be4035c60a
Reviewed-by: tschatzl, jwilhelm
1636 lines
64 KiB
C++
1636 lines
64 KiB
C++
/*
|
|
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
|
|
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
|
|
|
|
#include "gc_implementation/g1/g1AllocationContext.hpp"
|
|
#include "gc_implementation/g1/g1Allocator.hpp"
|
|
#include "gc_implementation/g1/concurrentMark.hpp"
|
|
#include "gc_implementation/g1/evacuationInfo.hpp"
|
|
#include "gc_implementation/g1/g1AllocRegion.hpp"
|
|
#include "gc_implementation/g1/g1BiasedArray.hpp"
|
|
#include "gc_implementation/g1/g1HRPrinter.hpp"
|
|
#include "gc_implementation/g1/g1InCSetState.hpp"
|
|
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
|
|
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
|
|
#include "gc_implementation/g1/g1YCTypes.hpp"
|
|
#include "gc_implementation/g1/heapRegionManager.hpp"
|
|
#include "gc_implementation/g1/heapRegionSet.hpp"
|
|
#include "gc_implementation/shared/hSpaceCounters.hpp"
|
|
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
|
|
#include "memory/barrierSet.hpp"
|
|
#include "memory/memRegion.hpp"
|
|
#include "memory/sharedHeap.hpp"
|
|
#include "utilities/stack.hpp"
|
|
|
|
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
|
|
// It uses the "Garbage First" heap organization and algorithm, which
|
|
// may combine concurrent marking with parallel, incremental compaction of
|
|
// heap subsets that will yield large amounts of garbage.
|
|
|
|
// Forward declarations
|
|
class HeapRegion;
|
|
class HRRSCleanupTask;
|
|
class GenerationSpec;
|
|
class OopsInHeapRegionClosure;
|
|
class G1KlassScanClosure;
|
|
class ObjectClosure;
|
|
class SpaceClosure;
|
|
class CompactibleSpaceClosure;
|
|
class Space;
|
|
class G1CollectorPolicy;
|
|
class GenRemSet;
|
|
class G1RemSet;
|
|
class HeapRegionRemSetIterator;
|
|
class ConcurrentMark;
|
|
class ConcurrentMarkThread;
|
|
class ConcurrentG1Refine;
|
|
class ConcurrentGCTimer;
|
|
class GenerationCounters;
|
|
class STWGCTimer;
|
|
class G1NewTracer;
|
|
class G1OldTracer;
|
|
class EvacuationFailedInfo;
|
|
class nmethod;
|
|
class Ticks;
|
|
|
|
typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
|
|
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
|
|
|
|
typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
|
|
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
|
|
|
|
class YoungList : public CHeapObj<mtGC> {
|
|
private:
|
|
G1CollectedHeap* _g1h;
|
|
|
|
HeapRegion* _head;
|
|
|
|
HeapRegion* _survivor_head;
|
|
HeapRegion* _survivor_tail;
|
|
|
|
HeapRegion* _curr;
|
|
|
|
uint _length;
|
|
uint _survivor_length;
|
|
|
|
size_t _last_sampled_rs_lengths;
|
|
size_t _sampled_rs_lengths;
|
|
|
|
void empty_list(HeapRegion* list);
|
|
|
|
public:
|
|
YoungList(G1CollectedHeap* g1h);
|
|
|
|
void push_region(HeapRegion* hr);
|
|
void add_survivor_region(HeapRegion* hr);
|
|
|
|
void empty_list();
|
|
bool is_empty() { return _length == 0; }
|
|
uint length() { return _length; }
|
|
uint eden_length() { return length() - survivor_length(); }
|
|
uint survivor_length() { return _survivor_length; }
|
|
|
|
// Currently we do not keep track of the used byte sum for the
|
|
// young list and the survivors and it'd be quite a lot of work to
|
|
// do so. When we'll eventually replace the young list with
|
|
// instances of HeapRegionLinkedList we'll get that for free. So,
|
|
// we'll report the more accurate information then.
|
|
size_t eden_used_bytes() {
|
|
assert(length() >= survivor_length(), "invariant");
|
|
return (size_t) eden_length() * HeapRegion::GrainBytes;
|
|
}
|
|
size_t survivor_used_bytes() {
|
|
return (size_t) survivor_length() * HeapRegion::GrainBytes;
|
|
}
|
|
|
|
void rs_length_sampling_init();
|
|
bool rs_length_sampling_more();
|
|
void rs_length_sampling_next();
|
|
|
|
void reset_sampled_info() {
|
|
_last_sampled_rs_lengths = 0;
|
|
}
|
|
size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
|
|
|
|
// for development purposes
|
|
void reset_auxilary_lists();
|
|
void clear() { _head = NULL; _length = 0; }
|
|
|
|
void clear_survivors() {
|
|
_survivor_head = NULL;
|
|
_survivor_tail = NULL;
|
|
_survivor_length = 0;
|
|
}
|
|
|
|
HeapRegion* first_region() { return _head; }
|
|
HeapRegion* first_survivor_region() { return _survivor_head; }
|
|
HeapRegion* last_survivor_region() { return _survivor_tail; }
|
|
|
|
// debugging
|
|
bool check_list_well_formed();
|
|
bool check_list_empty(bool check_sample = true);
|
|
void print();
|
|
};
|
|
|
|
// The G1 STW is alive closure.
|
|
// An instance is embedded into the G1CH and used as the
|
|
// (optional) _is_alive_non_header closure in the STW
|
|
// reference processor. It is also extensively used during
|
|
// reference processing during STW evacuation pauses.
|
|
class G1STWIsAliveClosure: public BoolObjectClosure {
|
|
G1CollectedHeap* _g1;
|
|
public:
|
|
G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
|
|
bool do_object_b(oop p);
|
|
};
|
|
|
|
class RefineCardTableEntryClosure;
|
|
|
|
class G1RegionMappingChangedListener : public G1MappingChangedListener {
|
|
private:
|
|
void reset_from_card_cache(uint start_idx, size_t num_regions);
|
|
public:
|
|
virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
|
|
};
|
|
|
|
class G1CollectedHeap : public SharedHeap {
|
|
friend class VM_CollectForMetadataAllocation;
|
|
friend class VM_G1CollectForAllocation;
|
|
friend class VM_G1CollectFull;
|
|
friend class VM_G1IncCollectionPause;
|
|
friend class VMStructs;
|
|
friend class MutatorAllocRegion;
|
|
friend class SurvivorGCAllocRegion;
|
|
friend class OldGCAllocRegion;
|
|
friend class G1Allocator;
|
|
|
|
// Closures used in implementation.
|
|
friend class G1ParScanThreadState;
|
|
friend class G1ParTask;
|
|
friend class G1ParGCAllocator;
|
|
friend class G1PrepareCompactClosure;
|
|
|
|
// Other related classes.
|
|
friend class HeapRegionClaimer;
|
|
|
|
// Testing classes.
|
|
friend class G1CheckCSetFastTableClosure;
|
|
|
|
private:
|
|
// The one and only G1CollectedHeap, so static functions can find it.
|
|
static G1CollectedHeap* _g1h;
|
|
|
|
static size_t _humongous_object_threshold_in_words;
|
|
|
|
// The secondary free list which contains regions that have been
|
|
// freed up during the cleanup process. This will be appended to
|
|
// the master free list when appropriate.
|
|
FreeRegionList _secondary_free_list;
|
|
|
|
// It keeps track of the old regions.
|
|
HeapRegionSet _old_set;
|
|
|
|
// It keeps track of the humongous regions.
|
|
HeapRegionSet _humongous_set;
|
|
|
|
void clear_humongous_is_live_table();
|
|
void eagerly_reclaim_humongous_regions();
|
|
|
|
// The number of regions we could create by expansion.
|
|
uint _expansion_regions;
|
|
|
|
// The block offset table for the G1 heap.
|
|
G1BlockOffsetSharedArray* _bot_shared;
|
|
|
|
// Tears down the region sets / lists so that they are empty and the
|
|
// regions on the heap do not belong to a region set / list. The
|
|
// only exception is the humongous set which we leave unaltered. If
|
|
// free_list_only is true, it will only tear down the master free
|
|
// list. It is called before a Full GC (free_list_only == false) or
|
|
// before heap shrinking (free_list_only == true).
