8006fe8f75
Replaced MakeDeps and the includeDB files with more standardized solutions. Reviewed-by: coleenp, kvn, kamg
1342 lines
46 KiB
C++
1342 lines
46 KiB
C++
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "c1/c1_Compilation.hpp"
|
|
#include "c1/c1_FrameMap.hpp"
|
|
#include "c1/c1_Instruction.hpp"
|
|
#include "c1/c1_LIRAssembler.hpp"
|
|
#include "c1/c1_LIRGenerator.hpp"
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#include "c1/c1_ValueStack.hpp"
|
|
#include "ci/ciArray.hpp"
|
|
#include "ci/ciObjArrayKlass.hpp"
|
|
#include "ci/ciTypeArrayKlass.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "vmreg_x86.inline.hpp"
|
|
|
|
#ifdef ASSERT
|
|
#define __ gen()->lir(__FILE__, __LINE__)->
|
|
#else
|
|
#define __ gen()->lir()->
|
|
#endif
|
|
|
|
// Item will be loaded into a byte register; Intel only
|
|
void LIRItem::load_byte_item() {
|
|
load_item();
|
|
LIR_Opr res = result();
|
|
|
|
if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
|
|
// make sure that it is a byte register
|
|
assert(!value()->type()->is_float() && !value()->type()->is_double(),
|
|
"can't load floats in byte register");
|
|
LIR_Opr reg = _gen->rlock_byte(T_BYTE);
|
|
__ move(res, reg);
|
|
|
|
_result = reg;
|
|
}
|
|
}
|
|
|
|
|
|
void LIRItem::load_nonconstant() {
|
|
LIR_Opr r = value()->operand();
|
|
if (r->is_constant()) {
|
|
_result = r;
|
|
} else {
|
|
load_item();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------
|
|
// LIRGenerator
|
|
//--------------------------------------------------------------
|
|
|
|
|
|
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
|
|
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
|
|
LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
|
|
LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
|
|
LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
|
|
LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
|
|
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
|
|
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
|
|
|
|
|
|
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
|
|
LIR_Opr opr;
|
|
switch (type->tag()) {
|
|
case intTag: opr = FrameMap::rax_opr; break;
|
|
case objectTag: opr = FrameMap::rax_oop_opr; break;
|
|
case longTag: opr = FrameMap::long0_opr; break;
|
|
case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
|
|
case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
|
|
|
|
case addressTag:
|
|
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
|
|
}
|
|
|
|
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
|
|
return opr;
|
|
}
|
|
|
|
|
|
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
|
|
LIR_Opr reg = new_register(T_INT);
|
|
set_vreg_flag(reg, LIRGenerator::byte_reg);
|
|
return reg;
|
|
}
|
|
|
|
|
|
//--------- loading items into registers --------------------------------
|
|
|
|
|
|
// i486 instructions can inline constants
|
|
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
|
|
if (type == T_SHORT || type == T_CHAR) {
|
|
// there is no immediate move of word values in asembler_i486.?pp
|
|
return false;
|
|
}
|
|
Constant* c = v->as_Constant();
|
|
if (c && c->state_before() == NULL) {
|
|
// constants of any type can be stored directly, except for
|
|
// unloaded object constants.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool LIRGenerator::can_inline_as_constant(Value v) const {
|
|
if (v->type()->tag() == longTag) return false;
|
|
return v->type()->tag() != objectTag ||
|
|
(v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
|
|
}
|
|
|
|
|
|
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
|
|
if (c->type() == T_LONG) return false;
|
|
return c->type() != T_OBJECT || c->as_jobject() == NULL;
|
|
}
|
|
|
|
|
|
LIR_Opr LIRGenerator::safepoint_poll_register() {
|
|
return LIR_OprFact::illegalOpr;
|
|
}
|
|
|
|
|
|
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
|
|
int shift, int disp, BasicType type) {
|
|
assert(base->is_register(), "must be");
|
|
if (index->is_constant()) {
|
|
return new LIR_Address(base,
|
|
(index->as_constant_ptr()->as_jint() << shift) + disp,
|
|
type);
|
|
} else {
|
|
return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
|
|
}
|
|
}
|
|
|
|
|
|
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
|
|
BasicType type, bool needs_card_mark) {
|
|
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
|
|
|
|
LIR_Address* addr;
|
|
if (index_opr->is_constant()) {
|
|
int elem_size = type2aelembytes(type);
|
|
addr = new LIR_Address(array_opr,
|
|
offset_in_bytes + index_opr->as_jint() * elem_size, type);
|
|
} else {
|
|
#ifdef _LP64
|
|
if (index_opr->type() == T_INT) {
|
|
LIR_Opr tmp = new_register(T_LONG);
|
|
__ convert(Bytecodes::_i2l, index_opr, tmp);
|
|
index_opr = tmp;
|
|
}
|
|
#endif // _LP64
|
|
addr = new LIR_Address(array_opr,
|
|
index_opr,
|
|
LIR_Address::scale(type),
|
|
offset_in_bytes, type);
|
|
}
|
|
if (needs_card_mark) {
|
|
// This store will need a precise card mark, so go ahead and
|
|
// compute the full adddres instead of computing once for the
|
|
// store and again for the card mark.
