b89d2fd169
Reviewed-by: psandoz, kvn
436 lines
16 KiB
C++
436 lines
16 KiB
C++
/*
|
|
* Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "interpreter/linkResolver.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/parse.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
|
|
//=============================================================================
|
|
// Helper methods for _get* and _put* bytecodes
|
|
//=============================================================================
|
|
void Parse::do_field_access(bool is_get, bool is_field) {
|
|
bool will_link;
|
|
ciField* field = iter().get_field(will_link);
|
|
assert(will_link, "getfield: typeflow responsibility");
|
|
|
|
ciInstanceKlass* field_holder = field->holder();
|
|
|
|
if (is_field == field->is_static()) {
|
|
// Interpreter will throw java_lang_IncompatibleClassChangeError
|
|
// Check this before allowing <clinit> methods to access static fields
|
|
uncommon_trap(Deoptimization::Reason_unhandled,
|
|
Deoptimization::Action_none);
|
|
return;
|
|
}
|
|
|
|
// Deoptimize on putfield writes to call site target field outside of CallSite ctor.
|
|
if (!is_get && field->is_call_site_target() &&
|
|
!(method()->holder() == field_holder && method()->is_object_initializer())) {
|
|
uncommon_trap(Deoptimization::Reason_unhandled,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL, "put to call site target field");
|
|
return;
|
|
}
|
|
|
|
if (C->needs_clinit_barrier(field, method())) {
|
|
clinit_barrier(field_holder, method());
|
|
if (stopped()) return;
|
|
}
|
|
|
|
assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
|
|
|
|
// Note: We do not check for an unloaded field type here any more.
|
|
|
|
// Generate code for the object pointer.
|
|
Node* obj;
|
|
if (is_field) {
|
|
int obj_depth = is_get ? 0 : field->type()->size();
|
|
obj = null_check(peek(obj_depth));
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
|
|
#ifdef ASSERT
|
|
const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
|
|
assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
|
|
#endif
|
|
|
|
if (is_get) {
|
|
(void) pop(); // pop receiver before getting
|
|
do_get_xxx(obj, field, is_field);
|
|
} else {
|
|
do_put_xxx(obj, field, is_field);
|
|
(void) pop(); // pop receiver after putting
|
|
}
|
|
} else {
|
|
const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
|
|
obj = _gvn.makecon(tip);
|
|
if (is_get) {
|
|
do_get_xxx(obj, field, is_field);
|
|
} else {
|
|
do_put_xxx(obj, field, is_field);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
|
|
BasicType bt = field->layout_type();
|
|
|
|
// Does this field have a constant value? If so, just push the value.
|
|
if (field->is_constant() &&
|
|
// Keep consistent with types found by ciTypeFlow: for an
|
|
// unloaded field type, ciTypeFlow::StateVector::do_getstatic()
|
|
// speculates the field is null. The code in the rest of this
|
|
// method does the same. We must not bypass it and use a non
|
|
// null constant here.
|
|
(bt != T_OBJECT || field->type()->is_loaded())) {
|
|
// final or stable field
|
|
Node* con = make_constant_from_field(field, obj);
|
|
if (con != NULL) {
|
|
push_node(field->layout_type(), con);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ciType* field_klass = field->type();
|
|
bool is_vol = field->is_volatile();
|
|
|
|
// Compute address and memory type.
|
|
int offset = field->offset_in_bytes();
|
|
const TypePtr* adr_type = C->alias_type(field)->adr_type();
|
|
Node *adr = basic_plus_adr(obj, obj, offset);
|
|
|
|
// Build the resultant type of the load
|
|
const Type *type;
|
|
|
|
bool must_assert_null = false;
|
|
|
|
DecoratorSet decorators = IN_HEAP;
|
|
decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
|
|
|
|
bool is_obj = is_reference_type(bt);
|
|
|
|
if (is_obj) {
|
|
if (!field->type()->is_loaded()) {
|
|
type = TypeInstPtr::BOTTOM;
|
|
must_assert_null = true;
|
|
} else if (field->is_static_constant()) {
|
|
// This can happen if the constant oop is non-perm.
|
|
ciObject* con = field->constant_value().as_object();
|
|
// Do not "join" in the previous type; it doesn't add value,
|
|
// and may yield a vacuous result if the field is of interface type.
|
|
if (con->is_null_object()) {
|
|
type = TypePtr::NULL_PTR;
|
|
} else {
|
|
type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
|
|
}
|
|
assert(type != NULL, "field singleton type must be consistent");
|
|
} else {
|
|
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
|
|
}
|
|
} else {
|
|
type = Type::get_const_basic_type(bt);
|
|
}
|
|
|
|
Node* ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
|
|
|
|
// Adjust Java stack
|
|
if (type2size[bt] == 1)
|
|
push(ld);
|
|
else
|
|
push_pair(ld);
|
|
|
|
if (must_assert_null) {
|
|
// Do not take a trap here. It's possible that the program
|
|
// will never load the field's class, and will happily see
|
|
// null values in this field forever. Don't stumble into a
|
|
// trap for such a program, or we might get a long series
|
|
// of useless recompilations. (Or, we might load a class
|
|
// which should not be loaded.) If we ever see a non-null
|
|
// value, we will then trap and recompile. (The trap will
|
|
// not need to mention the class index, since the class will
|
|
// already have been loaded if we ever see a non-null value.)
