|
|
} else {
|
|
// Put the test value into a register, so caller can use it:
|
|
movptr(test_value_out, Address(mdp_in, offset));
|
|
cmpptr(test_value_out, value);
|
|
}
|
|
jcc(Assembler::notEqual, not_equal_continue);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
|
|
int offset_of_disp) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Address disp_address(mdp_in, offset_of_disp);
|
|
addptr(mdp_in, disp_address);
|
|
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
|
|
Register reg,
|
|
int offset_of_disp) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
|
|
addptr(mdp_in, disp_address);
|
|
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
|
|
int constant) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
addptr(mdp_in, constant);
|
|
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
|
|
assert(ProfileInterpreter, "must be profiling interpreter");
|
|
push(return_bci); // save/restore across call_VM
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
|
|
return_bci);
|
|
pop(return_bci);
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
|
|
Register bumped_count) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
// Otherwise, assign to mdp
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are taking a branch. Increment the taken count.
|
|
// We inline increment_mdp_data_at to return bumped_count in a register
|
|
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
|
|
Address data(mdp, in_bytes(JumpData::taken_offset()));
|
|
movptr(bumped_count, data);
|
|
assert(DataLayout::counter_increment == 1,
|
|
"flow-free idiom only works with 1");
|
|
addptr(bumped_count, DataLayout::counter_increment);
|
|
sbbptr(bumped_count, 0);
|
|
movptr(data, bumped_count); // Store back out
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are taking a branch. Increment the not taken count.
|
|
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
|
|
|
|
// The method data pointer needs to be updated to correspond to
|
|
// the next bytecode
|
|
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_call(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp,
|
|
in_bytes(VirtualCallData::
|
|
virtual_call_data_size()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
|
|
Register mdp,
|
|
Register reg2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// We are making a call. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
|
|
|
|
// Record the receiver type.
|
|
record_klass_in_profile(receiver, mdp, reg2);
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_constant(mdp,
|
|
in_bytes(VirtualCallData::
|
|
virtual_call_data_size()));
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
// This routine creates a state machine for updating the multi-row
|
|
// type profile at a virtual call site (or other type-sensitive bytecode).
|
|
// The machine visits each row (of receiver/count) until the receiver type
|
|
// is found, or until it runs out of rows. At the same time, it remembers
|
|
// the location of the first empty row. (An empty row records null for its
|
|
// receiver, and can be allocated for a newly-observed receiver type.)
|
|
// Because there are two degrees of freedom in the state, a simple linear
|
|
// search will not work; it must be a decision tree. Hence this helper
|
|
// function is recursive, to generate the required tree structured code.
|
|
// It's the interpreter, so we are trading off code space for speed.
|
|
// See below for example code.
|
|
void InterpreterMacroAssembler::record_klass_in_profile_helper(
|
|
Register receiver, Register mdp,
|
|
Register reg2,
|
|
int start_row, Label& done) {
|
|
int last_row = VirtualCallData::row_limit() - 1;
|
|
assert(start_row <= last_row, "must be work left to do");
|
|
// Test this row for both the receiver and for null.
|
|
// Take any of three different outcomes:
|
|
// 1. found receiver => increment count and goto done
|
|
// 2. found null => keep looking for case 1, maybe allocate this cell
|
|
// 3. found something else => keep looking for cases 1 and 2
|
|
// Case 3 is handled by a recursive call.
|
|
for (int row = start_row; row <= last_row; row++) {
|
|
Label next_test;
|
|
bool test_for_null_also = (row == start_row);
|
|
|
|
// See if the receiver is receiver[n].
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
|
|
test_mdp_data_at(mdp, recvr_offset, receiver,
|
|
(test_for_null_also ? reg2 : noreg),
|
|
next_test);
|
|
// (Reg2 now contains the receiver from the CallData.)
|
|
|
|
// The receiver is receiver[n]. Increment count[n].