|
|
LIR_Opr tmp = new_pointer_register();
|
|
__ leal(LIR_OprFact::address(addr), tmp);
|
|
return new LIR_Address(tmp, type);
|
|
} else {
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
|
|
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
|
|
LIR_Opr r;
|
|
if (type == T_LONG) {
|
|
r = LIR_OprFact::longConst(x);
|
|
} else if (type == T_INT) {
|
|
r = LIR_OprFact::intConst(x);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
|
|
LIR_Opr pointer = new_pointer_register();
|
|
__ move(LIR_OprFact::intptrConst(counter), pointer);
|
|
LIR_Address* addr = new LIR_Address(pointer, type);
|
|
increment_counter(addr, step);
|
|
}
|
|
|
|
|
|
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
|
|
__ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
|
|
}
|
|
|
|
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
|
|
__ cmp_mem_int(condition, base, disp, c, info);
|
|
}
|
|
|
|
|
|
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
|
|
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
|
|
}
|
|
|
|
|
|
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
|
|
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
|
|
}
|
|
|
|
|
|
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
|
|
if (tmp->is_valid()) {
|
|
if (is_power_of_2(c + 1)) {
|
|
__ move(left, tmp);
|
|
__ shift_left(left, log2_intptr(c + 1), left);
|
|
__ sub(left, tmp, result);
|
|
return true;
|
|
} else if (is_power_of_2(c - 1)) {
|
|
__ move(left, tmp);
|
|
__ shift_left(left, log2_intptr(c - 1), left);
|
|
__ add(left, tmp, result);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
|
|
BasicType type = item->type();
|
|
__ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// visitor functions
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
|
|
assert(x->is_pinned(),"");
|
|
bool needs_range_check = true;
|
|
bool use_length = x->length() != NULL;
|
|
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
|
|
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
|
|
!get_jobject_constant(x->value())->is_null_object());
|
|
|
|
LIRItem array(x->array(), this);
|
|
LIRItem index(x->index(), this);
|
|
LIRItem value(x->value(), this);
|
|
LIRItem length(this);
|
|
|
|
array.load_item();
|
|
index.load_nonconstant();
|
|
|
|
if (use_length) {
|
|
needs_range_check = x->compute_needs_range_check();
|
|
if (needs_range_check) {
|
|
length.set_instruction(x->length());
|
|
length.load_item();
|
|
}
|
|
}
|
|
if (needs_store_check) {
|
|
value.load_item();
|
|
} else {
|
|
value.load_for_store(x->elt_type());
|
|
}
|
|
|
|
set_no_result(x);
|
|
|
|
// the CodeEmitInfo must be duplicated for each different
|
|
// LIR-instruction because spilling can occur anywhere between two
|
|
// instructions and so the debug information must be different
|
|
CodeEmitInfo* range_check_info = state_for(x);
|
|
CodeEmitInfo* null_check_info = NULL;
|
|
if (x->needs_null_check()) {
|
|
null_check_info = new CodeEmitInfo(range_check_info);
|
|
}
|
|
|
|
// emit array address setup early so it schedules better
|
|
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
|
|
|
|
if (GenerateRangeChecks && needs_range_check) {
|
|
if (use_length) {
|
|
__ cmp(lir_cond_belowEqual, length.result(), index.result());
|
|
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
|
|
} else {
|
|
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
|
|
// range_check also does the null check
|
|
null_check_info = NULL;
|
|
}
|
|
}
|
|
|
|
if (GenerateArrayStoreCheck && needs_store_check) {
|
|
LIR_Opr tmp1 = new_register(objectType);
|
|
LIR_Opr tmp2 = new_register(objectType);
|
|
LIR_Opr tmp3 = new_register(objectType);
|
|
|
|
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
|
|
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
|
|
}
|
|
|
|
if (obj_store) {
|
|
// Needs GC write barriers.