|
|
void tear_down_region_sets(bool free_list_only);
|
|
|
|
// Rebuilds the region sets / lists so that they are repopulated to
|
|
// reflect the contents of the heap. The only exception is the
|
|
// humongous set which was not torn down in the first place. If
|
|
// free_list_only is true, it will only rebuild the master free
|
|
// list. It is called after a Full GC (free_list_only == false) or
|
|
// after heap shrinking (free_list_only == true).
|
|
void rebuild_region_sets(bool free_list_only);
|
|
|
|
// Callback for region mapping changed events.
|
|
G1RegionMappingChangedListener _listener;
|
|
|
|
// The sequence of all heap regions in the heap.
|
|
HeapRegionManager _hrm;
|
|
|
|
// Class that handles the different kinds of allocations.
|
|
G1Allocator* _allocator;
|
|
|
|
// Statistics for each allocation context
|
|
AllocationContextStats _allocation_context_stats;
|
|
|
|
// PLAB sizing policy for survivors.
|
|
PLABStats _survivor_plab_stats;
|
|
|
|
// PLAB sizing policy for tenured objects.
|
|
PLABStats _old_plab_stats;
|
|
|
|
// It specifies whether we should attempt to expand the heap after a
|
|
// region allocation failure. If heap expansion fails we set this to
|
|
// false so that we don't re-attempt the heap expansion (it's likely
|
|
// that subsequent expansion attempts will also fail if one fails).
|
|
// Currently, it is only consulted during GC and it's reset at the
|
|
// start of each GC.
|
|
bool _expand_heap_after_alloc_failure;
|
|
|
|
// It resets the mutator alloc region before new allocations can take place.
|
|
void init_mutator_alloc_region();
|
|
|
|
// It releases the mutator alloc region.
|
|
void release_mutator_alloc_region();
|
|
|
|
// It initializes the GC alloc regions at the start of a GC.
|
|
void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
|
|
|
|
// It releases the GC alloc regions at the end of a GC.
|
|
void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
|
|
|
|
// It does any cleanup that needs to be done on the GC alloc regions
|
|
// before a Full GC.
|
|
void abandon_gc_alloc_regions();
|
|
|
|
// Helper for monitoring and management support.
|
|
G1MonitoringSupport* _g1mm;
|
|
|
|
// Records whether the region at the given index is kept live by roots or
|
|
// references from the young generation.
|
|
class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
|
|
protected:
|
|
bool default_value() const { return false; }
|
|
public:
|
|
void clear() { G1BiasedMappedArray<bool>::clear(); }
|
|
void set_live(uint region) {
|
|
set_by_index(region, true);
|
|
}
|
|
bool is_live(uint region) {
|
|
return get_by_index(region);
|
|
}
|
|
};
|
|
|
|
HumongousIsLiveBiasedMappedArray _humongous_is_live;
|
|
// Stores whether during humongous object registration we found candidate regions.
|
|
// If not, we can skip a few steps.
|
|
bool _has_humongous_reclaim_candidates;
|
|
|
|
volatile unsigned _gc_time_stamp;
|
|
|
|
size_t* _surviving_young_words;
|
|
|
|
G1HRPrinter _hr_printer;
|
|
|
|
void setup_surviving_young_words();
|
|
void update_surviving_young_words(size_t* surv_young_words);
|
|
void cleanup_surviving_young_words();
|
|
|
|
// It decides whether an explicit GC should start a concurrent cycle
|
|
// instead of doing a STW GC. Currently, a concurrent cycle is
|
|
// explicitly started if:
|
|
// (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
|
|
// (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
|
|
// (c) cause == _g1_humongous_allocation
|
|
bool should_do_concurrent_full_gc(GCCause::Cause cause);
|
|
|
|
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
|
|
// concurrent cycles) we have started.
|
|
volatile uint _old_marking_cycles_started;
|
|
|
|
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
|
|
// concurrent cycles) we have completed.
|
|
volatile uint _old_marking_cycles_completed;
|
|
|
|
bool _concurrent_cycle_started;
|
|
bool _heap_summary_sent;
|
|
|
|
// This is a non-product method that is helpful for testing. It is
|
|
// called at the end of a GC and artificially expands the heap by
|
|
// allocating a number of dead regions. This way we can induce very
|
|
// frequent marking cycles and stress the cleanup / concurrent
|
|
// cleanup code more (as all the regions that will be allocated by
|
|
// this method will be found dead by the marking cycle).
|
|
void allocate_dummy_regions() PRODUCT_RETURN;
|
|
|
|
// Clear RSets after a compaction. It also resets the GC time stamps.
|
|
void clear_rsets_post_compaction();
|
|
|
|
// If the HR printer is active, dump the state of the regions in the
|
|
// heap after a compaction.
|
|
void print_hrm_post_compaction();
|
|
|
|
double verify(bool guard, const char* msg);
|
|
void verify_before_gc();
|
|
void verify_after_gc();
|
|
|
|
void log_gc_header();
|
|
void log_gc_footer(double pause_time_sec);
|
|
|
|
// These are macros so that, if the assert fires, we get the correct
|
|
// line number, file, etc.
|
|
|
|
#define heap_locking_asserts_err_msg(_extra_message_) \
|
|
err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
|
|
(_extra_message_), \
|
|
BOOL_TO_STR(Heap_lock->owned_by_self()), \
|
|
BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
|
|
BOOL_TO_STR(Thread::current()->is_VM_thread()))
|
|
|
|
#define assert_heap_locked() \
|
|
do { \
|
|
assert(Heap_lock->owned_by_self(), \
|
|
heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
|
|
} while (0)
|
|
|
|
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
|
|
do { \
|
|
assert(Heap_lock->owned_by_self() || \
|
|
(SafepointSynchronize::is_at_safepoint() && \
|
|
((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
|
|
heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
|
|
"should be at a safepoint")); \
|
|
} while (0)
|
|
|
|
#define assert_heap_locked_and_not_at_safepoint() \
|
|
do { \
|
|
assert(Heap_lock->owned_by_self() && \
|
|
!SafepointSynchronize::is_at_safepoint(), \
|
|
heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
|
|
"should not be at a safepoint")); \
|
|
} while (0)
|
|
|
|
#define assert_heap_not_locked() \
|
|
do { \
|
|
assert(!Heap_lock->owned_by_self(), \
|
|
heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
|
|
} while (0)
|
|
|
|
#define assert_heap_not_locked_and_not_at_safepoint() \
|
|
do { \
|
|
assert(!Heap_lock->owned_by_self() && \
|
|
!SafepointSynchronize::is_at_safepoint(), \
|
|
heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
|
|
"should not be at a safepoint")); \
|
|
} while (0)
|
|
|
|
#define assert_at_safepoint(_should_be_vm_thread_) \
|
|
do { \
|
|
assert(SafepointSynchronize::is_at_safepoint() && \
|
|
((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
|
|
heap_locking_asserts_err_msg("should be at a safepoint")); \
|
|
} while (0)
|
|
|
|
#define assert_not_at_safepoint() \
|
|
do { \
|
|
assert(!SafepointSynchronize::is_at_safepoint(), \
|
|
heap_locking_asserts_err_msg("should not be at a safepoint")); \
|
|
} while (0)
|
|
|
|
protected:
|
|
|
|
// The young region list.
|
|
YoungList* _young_list;
|
|
|
|
// The current policy object for the collector.
|
|
G1CollectorPolicy* _g1_policy;
|
|
|
|
// This is the second level of trying to allocate a new region. If
|
|
// new_region() didn't find a region on the free_list, this call will
|
|
// check whether there's anything available on the
|
|
// secondary_free_list and/or wait for more regions to appear on
|
|
// that list, if _free_regions_coming is set.
|
|
HeapRegion* new_region_try_secondary_free_list(bool is_old);
|
|
|
|
// Try to allocate a single non-humongous HeapRegion sufficient for
|
|
// an allocation of the given word_size. If do_expand is true,
|
|
// attempt to expand the heap if necessary to satisfy the allocation
|
|
// request. If the region is to be used as an old region or for a
|
|
// humongous object, set is_old to true. If not, to false.
|
|
HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
|
|
|
|
// Initialize a contiguous set of free regions of length num_regions
|
|
// and starting at index first so that they appear as a single
|
|
// humongous region.
|
|
HeapWord* humongous_obj_allocate_initialize_regions(uint first,
|
|
uint num_regions,
|
|
size_t word_size,
|
|
AllocationContext_t context);
|
|
|
|
// Attempt to allocate a humongous object of the given size. Return
|
|
// NULL if unsuccessful.