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
|
|
increment_mdp_data_at(mdp, count_offset);
|
|
jmp(done);
|
|
bind(next_test);
|
|
|
|
if (test_for_null_also) {
|
|
// Failed the equality check on receiver[n]... Test for null.
|
|
testptr(reg2, reg2);
|
|
if (start_row == last_row) {
|
|
// The only thing left to do is handle the null case.
|
|
jcc(Assembler::notZero, done);
|
|
break;
|
|
}
|
|
// Since null is rare, make it be the branch-taken case.
|
|
Label found_null;
|
|
jcc(Assembler::zero, found_null);
|
|
|
|
// Put all the "Case 3" tests here.
|
|
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
|
|
|
|
// Found a null. Keep searching for a matching receiver,
|
|
// but remember that this is an empty (unused) slot.
|
|
bind(found_null);
|
|
}
|
|
}
|
|
|
|
// In the fall-through case, we found no matching receiver, but we
|
|
// observed the receiver[start_row] is NULL.
|
|
|
|
// Fill in the receiver field and increment the count.
|
|
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
|
|
set_mdp_data_at(mdp, recvr_offset, receiver);
|
|
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
|
|
movl(reg2, DataLayout::counter_increment);
|
|
set_mdp_data_at(mdp, count_offset, reg2);
|
|
jmp(done);
|
|
}
|
|
|
|
// Example state machine code for three profile rows:
|
|
// // main copy of decision tree, rooted at row[1]
|
|
// if (row[0].rec == rec) { row[0].incr(); goto done; }
|
|
// if (row[0].rec != NULL) {
|
|
// // inner copy of decision tree, rooted at row[1]
|
|
// if (row[1].rec == rec) { row[1].incr(); goto done; }
|
|
// if (row[1].rec != NULL) {
|
|
// // degenerate decision tree, rooted at row[2]
|
|
// if (row[2].rec == rec) { row[2].incr(); goto done; }
|
|
// if (row[2].rec != NULL) { goto done; } // overflow
|
|
// row[2].init(rec); goto done;
|
|
// } else {
|
|
// // remember row[1] is empty
|
|
// if (row[2].rec == rec) { row[2].incr(); goto done; }
|
|
// row[1].init(rec); goto done;
|
|
// }
|
|
// } else {
|
|
// // remember row[0] is empty
|
|
// if (row[1].rec == rec) { row[1].incr(); goto done; }
|
|
// if (row[2].rec == rec) { row[2].incr(); goto done; }
|
|
// row[0].init(rec); goto done;
|
|
// }
|
|
|
|
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
|
|
Register mdp,
|
|
Register reg2) {
|
|
assert(ProfileInterpreter, "must be profiling");
|
|
Label done;
|
|
|
|
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
|
|
|
|
bind (done);
|
|
}
|
|
|
|
void InterpreterMacroAssembler::profile_ret(Register return_bci,
|
|
Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
uint row;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Update the total ret count.
|
|
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
|
|
|
|
for (row = 0; row < RetData::row_limit(); row++) {
|
|
Label next_test;
|
|
|
|
// See if return_bci is equal to bci[n]:
|
|
test_mdp_data_at(mdp,
|
|
in_bytes(RetData::bci_offset(row)),
|
|
return_bci, noreg,
|
|
next_test);
|
|
|
|
// return_bci is equal to bci[n]. Increment the count.
|
|
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
|
|
|
|
// The method data pointer needs to be updated to reflect the new target.
|
|
update_mdp_by_offset(mdp,
|
|
in_bytes(RetData::bci_displacement_offset(row)));
|
|
jmp(profile_continue);
|
|
bind(next_test);
|
|
}
|
|
|
|
update_mdp_for_ret(return_bci);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// The method data pointer needs to be updated.