|
|
pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
|
|
__ move(value.result(), array_addr, null_check_info);
|
|
// Seems to be a precise
|
|
post_barrier(LIR_OprFact::address(array_addr), value.result());
|
|
} else {
|
|
__ move(value.result(), array_addr, null_check_info);
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
|
|
assert(x->is_pinned(),"");
|
|
LIRItem obj(x->obj(), this);
|
|
obj.load_item();
|
|
|
|
set_no_result(x);
|
|
|
|
// "lock" stores the address of the monitor stack slot, so this is not an oop
|
|
LIR_Opr lock = new_register(T_INT);
|
|
// Need a scratch register for biased locking on x86
|
|
LIR_Opr scratch = LIR_OprFact::illegalOpr;
|
|
if (UseBiasedLocking) {
|
|
scratch = new_register(T_INT);
|
|
}
|
|
|
|
CodeEmitInfo* info_for_exception = NULL;
|
|
if (x->needs_null_check()) {
|
|
info_for_exception = state_for(x);
|
|
}
|
|
// this CodeEmitInfo must not have the xhandlers because here the
|
|
// object is already locked (xhandlers expect object to be unlocked)
|
|
CodeEmitInfo* info = state_for(x, x->state(), true);
|
|
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
|
|
x->monitor_no(), info_for_exception, info);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
|
|
assert(x->is_pinned(),"");
|
|
|
|
LIRItem obj(x->obj(), this);
|
|
obj.dont_load_item();
|
|
|
|
LIR_Opr lock = new_register(T_INT);
|
|
LIR_Opr obj_temp = new_register(T_INT);
|
|
set_no_result(x);
|
|
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
|
|
}
|
|
|
|
|
|
// _ineg, _lneg, _fneg, _dneg
|
|
void LIRGenerator::do_NegateOp(NegateOp* x) {
|
|
LIRItem value(x->x(), this);
|
|
value.set_destroys_register();
|
|
value.load_item();
|
|
LIR_Opr reg = rlock(x);
|
|
__ negate(value.result(), reg);
|
|
|
|
set_result(x, round_item(reg));
|
|
}
|
|
|
|
|
|
// for _fadd, _fmul, _fsub, _fdiv, _frem
|
|
// _dadd, _dmul, _dsub, _ddiv, _drem
|
|
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
LIRItem* left_arg = &left;
|
|
LIRItem* right_arg = &right;
|
|
assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
|
|
bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
|
|
if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
|
|
left.load_item();
|
|
} else {
|
|
left.dont_load_item();
|
|
}
|
|
|
|
// do not load right operand if it is a constant. only 0 and 1 are
|
|
// loaded because there are special instructions for loading them
|
|
// without memory access (not needed for SSE2 instructions)
|
|
bool must_load_right = false;
|
|
if (right.is_constant()) {
|
|
LIR_Const* c = right.result()->as_constant_ptr();
|
|
assert(c != NULL, "invalid constant");
|
|
assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
|
|
|
|
if (c->type() == T_FLOAT) {
|
|
must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
|
|
} else {
|
|
must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
|
|
}
|
|
}
|
|
|
|
if (must_load_both) {
|
|
// frem and drem destroy also right operand, so move it to a new register
|
|
right.set_destroys_register();
|
|
right.load_item();
|
|
} else if (right.is_register() || must_load_right) {
|
|
right.load_item();
|
|
} else {
|
|
right.dont_load_item();
|
|
}
|
|
LIR_Opr reg = rlock(x);
|
|
LIR_Opr tmp = LIR_OprFact::illegalOpr;
|
|
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
|
|
tmp = new_register(T_DOUBLE);
|
|
}
|
|
|
|
if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
|
|
// special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
|
|
LIR_Opr fpu0, fpu1;
|
|
if (x->op() == Bytecodes::_frem) {
|
|
fpu0 = LIR_OprFact::single_fpu(0);
|
|
fpu1 = LIR_OprFact::single_fpu(1);
|
|
} else {
|
|
fpu0 = LIR_OprFact::double_fpu(0);
|
|
fpu1 = LIR_OprFact::double_fpu(1);
|
|
}
|
|
__ move(right.result(), fpu1); // order of left and right operand is important!
|
|
__ move(left.result(), fpu0);
|
|
__ rem (fpu0, fpu1, fpu0);
|
|
__ move(fpu0, reg);
|
|
|
|
} else {
|
|
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
|
|
}
|
|
|
|
set_result(x, round_item(reg));
|
|
}
|
|
|
|
|
|
// for _ladd, _lmul, _lsub, _ldiv, _lrem
|
|
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
|
|
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
|
|
// long division is implemented as a direct call into the runtime
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
// the check for division by zero destroys the right operand
|
|
right.set_destroys_register();
|
|
|
|
BasicTypeList signature(2);
|
|
signature.append(T_LONG);
|
|
signature.append(T_LONG);
|
|
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
|
|
|
|
// check for division by zero (destroys registers of right operand!)