|
|
HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
|
|
|
|
// The following two methods, allocate_new_tlab() and
|
|
// mem_allocate(), are the two main entry points from the runtime
|
|
// into the G1's allocation routines. They have the following
|
|
// assumptions:
|
|
//
|
|
// * They should both be called outside safepoints.
|
|
//
|
|
// * They should both be called without holding the Heap_lock.
|
|
//
|
|
// * All allocation requests for new TLABs should go to
|
|
// allocate_new_tlab().
|
|
//
|
|
// * All non-TLAB allocation requests should go to mem_allocate().
|
|
//
|
|
// * If either call cannot satisfy the allocation request using the
|
|
// current allocating region, they will try to get a new one. If
|
|
// this fails, they will attempt to do an evacuation pause and
|
|
// retry the allocation.
|
|
//
|
|
// * If all allocation attempts fail, even after trying to schedule
|
|
// an evacuation pause, allocate_new_tlab() will return NULL,
|
|
// whereas mem_allocate() will attempt a heap expansion and/or
|
|
// schedule a Full GC.
|
|
//
|
|
// * We do not allow humongous-sized TLABs. So, allocate_new_tlab
|
|
// should never be called with word_size being humongous. All
|
|
// humongous allocation requests should go to mem_allocate() which
|
|
// will satisfy them with a special path.
|
|
|
|
virtual HeapWord* allocate_new_tlab(size_t word_size);
|
|
|
|
virtual HeapWord* mem_allocate(size_t word_size,
|
|
bool* gc_overhead_limit_was_exceeded);
|
|
|
|
// The following three methods take a gc_count_before_ret
|
|
// parameter which is used to return the GC count if the method
|
|
// returns NULL. Given that we are required to read the GC count
|
|
// while holding the Heap_lock, and these paths will take the
|
|
// Heap_lock at some point, it's easier to get them to read the GC
|
|
// count while holding the Heap_lock before they return NULL instead
|
|
// of the caller (namely: mem_allocate()) having to also take the
|
|
// Heap_lock just to read the GC count.
|
|
|
|
// First-level mutator allocation attempt: try to allocate out of
|
|
// the mutator alloc region without taking the Heap_lock. This
|
|
// should only be used for non-humongous allocations.
|
|
inline HeapWord* attempt_allocation(size_t word_size,
|
|
uint* gc_count_before_ret,
|
|
uint* gclocker_retry_count_ret);
|
|
|
|
// Second-level mutator allocation attempt: take the Heap_lock and
|
|
// retry the allocation attempt, potentially scheduling a GC
|
|
// pause. This should only be used for non-humongous allocations.
|
|
HeapWord* attempt_allocation_slow(size_t word_size,
|
|
AllocationContext_t context,
|
|
uint* gc_count_before_ret,
|
|
uint* gclocker_retry_count_ret);
|
|
|
|
// Takes the Heap_lock and attempts a humongous allocation. It can
|
|
// potentially schedule a GC pause.
|
|
HeapWord* attempt_allocation_humongous(size_t word_size,
|
|
uint* gc_count_before_ret,
|
|
uint* gclocker_retry_count_ret);
|
|
|
|
// Allocation attempt that should be called during safepoints (e.g.,
|
|
// at the end of a successful GC). expect_null_mutator_alloc_region
|
|
// specifies whether the mutator alloc region is expected to be NULL
|
|
// or not.
|
|
HeapWord* attempt_allocation_at_safepoint(size_t word_size,
|
|
AllocationContext_t context,
|
|
bool expect_null_mutator_alloc_region);
|
|
|
|
// It dirties the cards that cover the block so that so that the post
|
|
// write barrier never queues anything when updating objects on this
|
|
// block. It is assumed (and in fact we assert) that the block
|
|
// belongs to a young region.
|
|
inline void dirty_young_block(HeapWord* start, size_t word_size);
|
|
|
|
// Allocate blocks during garbage collection. Will ensure an
|
|
// allocation region, either by picking one or expanding the
|
|
// heap, and then allocate a block of the given size. The block
|
|
// may not be a humongous - it must fit into a single heap region.
|
|
inline HeapWord* par_allocate_during_gc(InCSetState dest,
|
|
size_t word_size,
|
|
AllocationContext_t context);
|
|
// Ensure that no further allocations can happen in "r", bearing in mind
|
|
// that parallel threads might be attempting allocations.
|
|
void par_allocate_remaining_space(HeapRegion* r);
|
|
|
|
// Allocation attempt during GC for a survivor object / PLAB.
|
|
inline HeapWord* survivor_attempt_allocation(size_t word_size,
|
|
AllocationContext_t context);
|
|
|
|
// Allocation attempt during GC for an old object / PLAB.
|
|
inline HeapWord* old_attempt_allocation(size_t word_size,
|
|
AllocationContext_t context);
|
|
|
|
// These methods are the "callbacks" from the G1AllocRegion class.
|
|
|
|
// For mutator alloc regions.
|
|
HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
|
|
void retire_mutator_alloc_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes);
|
|
|
|
// For GC alloc regions.
|
|
HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
|
|
InCSetState dest);
|
|
void retire_gc_alloc_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes, InCSetState dest);
|
|
|
|
// - if explicit_gc is true, the GC is for a System.gc() or a heap
|
|
// inspection request and should collect the entire heap
|
|
// - if clear_all_soft_refs is true, all soft references should be
|
|
// cleared during the GC
|
|
// - if explicit_gc is false, word_size describes the allocation that
|
|
// the GC should attempt (at least) to satisfy
|
|
// - it returns false if it is unable to do the collection due to the
|
|
// GC locker being active, true otherwise
|
|
bool do_collection(bool explicit_gc,
|
|
bool clear_all_soft_refs,
|
|
size_t word_size);
|
|
|
|
// Callback from VM_G1CollectFull operation.
|
|
// Perform a full collection.
|
|
virtual void do_full_collection(bool clear_all_soft_refs);
|
|
|
|
// Resize the heap if necessary after a full collection. If this is
|
|
// after a collect-for allocation, "word_size" is the allocation size,
|
|
// and will be considered part of the used portion of the heap.
|
|
void resize_if_necessary_after_full_collection(size_t word_size);
|
|
|
|
// Callback from VM_G1CollectForAllocation operation.
|
|
// This function does everything necessary/possible to satisfy a
|
|
// failed allocation request (including collection, expansion, etc.)
|
|
HeapWord* satisfy_failed_allocation(size_t word_size,
|
|
AllocationContext_t context,
|
|
bool* succeeded);
|
|
|
|
// Attempting to expand the heap sufficiently
|
|
// to support an allocation of the given "word_size". If
|
|
// successful, perform the allocation and return the address of the
|
|
// allocated block, or else "NULL".
|
|
HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
|
|
|
|
// Process any reference objects discovered during
|
|
// an incremental evacuation pause.
|
|
void process_discovered_references(uint no_of_gc_workers);
|
|
|
|
// Enqueue any remaining discovered references
|
|
// after processing.
|
|
void enqueue_discovered_references(uint no_of_gc_workers);
|
|
|
|
public:
|
|
|
|
G1Allocator* allocator() {
|
|
return _allocator;
|
|
}
|
|
|
|
G1MonitoringSupport* g1mm() {
|
|
assert(_g1mm != NULL, "should have been initialized");
|
|
return _g1mm;
|
|
}
|
|
|
|
// Expand the garbage-first heap by at least the given size (in bytes!).
|
|
// Returns true if the heap was expanded by the requested amount;
|
|
// false otherwise.
|
|
// (Rounds up to a HeapRegion boundary.)
|
|
bool expand(size_t expand_bytes);
|
|
|
|
// Returns the PLAB statistics for a given destination.
|
|
inline PLABStats* alloc_buffer_stats(InCSetState dest);
|
|
|
|
// Determines PLAB size for a given destination.
|
|
inline size_t desired_plab_sz(InCSetState dest);
|
|
|
|
inline AllocationContextStats& allocation_context_stats();
|
|
|
|
// Do anything common to GC's.
|
|
virtual void gc_prologue(bool full);
|
|
virtual void gc_epilogue(bool full);
|
|
|
|
inline void set_humongous_is_live(oop obj);
|
|
|
|
bool humongous_is_live(uint region) {
|
|
return _humongous_is_live.is_live(region);
|
|
}
|
|
|
|
// Returns whether the given region (which must be a humongous (start) region)
|
|
// is to be considered conservatively live regardless of any other conditions.