|
|
// uncommon_trap(iter().get_field_signature_index());
|
|
if (PrintOpto && (Verbose || WizardMode)) {
|
|
method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
|
|
}
|
|
if (C->log() != NULL) {
|
|
C->log()->elem("assert_null reason='field' klass='%d'",
|
|
C->log()->identify(field->type()));
|
|
}
|
|
// If there is going to be a trap, put it at the next bytecode:
|
|
set_bci(iter().next_bci());
|
|
null_assert(peek());
|
|
set_bci(iter().cur_bci()); // put it back
|
|
}
|
|
}
|
|
|
|
void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
|
|
bool is_vol = field->is_volatile();
|
|
|
|
// Compute address and memory type.
|
|
int offset = field->offset_in_bytes();
|
|
const TypePtr* adr_type = C->alias_type(field)->adr_type();
|
|
Node* adr = basic_plus_adr(obj, obj, offset);
|
|
BasicType bt = field->layout_type();
|
|
// Value to be stored
|
|
Node* val = type2size[bt] == 1 ? pop() : pop_pair();
|
|
|
|
DecoratorSet decorators = IN_HEAP;
|
|
decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
|
|
|
|
bool is_obj = is_reference_type(bt);
|
|
|
|
// Store the value.
|
|
const Type* field_type;
|
|
if (!field->type()->is_loaded()) {
|
|
field_type = TypeInstPtr::BOTTOM;
|
|
} else {
|
|
if (is_obj) {
|
|
field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
|
|
} else {
|
|
field_type = Type::BOTTOM;
|
|
}
|
|
}
|
|
access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
|
|
|
|
if (is_field) {
|
|
// Remember we wrote a volatile field.
|
|
// For not multiple copy atomic cpu (ppc64) a barrier should be issued
|
|
// in constructors which have such stores. See do_exits() in parse1.cpp.
|
|
if (is_vol) {
|
|
set_wrote_volatile(true);
|
|
}
|
|
set_wrote_fields(true);
|
|
|
|
// If the field is final, the rules of Java say we are in <init> or <clinit>.
|
|
// Note the presence of writes to final non-static fields, so that we
|
|
// can insert a memory barrier later on to keep the writes from floating
|
|
// out of the constructor.
|
|
// Any method can write a @Stable field; insert memory barriers after those also.
|
|
if (field->is_final()) {
|
|
set_wrote_final(true);
|
|
if (AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
|
|
// Preserve allocation ptr to create precedent edge to it in membar
|
|
// generated on exit from constructor.
|
|
// Can't bind stable with its allocation, only record allocation for final field.
|
|
set_alloc_with_final(obj);
|
|
}
|
|
}
|
|
if (field->is_stable()) {
|
|
set_wrote_stable(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
void Parse::do_anewarray() {
|
|
bool will_link;
|
|
ciKlass* klass = iter().get_klass(will_link);
|
|
|
|
// Uncommon Trap when class that array contains is not loaded
|
|
// we need the loaded class for the rest of graph; do not
|
|
// initialize the container class (see Java spec)!!!
|
|
assert(will_link, "anewarray: typeflow responsibility");
|
|
|
|
ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
|
|
// Check that array_klass object is loaded
|
|
if (!array_klass->is_loaded()) {
|
|
// Generate uncommon_trap for unloaded array_class
|
|
uncommon_trap(Deoptimization::Reason_unloaded,
|
|
Deoptimization::Action_reinterpret,
|
|
array_klass);
|
|
return;
|
|
}
|
|
|
|
kill_dead_locals();
|
|
|
|
const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
|
|
Node* count_val = pop();
|
|
Node* obj = new_array(makecon(array_klass_type), count_val, 1);
|
|
push(obj);
|
|
}
|
|
|
|
|
|
void Parse::do_newarray(BasicType elem_type) {
|
|
kill_dead_locals();
|
|
|
|
Node* count_val = pop();
|
|
const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
|
|
Node* obj = new_array(makecon(array_klass), count_val, 1);
|
|
// Push resultant oop onto stack
|
|
push(obj);
|
|
}
|
|
|
|
// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
|
|
// Also handle the degenerate 1-dimensional case of anewarray.