|
|
CodeEmitInfo* info = state_for(x);
|
|
|
|
const LIR_Opr result_reg = result_register_for(x->type());
|
|
left.load_item_force(cc->at(1));
|
|
right.load_item();
|
|
|
|
__ move(right.result(), cc->at(0));
|
|
|
|
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
|
|
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
|
|
|
|
address entry;
|
|
switch (x->op()) {
|
|
case Bytecodes::_lrem:
|
|
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
|
|
break; // check if dividend is 0 is done elsewhere
|
|
case Bytecodes::_ldiv:
|
|
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
|
|
break; // check if dividend is 0 is done elsewhere
|
|
case Bytecodes::_lmul:
|
|
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
|
|
__ move(result_reg, result);
|
|
} else if (x->op() == Bytecodes::_lmul) {
|
|
// missing test if instr is commutative and if we should swap
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
// right register is destroyed by the long mul, so it must be
|
|
// copied to a new register.
|
|
right.set_destroys_register();
|
|
|
|
left.load_item();
|
|
right.load_item();
|
|
|
|
LIR_Opr reg = FrameMap::long0_opr;
|
|
arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
} else {
|
|
// missing test if instr is commutative and if we should swap
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
left.load_item();
|
|
// don't load constants to save register
|
|
right.load_nonconstant();
|
|
rlock_result(x);
|
|
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// for: _iadd, _imul, _isub, _idiv, _irem
|
|
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
|
|
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
|
|
// The requirements for division and modulo
|
|
// input : rax,: dividend min_int
|
|
// reg: divisor (may not be rax,/rdx) -1
|
|
//
|
|
// output: rax,: quotient (= rax, idiv reg) min_int
|
|
// rdx: remainder (= rax, irem reg) 0
|
|
|
|
// rax, and rdx will be destroyed
|
|
|
|
// Note: does this invalidate the spec ???
|
|
LIRItem right(x->y(), this);
|
|
LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
|
|
|
|
// call state_for before load_item_force because state_for may
|
|
// force the evaluation of other instructions that are needed for
|
|
// correct debug info. Otherwise the live range of the fix
|
|
// register might be too long.
|
|
CodeEmitInfo* info = state_for(x);
|
|
|
|
left.load_item_force(divInOpr());
|
|
|
|
right.load_item();
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
LIR_Opr result_reg;
|
|
if (x->op() == Bytecodes::_idiv) {
|
|
result_reg = divOutOpr();
|
|
} else {
|
|
result_reg = remOutOpr();
|
|
}
|
|
|
|
if (!ImplicitDiv0Checks) {
|
|
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
|
|
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
|
|
}
|
|
LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
|
|
if (x->op() == Bytecodes::_irem) {
|
|
__ irem(left.result(), right.result(), result_reg, tmp, info);
|
|
} else if (x->op() == Bytecodes::_idiv) {
|
|
__ idiv(left.result(), right.result(), result_reg, tmp, info);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
__ move(result_reg, result);
|
|
} else {
|
|
// missing test if instr is commutative and if we should swap
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
LIRItem* left_arg = &left;
|
|
LIRItem* right_arg = &right;
|
|
if (x->is_commutative() && left.is_stack() && right.is_register()) {
|
|
// swap them if left is real stack (or cached) and right is real register(not cached)
|
|
left_arg = &right;
|
|
right_arg = &left;
|
|
}
|
|
|
|
left_arg->load_item();
|
|
|
|
// do not need to load right, as we can handle stack and constants
|
|
if (x->op() == Bytecodes::_imul ) {
|
|
// check if we can use shift instead
|
|
bool use_constant = false;
|
|
bool use_tmp = false;
|
|
if (right_arg->is_constant()) {
|
|
int iconst = right_arg->get_jint_constant();
|
|
if (iconst > 0) {
|
|
if (is_power_of_2(iconst)) {
|
|
use_constant = true;
|
|
} else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
|
|
use_constant = true;
|
|
use_tmp = true;
|
|
}
|
|
}
|
|
}
|
|
if (use_constant) {
|
|
right_arg->dont_load_item();
|
|
} else {
|
|
right_arg->load_item();
|
|
}
|
|
LIR_Opr tmp = LIR_OprFact::illegalOpr;
|
|
if (use_tmp) {
|
|
tmp = new_register(T_INT);
|
|
}
|
|
rlock_result(x);
|
|
|
|
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
|
|
} else {
|
|
right_arg->dont_load_item();
|
|
rlock_result(x);
|
|
LIR_Opr tmp = LIR_OprFact::illegalOpr;