|
|
bool humongous_region_is_always_live(uint index);
|
|
// Returns whether the given region (which must be a humongous (start) region)
|
|
// is considered a candidate for eager reclamation.
|
|
bool humongous_region_is_candidate(uint index);
|
|
// Register the given region to be part of the collection set.
|
|
inline void register_humongous_region_with_cset(uint index);
|
|
// Register regions with humongous objects (actually on the start region) in
|
|
// the in_cset_fast_test table.
|
|
void register_humongous_regions_with_cset();
|
|
// We register a region with the fast "in collection set" test. We
|
|
// simply set to true the array slot corresponding to this region.
|
|
void register_young_region_with_cset(HeapRegion* r) {
|
|
_in_cset_fast_test.set_in_young(r->hrm_index());
|
|
}
|
|
void register_old_region_with_cset(HeapRegion* r) {
|
|
_in_cset_fast_test.set_in_old(r->hrm_index());
|
|
}
|
|
void clear_in_cset(const HeapRegion* hr) {
|
|
_in_cset_fast_test.clear(hr);
|
|
}
|
|
|
|
void clear_cset_fast_test() {
|
|
_in_cset_fast_test.clear();
|
|
}
|
|
|
|
// This is called at the start of either a concurrent cycle or a Full
|
|
// GC to update the number of old marking cycles started.
|
|
void increment_old_marking_cycles_started();
|
|
|
|
// This is called at the end of either a concurrent cycle or a Full
|
|
// GC to update the number of old marking cycles completed. Those two
|
|
// can happen in a nested fashion, i.e., we start a concurrent
|
|
// cycle, a Full GC happens half-way through it which ends first,
|
|
// and then the cycle notices that a Full GC happened and ends
|
|
// too. The concurrent parameter is a boolean to help us do a bit
|
|
// tighter consistency checking in the method. If concurrent is
|
|
// false, the caller is the inner caller in the nesting (i.e., the
|
|
// Full GC). If concurrent is true, the caller is the outer caller
|
|
// in this nesting (i.e., the concurrent cycle). Further nesting is
|
|
// not currently supported. The end of this call also notifies
|
|
// the FullGCCount_lock in case a Java thread is waiting for a full
|
|
// GC to happen (e.g., it called System.gc() with
|
|
// +ExplicitGCInvokesConcurrent).
|
|
void increment_old_marking_cycles_completed(bool concurrent);
|
|
|
|
uint old_marking_cycles_completed() {
|
|
return _old_marking_cycles_completed;
|
|
}
|
|
|
|
void register_concurrent_cycle_start(const Ticks& start_time);
|
|
void register_concurrent_cycle_end();
|
|
void trace_heap_after_concurrent_cycle();
|
|
|
|
G1YCType yc_type();
|
|
|
|
G1HRPrinter* hr_printer() { return &_hr_printer; }
|
|
|
|
// Frees a non-humongous region by initializing its contents and
|
|
// adding it to the free list that's passed as a parameter (this is
|
|
// usually a local list which will be appended to the master free
|
|
// list later). The used bytes of freed regions are accumulated in
|
|
// pre_used. If par is true, the region's RSet will not be freed
|
|
// up. The assumption is that this will be done later.
|
|
// The locked parameter indicates if the caller has already taken
|
|
// care of proper synchronization. This may allow some optimizations.
|
|
void free_region(HeapRegion* hr,
|
|
FreeRegionList* free_list,
|
|
bool par,
|
|
bool locked = false);
|
|
|
|
// Frees a humongous region by collapsing it into individual regions
|
|
// and calling free_region() for each of them. The freed regions
|
|
// will be added to the free list that's passed as a parameter (this
|
|
// is usually a local list which will be appended to the master free
|
|
// list later). The used bytes of freed regions are accumulated in
|
|
// pre_used. If par is true, the region's RSet will not be freed
|
|
// up. The assumption is that this will be done later.
|
|
void free_humongous_region(HeapRegion* hr,
|
|
FreeRegionList* free_list,
|
|
bool par);
|
|
protected:
|
|
|
|
// Shrink the garbage-first heap by at most the given size (in bytes!).
|
|
// (Rounds down to a HeapRegion boundary.)
|
|
virtual void shrink(size_t expand_bytes);
|
|
void shrink_helper(size_t expand_bytes);
|
|
|
|
#if TASKQUEUE_STATS
|
|
static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
|
|
void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
|
|
void reset_taskqueue_stats();
|
|
#endif // TASKQUEUE_STATS
|
|
|
|
// Schedule the VM operation that will do an evacuation pause to
|
|
// satisfy an allocation request of word_size. *succeeded will
|
|
// return whether the VM operation was successful (it did do an
|
|
// evacuation pause) or not (another thread beat us to it or the GC
|
|
// locker was active). Given that we should not be holding the
|
|
// Heap_lock when we enter this method, we will pass the
|
|
// gc_count_before (i.e., total_collections()) as a parameter since
|
|
// it has to be read while holding the Heap_lock. Currently, both
|
|
// methods that call do_collection_pause() release the Heap_lock
|
|
// before the call, so it's easy to read gc_count_before just before.
|
|
HeapWord* do_collection_pause(size_t word_size,
|
|
uint gc_count_before,
|
|
bool* succeeded,
|
|
GCCause::Cause gc_cause);
|
|
|
|
// The guts of the incremental collection pause, executed by the vm
|
|
// thread. It returns false if it is unable to do the collection due
|
|
// to the GC locker being active, true otherwise
|
|
bool do_collection_pause_at_safepoint(double target_pause_time_ms);
|
|
|
|
// Actually do the work of evacuating the collection set.
|
|
void evacuate_collection_set(EvacuationInfo& evacuation_info);
|
|
|
|
// The g1 remembered set of the heap.
|
|
G1RemSet* _g1_rem_set;
|
|
|
|
// A set of cards that cover the objects for which the Rsets should be updated
|
|
// concurrently after the collection.
|
|
DirtyCardQueueSet _dirty_card_queue_set;
|
|
|
|
// The closure used to refine a single card.
|
|
RefineCardTableEntryClosure* _refine_cte_cl;
|
|
|
|
// A DirtyCardQueueSet that is used to hold cards that contain
|
|
// references into the current collection set. This is used to
|
|
// update the remembered sets of the regions in the collection
|
|
// set in the event of an evacuation failure.
|
|
DirtyCardQueueSet _into_cset_dirty_card_queue_set;
|
|
|
|
// After a collection pause, make the regions in the CS into free
|
|
// regions.
|
|
void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
|
|
|
|
// Abandon the current collection set without recording policy
|
|
// statistics or updating free lists.
|
|
void abandon_collection_set(HeapRegion* cs_head);
|
|
|
|
// Applies "scan_non_heap_roots" to roots outside the heap,
|
|
// "scan_rs" to roots inside the heap (having done "set_region" to
|
|
// indicate the region in which the root resides),
|
|
// and does "scan_metadata" If "scan_rs" is
|
|
// NULL, then this step is skipped. The "worker_i"
|
|
// param is for use with parallel roots processing, and should be
|
|
// the "i" of the calling parallel worker thread's work(i) function.
|
|
// In the sequential case this param will be ignored.
|
|
void g1_process_roots(OopClosure* scan_non_heap_roots,
|
|
OopClosure* scan_non_heap_weak_roots,
|
|
G1ParPushHeapRSClosure* scan_rs,
|
|
CLDClosure* scan_strong_clds,
|
|
CLDClosure* scan_weak_clds,
|
|
CodeBlobClosure* scan_strong_code,
|
|
uint worker_i);
|
|
|
|
// The concurrent marker (and the thread it runs in.)
|
|
ConcurrentMark* _cm;
|
|
ConcurrentMarkThread* _cmThread;
|
|
bool _mark_in_progress;
|
|
|
|
// The concurrent refiner.
|
|
ConcurrentG1Refine* _cg1r;
|
|
|
|
// The parallel task queues
|
|
RefToScanQueueSet *_task_queues;
|
|
|
|
// True iff a evacuation has failed in the current collection.
|
|
bool _evacuation_failed;
|
|
|
|
EvacuationFailedInfo* _evacuation_failed_info_array;
|
|
|
|
// Failed evacuations cause some logical from-space objects to have
|
|
// forwarding pointers to themselves. Reset them.