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
}
|
|
update_mdp_by_constant(mdp, mdp_delta);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
|
|
if (ProfileInterpreter && TypeProfileCasts) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
int count_offset = in_bytes(CounterData::count_offset());
|
|
// Back up the address, since we have already bumped the mdp.
|
|
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
|
|
|
|
// *Decrement* the counter. We expect to see zero or small negatives.
|
|
increment_mdp_data_at(mdp, count_offset, true);
|
|
|
|
bind (profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// The method data pointer needs to be updated.
|
|
int mdp_delta = in_bytes(BitData::bit_data_size());
|
|
if (TypeProfileCasts) {
|
|
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
|
|
|
|
// Record the object type.
|
|
record_klass_in_profile(klass, mdp, reg2);
|
|
}
|
|
update_mdp_by_constant(mdp, mdp_delta);
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Update the default case count
|
|
increment_mdp_data_at(mdp,
|
|
in_bytes(MultiBranchData::default_count_offset()));
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_offset(mdp,
|
|
in_bytes(MultiBranchData::
|
|
default_displacement_offset()));
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::profile_switch_case(Register index,
|
|
Register mdp,
|
|
Register reg2) {
|
|
if (ProfileInterpreter) {
|
|
Label profile_continue;
|
|
|
|
// If no method data exists, go to profile_continue.
|
|
test_method_data_pointer(mdp, profile_continue);
|
|
|
|
// Build the base (index * per_case_size_in_bytes()) +
|
|
// case_array_offset_in_bytes()
|
|
movl(reg2, in_bytes(MultiBranchData::per_case_size()));
|
|
imulptr(index, reg2); // XXX l ?
|
|
addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
|
|
|
|
// Update the case count
|
|
increment_mdp_data_at(mdp,
|
|
index,
|
|
in_bytes(MultiBranchData::relative_count_offset()));
|
|
|
|
// The method data pointer needs to be updated.
|
|
update_mdp_by_offset(mdp,
|
|
index,
|
|
in_bytes(MultiBranchData::
|
|
relative_displacement_offset()));
|
|
|
|
bind(profile_continue);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
|
|
if (state == atos) {
|
|
MacroAssembler::verify_oop(reg);
|
|
}
|
|
}
|
|
|
|
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
|
|
}
|
|
#endif // !CC_INTERP
|
|
|
|
|
|
void InterpreterMacroAssembler::notify_method_entry() {
|
|
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
|
|
// track stack depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (JvmtiExport::can_post_interpreter_events()) {
|
|
Label L;
|
|
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
|
|
testl(rdx, rdx);
|
|
jcc(Assembler::zero, L);
|
|
call_VM(noreg, CAST_FROM_FN_PTR(address,
|
|
InterpreterRuntime::post_method_entry));
|
|
bind(L);
|
|
}
|
|
|
|
{
|
|
SkipIfEqual skip(this, &DTraceMethodProbes, false);
|
|
get_method(c_rarg1);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
|
|
r15_thread, c_rarg1);
|
|
}
|
|
|
|
// RedefineClasses() tracing support for obsolete method entry
|
|
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
|
|
get_method(c_rarg1);
|
|
call_VM_leaf(
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
|
|
r15_thread, c_rarg1);
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterMacroAssembler::notify_method_exit(
|
|
TosState state, NotifyMethodExitMode mode) {
|
|
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
|
|
// track stack depth. If it is possible to enter interp_only_mode we add
|
|
// the code to check if the event should be sent.
|
|
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
|
|
Label L;
|
|
// Note: frame::interpreter_frame_result has a dependency on how the
|
|
// method result is saved across the call to post_method_exit. If this
|
|
// is changed then the interpreter_frame_result implementation will
|
|
// need to be updated too.
|
|
|
|
// For c++ interpreter the result is always stored at a known location in the frame
|
|
// template interpreter will leave it on the top of the stack.
|
|
NOT_CC_INTERP(push(state);)
|
|
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
|
|
testl(rdx, rdx);
|
|
jcc(Assembler::zero, L);
|
|
call_VM(noreg,
|
|
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
|
|
bind(L);
|
|
NOT_CC_INTERP(pop(state));
|
|
}
|
|
|
|
{
|
|
SkipIfEqual skip(this, &DTraceMethodProbes, false);
|
|
NOT_CC_INTERP(push(state));
|
|
get_method(c_rarg1);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
|
|
r15_thread, c_rarg1);
|
|
NOT_CC_INTERP(pop(state));
|
|
}
|
|
}
|