|
|
Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
|
|
Node* length = lengths[0];
|
|
assert(length != NULL, "");
|
|
Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
|
|
if (ndimensions > 1) {
|
|
jint length_con = find_int_con(length, -1);
|
|
guarantee(length_con >= 0, "non-constant multianewarray");
|
|
ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
|
|
const TypePtr* adr_type = TypeAryPtr::OOPS;
|
|
const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
|
|
const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
|
|
for (jint i = 0; i < length_con; i++) {
|
|
Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
|
|
intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
|
|
Node* eaddr = basic_plus_adr(array, offset);
|
|
access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
|
|
}
|
|
}
|
|
return array;
|
|
}
|
|
|
|
void Parse::do_multianewarray() {
|
|
int ndimensions = iter().get_dimensions();
|
|
|
|
// the m-dimensional array
|
|
bool will_link;
|
|
ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
|
|
assert(will_link, "multianewarray: typeflow responsibility");
|
|
|
|
// Note: Array classes are always initialized; no is_initialized check.
|
|
|
|
kill_dead_locals();
|
|
|
|
// get the lengths from the stack (first dimension is on top)
|
|
Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
|
|
length[ndimensions] = NULL; // terminating null for make_runtime_call
|
|
int j;
|
|
for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
|
|
|
|
// The original expression was of this form: new T[length0][length1]...
|
|
// It is often the case that the lengths are small (except the last).
|
|
// If that happens, use the fast 1-d creator a constant number of times.
|
|
const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
|
|
int expand_count = 1; // count of allocations in the expansion
|
|
int expand_fanout = 1; // running total fanout
|
|
for (j = 0; j < ndimensions-1; j++) {
|
|
int dim_con = find_int_con(length[j], -1);
|
|
expand_fanout *= dim_con;
|
|
expand_count += expand_fanout; // count the level-J sub-arrays
|
|
if (dim_con <= 0
|
|
|| dim_con > expand_limit
|
|
|| expand_count > expand_limit) {
|
|
expand_count = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Can use multianewarray instead of [a]newarray if only one dimension,
|
|
// or if all non-final dimensions are small constants.
|
|
if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
|
|
Node* obj = NULL;
|
|
// Set the original stack and the reexecute bit for the interpreter
|
|
// to reexecute the multianewarray bytecode if deoptimization happens.
|
|
// Do it unconditionally even for one dimension multianewarray.
|
|
// Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
|
|
// when AllocateArray node for newarray is created.
|
|
{ PreserveReexecuteState preexecs(this);
|
|
inc_sp(ndimensions);
|
|
// Pass 0 as nargs since uncommon trap code does not need to restore stack.
|
|
obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
|
|
} //original reexecute and sp are set back here
|
|
push(obj);
|
|
return;
|
|
}
|
|
|
|
address fun = NULL;
|
|
switch (ndimensions) {
|
|
case 1: ShouldNotReachHere(); break;
|
|
case 2: fun = OptoRuntime::multianewarray2_Java(); break;
|
|
case 3: fun = OptoRuntime::multianewarray3_Java(); break;
|
|
case 4: fun = OptoRuntime::multianewarray4_Java(); break;
|
|
case 5: fun = OptoRuntime::multianewarray5_Java(); break;
|
|
};
|
|
Node* c = NULL;
|
|
|
|
if (fun != NULL) {
|
|
c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
|
|
OptoRuntime::multianewarray_Type(ndimensions),
|
|
fun, NULL, TypeRawPtr::BOTTOM,
|
|
makecon(TypeKlassPtr::make(array_klass)),
|
|
length[0], length[1], length[2],
|
|
(ndimensions > 2) ? length[3] : NULL,
|
|
(ndimensions > 3) ? length[4] : NULL);
|
|
} else {
|
|
// Create a java array for dimension sizes
|
|
Node* dims = NULL;
|
|
{ PreserveReexecuteState preexecs(this);
|
|
inc_sp(ndimensions);
|
|
Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
|
|
dims = new_array(dims_array_klass, intcon(ndimensions), 0);
|
|
|
|
// Fill-in it with values
|
|
for (j = 0; j < ndimensions; j++) {
|
|
Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
|
|
store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
|
|
}
|
|
}
|
|
|
|
c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
|
|
OptoRuntime::multianewarrayN_Type(),
|
|
OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
|
|
makecon(TypeKlassPtr::make(array_klass)),
|
|
dims);
|
|
}
|
|
make_slow_call_ex(c, env()->Throwable_klass(), false);
|
|
|
|
Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
|
|
|
|
const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
|
|
|
|
// Improve the type: We know it's not null, exact, and of a given length.
|
|
type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
|
|
type = type->is_aryptr()->cast_to_exactness(true);
|
|
|
|
const TypeInt* ltype = _gvn.find_int_type(length[0]);
|
|
if (ltype != NULL)
|
|
type = type->is_aryptr()->cast_to_size(ltype);
|
|
|
|
// We cannot sharpen the nested sub-arrays, since the top level is mutable.
|
|
|
|
Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
|
|
push(cast);
|
|
|
|
// Possible improvements:
|
|
// - Make a fast path for small multi-arrays. (W/ implicit init. loops.)
|
|
// - Issue CastII against length[*] values, to TypeInt::POS.
|
|
}
|