|
|
void remove_self_forwarding_pointers();
|
|
|
|
// Together, these store an object with a preserved mark, and its mark value.
|
|
Stack<oop, mtGC> _objs_with_preserved_marks;
|
|
Stack<markOop, mtGC> _preserved_marks_of_objs;
|
|
|
|
// Preserve the mark of "obj", if necessary, in preparation for its mark
|
|
// word being overwritten with a self-forwarding-pointer.
|
|
void preserve_mark_if_necessary(oop obj, markOop m);
|
|
|
|
// The stack of evac-failure objects left to be scanned.
|
|
GrowableArray<oop>* _evac_failure_scan_stack;
|
|
// The closure to apply to evac-failure objects.
|
|
|
|
OopsInHeapRegionClosure* _evac_failure_closure;
|
|
// Set the field above.
|
|
void
|
|
set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
|
|
_evac_failure_closure = evac_failure_closure;
|
|
}
|
|
|
|
// Push "obj" on the scan stack.
|
|
void push_on_evac_failure_scan_stack(oop obj);
|
|
// Process scan stack entries until the stack is empty.
|
|
void drain_evac_failure_scan_stack();
|
|
// True iff an invocation of "drain_scan_stack" is in progress; to
|
|
// prevent unnecessary recursion.
|
|
bool _drain_in_progress;
|
|
|
|
// Do any necessary initialization for evacuation-failure handling.
|
|
// "cl" is the closure that will be used to process evac-failure
|
|
// objects.
|
|
void init_for_evac_failure(OopsInHeapRegionClosure* cl);
|
|
// Do any necessary cleanup for evacuation-failure handling data
|
|
// structures.
|
|
void finalize_for_evac_failure();
|
|
|
|
// An attempt to evacuate "obj" has failed; take necessary steps.
|
|
oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
|
|
void handle_evacuation_failure_common(oop obj, markOop m);
|
|
|
|
#ifndef PRODUCT
|
|
// Support for forcing evacuation failures. Analogous to
|
|
// PromotionFailureALot for the other collectors.
|
|
|
|
// Records whether G1EvacuationFailureALot should be in effect
|
|
// for the current GC
|
|
bool _evacuation_failure_alot_for_current_gc;
|
|
|
|
// Used to record the GC number for interval checking when
|
|
// determining whether G1EvaucationFailureALot is in effect
|
|
// for the current GC.
|
|
size_t _evacuation_failure_alot_gc_number;
|
|
|
|
// Count of the number of evacuations between failures.
|
|
volatile size_t _evacuation_failure_alot_count;
|
|
|
|
// Set whether G1EvacuationFailureALot should be in effect
|
|
// for the current GC (based upon the type of GC and which
|
|
// command line flags are set);
|
|
inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
|
|
bool during_initial_mark,
|
|
bool during_marking);
|
|
|
|
inline void set_evacuation_failure_alot_for_current_gc();
|
|
|
|
// Return true if it's time to cause an evacuation failure.
|
|
inline bool evacuation_should_fail();
|
|
|
|
// Reset the G1EvacuationFailureALot counters. Should be called at
|
|
// the end of an evacuation pause in which an evacuation failure occurred.
|
|
inline void reset_evacuation_should_fail();
|
|
#endif // !PRODUCT
|
|
|
|
// ("Weak") Reference processing support.
|
|
//
|
|
// G1 has 2 instances of the reference processor class. One
|
|
// (_ref_processor_cm) handles reference object discovery
|
|
// and subsequent processing during concurrent marking cycles.
|
|
//
|
|
// The other (_ref_processor_stw) handles reference object
|
|
// discovery and processing during full GCs and incremental
|
|
// evacuation pauses.
|
|
//
|
|
// During an incremental pause, reference discovery will be
|
|
// temporarily disabled for _ref_processor_cm and will be
|
|
// enabled for _ref_processor_stw. At the end of the evacuation
|
|
// pause references discovered by _ref_processor_stw will be
|
|
// processed and discovery will be disabled. The previous
|
|
// setting for reference object discovery for _ref_processor_cm
|
|
// will be re-instated.
|
|
//
|
|
// At the start of marking:
|
|
// * Discovery by the CM ref processor is verified to be inactive
|
|
// and it's discovered lists are empty.
|
|
// * Discovery by the CM ref processor is then enabled.
|
|
//
|
|
// At the end of marking:
|
|
// * Any references on the CM ref processor's discovered
|
|
// lists are processed (possibly MT).
|
|
//
|
|
// At the start of full GC we:
|
|
// * Disable discovery by the CM ref processor and
|
|
// empty CM ref processor's discovered lists
|
|
// (without processing any entries).
|
|
// * Verify that the STW ref processor is inactive and it's
|
|
// discovered lists are empty.
|
|
// * Temporarily set STW ref processor discovery as single threaded.
|
|
// * Temporarily clear the STW ref processor's _is_alive_non_header
|
|
// field.
|
|
// * Finally enable discovery by the STW ref processor.
|
|
//
|
|
// The STW ref processor is used to record any discovered
|
|
// references during the full GC.
|
|
//
|
|
// At the end of a full GC we:
|
|
// * Enqueue any reference objects discovered by the STW ref processor
|
|
// that have non-live referents. This has the side-effect of
|
|
// making the STW ref processor inactive by disabling discovery.
|
|
// * Verify that the CM ref processor is still inactive
|
|
// and no references have been placed on it's discovered
|
|
// lists (also checked as a precondition during initial marking).
|
|
|
|
// The (stw) reference processor...
|
|
ReferenceProcessor* _ref_processor_stw;
|
|
|
|
STWGCTimer* _gc_timer_stw;
|
|
ConcurrentGCTimer* _gc_timer_cm;
|
|
|
|
G1OldTracer* _gc_tracer_cm;
|
|
G1NewTracer* _gc_tracer_stw;
|
|
|
|
// During reference object discovery, the _is_alive_non_header
|
|
// closure (if non-null) is applied to the referent object to
|
|
// determine whether the referent is live. If so then the
|
|
// reference object does not need to be 'discovered' and can
|
|
// be treated as a regular oop. This has the benefit of reducing
|
|
// the number of 'discovered' reference objects that need to
|
|
// be processed.
|
|
//
|
|
// Instance of the is_alive closure for embedding into the
|
|
// STW reference processor as the _is_alive_non_header field.
|
|
// Supplying a value for the _is_alive_non_header field is
|
|
// optional but doing so prevents unnecessary additions to
|
|
// the discovered lists during reference discovery.
|
|
G1STWIsAliveClosure _is_alive_closure_stw;
|
|
|
|
// The (concurrent marking) reference processor...
|
|
ReferenceProcessor* _ref_processor_cm;
|
|
|
|
// Instance of the concurrent mark is_alive closure for embedding
|
|
// into the Concurrent Marking reference processor as the
|
|
// _is_alive_non_header field. Supplying a value for the
|
|
// _is_alive_non_header field is optional but doing so prevents
|
|
// unnecessary additions to the discovered lists during reference
|
|
// discovery.
|
|
G1CMIsAliveClosure _is_alive_closure_cm;
|
|
|
|
// Cache used by G1CollectedHeap::start_cset_region_for_worker().
|
|
HeapRegion** _worker_cset_start_region;
|
|
|
|
// Time stamp to validate the regions recorded in the cache
|
|
// used by G1CollectedHeap::start_cset_region_for_worker().
|
|
// The heap region entry for a given worker is valid iff
|
|
// the associated time stamp value matches the current value
|
|
// of G1CollectedHeap::_gc_time_stamp.
|
|
uint* _worker_cset_start_region_time_stamp;
|
|
|
|
enum G1H_process_roots_tasks {
|
|
G1H_PS_filter_satb_buffers,
|
|
G1H_PS_refProcessor_oops_do,
|
|
// Leave this one last.
|
|
G1H_PS_NumElements
|
|
};
|
|
|
|
SubTasksDone* _process_strong_tasks;
|
|
|
|
volatile bool _free_regions_coming;
|
|
|
|
public:
|
|
|
|
SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
|
|
|
|
void set_refine_cte_cl_concurrency(bool concurrent);
|
|
|
|
RefToScanQueue *task_queue(int i) const;
|
|
|
|
// A set of cards where updates happened during the GC
|
|
DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
|
|
|
|
// A DirtyCardQueueSet that is used to hold cards that contain
|
|
// references into the current collection set. This is used to
|
|
// update the remembered sets of the regions in the collection
|
|
// set in the event of an evacuation failure.
|
|
DirtyCardQueueSet& into_cset_dirty_card_queue_set()
|
|
{ return _into_cset_dirty_card_queue_set; }
|
|
|
|
// Create a G1CollectedHeap with the specified policy.
|
|
// Must call the initialize method afterwards.
|
|
// May not return if something goes wrong.
|
|
G1CollectedHeap(G1CollectorPolicy* policy);
|
|
|
|
// Initialize the G1CollectedHeap to have the initial and
|
|
// maximum sizes and remembered and barrier sets
|
|
// specified by the policy object.
|
|
jint initialize();
|
|
|
|
virtual void stop();
|
|
|
|
// Return the (conservative) maximum heap alignment for any G1 heap
|
|
static size_t conservative_max_heap_alignment();
|
|
|
|
// Initialize weak reference processing.
|
|
virtual void ref_processing_init();
|
|
|
|
void set_par_threads(uint t) {
|
|
SharedHeap::set_par_threads(t);
|
|
// Done in SharedHeap but oddly there are
|
|
// two _process_strong_tasks's in a G1CollectedHeap
|
|
// so do it here too.
|
|
_process_strong_tasks->set_n_threads(t);
|
|
}
|
|
|
|
// Set _n_par_threads according to a policy TBD.
|
|
void set_par_threads();
|
|
|
|
void set_n_termination(int t) {
|
|
_process_strong_tasks->set_n_threads(t);
|
|
}
|
|
|
|
virtual CollectedHeap::Name kind() const {
|
|
return CollectedHeap::G1CollectedHeap;
|
|
}
|
|
|
|
// The current policy object for the collector.
|
|
G1CollectorPolicy* g1_policy() const { return _g1_policy; }
|
|
|
|
virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
|
|
|
|
// Adaptive size policy. No such thing for g1.
|
|
virtual AdaptiveSizePolicy* size_policy() { return NULL; }
|
|
|
|
// The rem set and barrier set.
|
|
G1RemSet* g1_rem_set() const { return _g1_rem_set; }
|
|
|
|
unsigned get_gc_time_stamp() {
|
|
return _gc_time_stamp;
|
|
}
|
|
|
|
inline void reset_gc_time_stamp();
|
|
|
|
void check_gc_time_stamps() PRODUCT_RETURN;
|
|
|
|
inline void increment_gc_time_stamp();
|
|
|
|
// Reset the given region's GC timestamp. If it's starts humongous,
|
|
// also reset the GC timestamp of its corresponding
|
|
// continues humongous regions too.
|
|
void reset_gc_time_stamps(HeapRegion* hr);
|
|
|
|
void iterate_dirty_card_closure(CardTableEntryClosure* cl,
|
|
DirtyCardQueue* into_cset_dcq,
|
|
bool concurrent, uint worker_i);
|
|
|
|
// The shared block offset table array.
|
|
G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
|
|
|
|
// Reference Processing accessors
|
|
|
|
// The STW reference processor....
|
|
ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
|
|
|
|
// The Concurrent Marking reference processor...
|
|
ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
|
|
|
|
ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
|
|
G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
|
|
|
|
virtual size_t capacity() const;
|
|
virtual size_t used() const;
|
|
// This should be called when we're not holding the heap lock. The
|
|
// result might be a bit inaccurate.
|
|
size_t used_unlocked() const;
|
|
size_t recalculate_used() const;
|
|
|
|
// These virtual functions do the actual allocation.
|
|
// Some heaps may offer a contiguous region for shared non-blocking
|
|
// allocation, via inlined code (by exporting the address of the top and
|
|
// end fields defining the extent of the contiguous allocation region.)
|
|
// But G1CollectedHeap doesn't yet support this.
|
|
|
|
virtual bool is_maximal_no_gc() const {
|
|
return _hrm.available() == 0;
|
|
}
|
|
|
|
// The current number of regions in the heap.
|
|
uint num_regions() const { return _hrm.length(); }
|
|
|
|
// The max number of regions in the heap.
|
|
uint max_regions() const { return _hrm.max_length(); }
|
|
|
|
// The number of regions that are completely free.
|
|
uint num_free_regions() const { return _hrm.num_free_regions(); }
|
|
|
|
// The number of regions that are not completely free.
|
|
uint num_used_regions() const { return num_regions() - num_free_regions(); }
|
|
|
|
void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
|
|
void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
|
|
void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
|
|
void verify_dirty_young_regions() PRODUCT_RETURN;
|
|
|
|
#ifndef PRODUCT
|
|
// Make sure that the given bitmap has no marked objects in the
|
|
// range [from,limit). If it does, print an error message and return
|
|
// false. Otherwise, just return true. bitmap_name should be "prev"
|
|
// or "next".
|
|
bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
|
|
HeapWord* from, HeapWord* limit);
|
|
|
|
// Verify that the prev / next bitmap range [tams,end) for the given
|
|
// region has no marks. Return true if all is well, false if errors
|
|
// are detected.
|
|
bool verify_bitmaps(const char* caller, HeapRegion* hr);
|
|
#endif // PRODUCT
|
|
|
|
// If G1VerifyBitmaps is set, verify that the marking bitmaps for
|
|
// the given region do not have any spurious marks. If errors are
|
|
// detected, print appropriate error messages and crash.
|
|
void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
|
|
|
|
// If G1VerifyBitmaps is set, verify that the marking bitmaps do not
|
|
// have any spurious marks. If errors are detected, print
|
|
// appropriate error messages and crash.
|
|
void check_bitmaps(const char* caller) PRODUCT_RETURN;
|
|
|
|
// Do sanity check on the contents of the in-cset fast test table.
|
|
bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
|
|
|
|
// verify_region_sets() performs verification over the region
|
|
// lists. It will be compiled in the product code to be used when
|
|
// necessary (i.e., during heap verification).
|
|
void verify_region_sets();
|
|
|
|
// verify_region_sets_optional() is planted in the code for
|
|
// list verification in non-product builds (and it can be enabled in
|
|
// product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
|
|
#if HEAP_REGION_SET_FORCE_VERIFY
|
|
void verify_region_sets_optional() {
|
|
verify_region_sets();
|
|
}
|
|
#else // HEAP_REGION_SET_FORCE_VERIFY
|
|
void verify_region_sets_optional() { }
|
|
#endif // HEAP_REGION_SET_FORCE_VERIFY
|
|
|
|
#ifdef ASSERT
|
|
bool is_on_master_free_list(HeapRegion* hr) {
|
|
return _hrm.is_free(hr);
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// Wrapper for the region list operations that can be called from
|
|
// methods outside this class.
|
|
|
|
void secondary_free_list_add(FreeRegionList* list) {
|
|
_secondary_free_list.add_ordered(list);
|
|
}
|
|
|
|
void append_secondary_free_list() {
|
|
_hrm.insert_list_into_free_list(&_secondary_free_list);
|
|
}
|
|
|
|
void append_secondary_free_list_if_not_empty_with_lock() {
|
|
// If the secondary free list looks empty there's no reason to
|
|
// take the lock and then try to append it.
|
|
if (!_secondary_free_list.is_empty()) {
|
|
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
append_secondary_free_list();
|
|
}
|
|
}
|
|
|
|
inline void old_set_remove(HeapRegion* hr);
|
|
|
|
size_t non_young_capacity_bytes() {
|
|
return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
|
|
}
|
|
|
|
void set_free_regions_coming();
|
|
void reset_free_regions_coming();
|
|
bool free_regions_coming() { return _free_regions_coming; }
|
|
void wait_while_free_regions_coming();
|
|
|
|
// Determine whether the given region is one that we are using as an
|
|
// old GC alloc region.
|
|
bool is_old_gc_alloc_region(HeapRegion* hr) {
|
|
return _allocator->is_retained_old_region(hr);
|
|
}
|
|
|
|
// Perform a collection of the heap; intended for use in implementing
|
|
// "System.gc". This probably implies as full a collection as the
|
|
// "CollectedHeap" supports.
|
|
virtual void collect(GCCause::Cause cause);
|
|
|
|
// The same as above but assume that the caller holds the Heap_lock.
|
|
void collect_locked(GCCause::Cause cause);
|
|
|
|
virtual bool copy_allocation_context_stats(const jint* contexts,
|
|
jlong* totals,
|
|
jbyte* accuracy,
|
|
jint len);
|
|
|
|
// True iff an evacuation has failed in the most-recent collection.
|
|
bool evacuation_failed() { return _evacuation_failed; }
|
|
|
|
void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
|
|
void prepend_to_freelist(FreeRegionList* list);
|
|
void decrement_summary_bytes(size_t bytes);
|
|
|
|
// Returns "TRUE" iff "p" points into the committed areas of the heap.
|
|
virtual bool is_in(const void* p) const;
|
|
#ifdef ASSERT
|
|
// Returns whether p is in one of the available areas of the heap. Slow but
|
|
// extensive version.
|
|
bool is_in_exact(const void* p) const;
|
|
#endif
|
|
|
|
// Return "TRUE" iff the given object address is within the collection
|
|
// set. Slow implementation.
|
|
inline bool obj_in_cs(oop obj);
|
|
|
|
inline bool is_in_cset(const HeapRegion *hr);
|
|
inline bool is_in_cset(oop obj);
|
|
|
|
inline bool is_in_cset_or_humongous(const oop obj);
|
|
|
|
private:
|
|
// This array is used for a quick test on whether a reference points into
|
|
// the collection set or not. Each of the array's elements denotes whether the
|
|
// corresponding region is in the collection set or not.
|
|
G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
|
|
|
|
public:
|
|
|
|
inline InCSetState in_cset_state(const oop obj);
|
|
|
|
// Return "TRUE" iff the given object address is in the reserved
|
|
// region of g1.
|
|
bool is_in_g1_reserved(const void* p) const {
|
|
return _hrm.reserved().contains(p);
|
|
}
|
|
|
|
// Returns a MemRegion that corresponds to the space that has been
|
|
// reserved for the heap
|
|
MemRegion g1_reserved() const {
|
|
return _hrm.reserved();
|
|
}
|
|
|
|
virtual bool is_in_closed_subset(const void* p) const;
|
|
|
|
G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
|
|
return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
|
|
}
|
|
|
|
// This resets the card table to all zeros. It is used after
|
|
// a collection pause which used the card table to claim cards.
|
|
void cleanUpCardTable();
|
|
|
|
// Iteration functions.
|
|
|
|
// Iterate over all the ref-containing fields of all objects, calling
|
|
// "cl.do_oop" on each.
|
|
virtual void oop_iterate(ExtendedOopClosure* cl);
|
|
|
|
// Iterate over all objects, calling "cl.do_object" on each.
|
|
virtual void object_iterate(ObjectClosure* cl);
|
|
|
|
virtual void safe_object_iterate(ObjectClosure* cl) {
|
|
object_iterate(cl);
|
|
}
|
|
|
|
// Iterate over all spaces in use in the heap, in ascending address order.
|
|
virtual void space_iterate(SpaceClosure* cl);
|
|
|
|
// Iterate over heap regions, in address order, terminating the
|
|
// iteration early if the "doHeapRegion" method returns "true".
|
|
void heap_region_iterate(HeapRegionClosure* blk) const;
|
|
|
|
// Return the region with the given index. It assumes the index is valid.
|
|
inline HeapRegion* region_at(uint index) const;
|
|
|
|
// Calculate the region index of the given address. Given address must be
|
|
// within the heap.
|
|
inline uint addr_to_region(HeapWord* addr) const;
|
|
|
|
inline HeapWord* bottom_addr_for_region(uint index) const;
|
|
|
|
// Iterate over the heap regions in parallel. Assumes that this will be called
|
|
// in parallel by ParallelGCThreads worker threads with distinct worker ids
|
|
// in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
|
|
// to each of the regions, by attempting to claim the region using the
|
|
// HeapRegionClaimer and, if successful, applying the closure to the claimed
|
|
// region. The concurrent argument should be set to true if iteration is
|
|
// performed concurrently, during which no assumptions are made for consistent
|
|
// attributes of the heap regions (as they might be modified while iterating).
|
|
void heap_region_par_iterate(HeapRegionClosure* cl,
|
|
uint worker_id,
|
|
HeapRegionClaimer* hrclaimer,
|
|
bool concurrent = false) const;
|
|
|
|
// Clear the cached cset start regions and (more importantly)
|
|
// the time stamps. Called when we reset the GC time stamp.
|
|
void clear_cset_start_regions();
|
|
|
|
// Given the id of a worker, obtain or calculate a suitable
|
|
// starting region for iterating over the current collection set.
|
|
HeapRegion* start_cset_region_for_worker(uint worker_i);
|
|
|
|
// Iterate over the regions (if any) in the current collection set.
|
|
void collection_set_iterate(HeapRegionClosure* blk);
|
|
|
|
// As above but starting from region r
|
|
void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
|
|
|
|
HeapRegion* next_compaction_region(const HeapRegion* from) const;
|
|
|
|
// A CollectedHeap will contain some number of spaces. This finds the
|
|
// space containing a given address, or else returns NULL.
|
|
virtual Space* space_containing(const void* addr) const;
|
|
|
|
// Returns the HeapRegion that contains addr. addr must not be NULL.
|
|
template <class T>
|
|
inline HeapRegion* heap_region_containing_raw(const T addr) const;
|
|
|
|
// Returns the HeapRegion that contains addr. addr must not be NULL.
|
|
// If addr is within a humongous continues region, it returns its humongous start region.
|
|
template <class T>
|
|
inline HeapRegion* heap_region_containing(const T addr) const;
|
|
|
|
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
|
|
// each address in the (reserved) heap is a member of exactly
|
|
// one block. The defining characteristic of a block is that it is
|
|
// possible to find its size, and thus to progress forward to the next
|
|
// block. (Blocks may be of different sizes.) Thus, blocks may
|
|
// represent Java objects, or they might be free blocks in a
|
|
// free-list-based heap (or subheap), as long as the two kinds are
|
|
// distinguishable and the size of each is determinable.
|
|
|
|
// Returns the address of the start of the "block" that contains the
|
|
// address "addr". We say "blocks" instead of "object" since some heaps
|
|
// may not pack objects densely; a chunk may either be an object or a
|
|
// non-object.
|
|
virtual HeapWord* block_start(const void* addr) const;
|
|
|
|
// Requires "addr" to be the start of a chunk, and returns its size.
|
|
// "addr + size" is required to be the start of a new chunk, or the end
|
|
// of the active area of the heap.
|
|
virtual size_t block_size(const HeapWord* addr) const;
|
|
|
|
// Requires "addr" to be the start of a block, and returns "TRUE" iff
|
|
// the block is an object.
|
|
virtual bool block_is_obj(const HeapWord* addr) const;
|
|
|
|
// Does this heap support heap inspection? (+PrintClassHistogram)
|
|
virtual bool supports_heap_inspection() const { return true; }
|
|
|
|
// Section on thread-local allocation buffers (TLABs)
|
|
// See CollectedHeap for semantics.
|
|
|
|
bool supports_tlab_allocation() const;
|
|
size_t tlab_capacity(Thread* ignored) const;
|
|
size_t tlab_used(Thread* ignored) const;
|
|
size_t max_tlab_size() const;
|
|
size_t unsafe_max_tlab_alloc(Thread* ignored) const;
|
|
|
|
// Can a compiler initialize a new object without store barriers?
|
|
// This permission only extends from the creation of a new object
|
|
// via a TLAB up to the first subsequent safepoint. If such permission
|
|
// is granted for this heap type, the compiler promises to call
|
|
// defer_store_barrier() below on any slow path allocation of
|
|
// a new object for which such initializing store barriers will
|
|
// have been elided. G1, like CMS, allows this, but should be
|
|
// ready to provide a compensating write barrier as necessary
|
|
// if that storage came out of a non-young region. The efficiency
|
|
// of this implementation depends crucially on being able to
|
|
// answer very efficiently in constant time whether a piece of
|
|
// storage in the heap comes from a young region or not.
|
|
// See ReduceInitialCardMarks.
|
|
virtual bool can_elide_tlab_store_barriers() const {
|
|
return true;
|
|
}
|
|
|
|
virtual bool card_mark_must_follow_store() const {
|
|
return true;
|
|
}
|
|
|
|
inline bool is_in_young(const oop obj);
|
|
|
|
#ifdef ASSERT
|
|
virtual bool is_in_partial_collection(const void* p);
|
|
#endif
|
|
|
|
virtual bool is_scavengable(const void* addr);
|
|
|
|
// We don't need barriers for initializing stores to objects
|
|
// in the young gen: for the SATB pre-barrier, there is no
|
|
// pre-value that needs to be remembered; for the remembered-set
|
|
// update logging post-barrier, we don't maintain remembered set
|
|
// information for young gen objects.
|
|
virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
|
|
|
|
// Returns "true" iff the given word_size is "very large".
|
|
static bool is_humongous(size_t word_size) {
|
|
// Note this has to be strictly greater-than as the TLABs
|
|
// are capped at the humongous threshold and we want to
|
|
// ensure that we don't try to allocate a TLAB as
|
|
// humongous and that we don't allocate a humongous
|
|
// object in a TLAB.
|
|
return word_size > _humongous_object_threshold_in_words;
|
|
}
|
|
|
|
// Update mod union table with the set of dirty cards.
|
|
void updateModUnion();
|
|
|
|
// Set the mod union bits corresponding to the given memRegion. Note
|
|
// that this is always a safe operation, since it doesn't clear any
|
|
// bits.
|
|
void markModUnionRange(MemRegion mr);
|
|
|
|
// Records the fact that a marking phase is no longer in progress.
|
|
void set_marking_complete() {
|
|
_mark_in_progress = false;
|
|
}
|
|
void set_marking_started() {
|
|
_mark_in_progress = true;
|
|
}
|
|
bool mark_in_progress() {
|
|
return _mark_in_progress;
|
|
}
|
|
|
|
// Print the maximum heap capacity.
|
|
virtual size_t max_capacity() const;
|
|
|
|
virtual jlong millis_since_last_gc();
|
|
|
|
|
|
// Convenience function to be used in situations where the heap type can be
|
|
// asserted to be this type.
|
|
static G1CollectedHeap* heap();
|
|
|
|
void set_region_short_lived_locked(HeapRegion* hr);
|
|
// add appropriate methods for any other surv rate groups
|
|
|
|
YoungList* young_list() const { return _young_list; }
|
|
|
|
// debugging
|
|
bool check_young_list_well_formed() {
|
|
return _young_list->check_list_well_formed();
|
|
}
|
|
|
|
bool check_young_list_empty(bool check_heap,
|
|
bool check_sample = true);
|
|
|
|
// *** Stuff related to concurrent marking. It's not clear to me that so
|
|
// many of these need to be public.
|
|
|
|
// The functions below are helper functions that a subclass of
|
|
// "CollectedHeap" can use in the implementation of its virtual
|
|
// functions.
|
|
// This performs a concurrent marking of the live objects in a
|
|
// bitmap off to the side.
|
|
void doConcurrentMark();
|
|
|
|
bool isMarkedPrev(oop obj) const;
|
|
bool isMarkedNext(oop obj) const;
|
|
|
|
// Determine if an object is dead, given the object and also
|
|
// the region to which the object belongs. An object is dead
|
|
// iff a) it was not allocated since the last mark and b) it
|
|
// is not marked.
|
|
bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
|
|
return
|
|
!hr->obj_allocated_since_prev_marking(obj) &&
|
|
!isMarkedPrev(obj);
|
|
}
|
|
|
|
// This function returns true when an object has been
|
|
// around since the previous marking and hasn't yet
|
|
// been marked during this marking.
|
|
bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
|
|
return
|
|
!hr->obj_allocated_since_next_marking(obj) &&
|
|
!isMarkedNext(obj);
|
|
}
|
|
|
|
// Determine if an object is dead, given only the object itself.
|
|
// This will find the region to which the object belongs and
|
|
// then call the region version of the same function.
|
|
|
|
// Added if it is NULL it isn't dead.
|
|
|
|
inline bool is_obj_dead(const oop obj) const;
|
|
|
|
inline bool is_obj_ill(const oop obj) const;
|
|
|
|
bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
|
|
HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
|
|
bool is_marked(oop obj, VerifyOption vo);
|
|
const char* top_at_mark_start_str(VerifyOption vo);
|
|
|
|
ConcurrentMark* concurrent_mark() const { return _cm; }
|
|
|
|
// Refinement
|
|
|
|
ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
|
|
|
|
// The dirty cards region list is used to record a subset of regions
|
|
// whose cards need clearing. The list if populated during the
|
|
// remembered set scanning and drained during the card table
|
|
// cleanup. Although the methods are reentrant, population/draining
|
|
// phases must not overlap. For synchronization purposes the last
|
|
// element on the list points to itself.
|
|
HeapRegion* _dirty_cards_region_list;
|
|
void push_dirty_cards_region(HeapRegion* hr);
|
|
HeapRegion* pop_dirty_cards_region();
|
|
|
|
// Optimized nmethod scanning support routines
|
|
|
|
// Register the given nmethod with the G1 heap.
|
|
virtual void register_nmethod(nmethod* nm);
|
|
|
|
// Unregister the given nmethod from the G1 heap.
|
|
virtual void unregister_nmethod(nmethod* nm);
|
|
|
|
// Free up superfluous code root memory.
|
|
void purge_code_root_memory();
|
|
|
|
// Rebuild the strong code root lists for each region
|
|
// after a full GC.
|
|
void rebuild_strong_code_roots();
|
|
|
|
// Delete entries for dead interned string and clean up unreferenced symbols
|
|
// in symbol table, possibly in parallel.
|
|
void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
|
|
|
|
// Parallel phase of unloading/cleaning after G1 concurrent mark.
|
|
void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
|
|
|
|
// Redirty logged cards in the refinement queue.
|
|
void redirty_logged_cards();
|
|
// Verification
|
|
|
|
// The following is just to alert the verification code
|
|
// that a full collection has occurred and that the
|
|
// remembered sets are no longer up to date.
|
|
bool _full_collection;
|
|
void set_full_collection() { _full_collection = true;}
|
|
void clear_full_collection() {_full_collection = false;}
|
|
bool full_collection() {return _full_collection;}
|
|
|
|
// Perform any cleanup actions necessary before allowing a verification.
|
|
virtual void prepare_for_verify();
|
|
|
|
// Perform verification.
|
|
|
|
// vo == UsePrevMarking -> use "prev" marking information,
|
|
// vo == UseNextMarking -> use "next" marking information
|
|
// vo == UseMarkWord -> use the mark word in the object header
|
|
//
|
|
// NOTE: Only the "prev" marking information is guaranteed to be
|
|
// consistent most of the time, so most calls to this should use
|
|
// vo == UsePrevMarking.
|
|
// Currently, there is only one case where this is called with
|
|
// vo == UseNextMarking, which is to verify the "next" marking
|
|
// information at the end of remark.
|
|
// Currently there is only one place where this is called with
|
|
// vo == UseMarkWord, which is to verify the marking during a
|
|
// full GC.
|
|
void verify(bool silent, VerifyOption vo);
|
|
|
|
// Override; it uses the "prev" marking information
|
|
virtual void verify(bool silent);
|
|
|
|
// The methods below are here for convenience and dispatch the
|
|
// appropriate method depending on value of the given VerifyOption
|
|
// parameter. The values for that parameter, and their meanings,
|
|
// are the same as those above.
|
|
|
|
bool is_obj_dead_cond(const oop obj,
|
|
const HeapRegion* hr,
|
|
const VerifyOption vo) const;
|
|
|
|
bool is_obj_dead_cond(const oop obj,
|
|
const VerifyOption vo) const;
|
|
|
|
// Printing
|
|
|
|
virtual void print_on(outputStream* st) const;
|
|
virtual void print_extended_on(outputStream* st) const;
|
|
virtual void print_on_error(outputStream* st) const;
|
|
|
|
virtual void print_gc_threads_on(outputStream* st) const;
|
|
virtual void gc_threads_do(ThreadClosure* tc) const;
|
|
|
|
// Override
|
|
void print_tracing_info() const;
|
|
|
|
// The following two methods are helpful for debugging RSet issues.
|
|
void print_cset_rsets() PRODUCT_RETURN;
|
|
void print_all_rsets() PRODUCT_RETURN;
|
|
|
|
public:
|
|
size_t pending_card_num();
|
|
size_t cards_scanned();
|
|
|
|
protected:
|
|
size_t _max_heap_capacity;
|
|
};
|
|
|
|
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
|