|
|
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
|
|
// when an operand with use count 1 is the left operand, then it is
|
|
// likely that no move for 2-operand-LIR-form is necessary
|
|
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
|
|
x->swap_operands();
|
|
}
|
|
|
|
ValueTag tag = x->type()->tag();
|
|
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
|
|
switch (tag) {
|
|
case floatTag:
|
|
case doubleTag: do_ArithmeticOp_FPU(x); return;
|
|
case longTag: do_ArithmeticOp_Long(x); return;
|
|
case intTag: do_ArithmeticOp_Int(x); return;
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
|
|
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
|
|
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
|
|
// count must always be in rcx
|
|
LIRItem value(x->x(), this);
|
|
LIRItem count(x->y(), this);
|
|
|
|
ValueTag elemType = x->type()->tag();
|
|
bool must_load_count = !count.is_constant() || elemType == longTag;
|
|
if (must_load_count) {
|
|
// count for long must be in register
|
|
count.load_item_force(shiftCountOpr());
|
|
} else {
|
|
count.dont_load_item();
|
|
}
|
|
value.load_item();
|
|
LIR_Opr reg = rlock_result(x);
|
|
|
|
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
|
|
}
|
|
|
|
|
|
// _iand, _land, _ior, _lor, _ixor, _lxor
|
|
void LIRGenerator::do_LogicOp(LogicOp* x) {
|
|
// when an operand with use count 1 is the left operand, then it is
|
|
// likely that no move for 2-operand-LIR-form is necessary
|
|
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
|
|
x->swap_operands();
|
|
}
|
|
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
|
|
left.load_item();
|
|
right.load_nonconstant();
|
|
LIR_Opr reg = rlock_result(x);
|
|
|
|
logic_op(x->op(), reg, left.result(), right.result());
|
|
}
|
|
|
|
|
|
|
|
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
|
|
void LIRGenerator::do_CompareOp(CompareOp* x) {
|
|
LIRItem left(x->x(), this);
|
|
LIRItem right(x->y(), this);
|
|
ValueTag tag = x->x()->type()->tag();
|
|
if (tag == longTag) {
|
|
left.set_destroys_register();
|
|
}
|
|
left.load_item();
|
|
right.load_item();
|
|
LIR_Opr reg = rlock_result(x);
|
|
|
|
if (x->x()->type()->is_float_kind()) {
|
|
Bytecodes::Code code = x->op();
|
|
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
|
|
} else if (x->x()->type()->tag() == longTag) {
|
|
__ lcmp2int(left.result(), right.result(), reg);
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
|
|
assert(x->number_of_arguments() == 3, "wrong type");
|
|
LIRItem obj (x->argument_at(0), this); // AtomicLong object
|
|
LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
|
|
LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
|
|
|
|
// compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
|
|
cmp_value.load_item_force(FrameMap::long0_opr);
|
|
|
|
// new value must be in rcx,ebx (hi,lo)
|
|
new_value.load_item_force(FrameMap::long1_opr);
|
|
|
|
// object pointer register is overwritten with field address
|
|
obj.load_item();
|
|
|
|
// generate compare-and-swap; produces zero condition if swap occurs
|
|
int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
|
|
LIR_Opr addr = obj.result();
|
|
__ add(addr, LIR_OprFact::intConst(value_offset), addr);
|
|
LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed
|
|
LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed
|
|
__ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
|
|
|
|
// generate conditional move of boolean result
|
|
LIR_Opr result = rlock_result(x);
|
|
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
|
|
assert(x->number_of_arguments() == 4, "wrong type");
|
|
LIRItem obj (x->argument_at(0), this); // object
|
|
LIRItem offset(x->argument_at(1), this); // offset of field
|
|
LIRItem cmp (x->argument_at(2), this); // value to compare with field
|
|
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
|
|
|
|
assert(obj.type()->tag() == objectTag, "invalid type");
|
|
|
|
// In 64bit the type can be long, sparc doesn't have this assert
|
|
// assert(offset.type()->tag() == intTag, "invalid type");
|
|
|
|
assert(cmp.type()->tag() == type->tag(), "invalid type");
|
|
assert(val.type()->tag() == type->tag(), "invalid type");
|
|
|
|
// get address of field
|
|
obj.load_item();
|
|
offset.load_nonconstant();
|
|
|
|
if (type == objectType) {
|
|
cmp.load_item_force(FrameMap::rax_oop_opr);
|
|
val.load_item();
|
|
} else if (type == intType) {
|
|
cmp.load_item_force(FrameMap::rax_opr);
|
|
val.load_item();
|
|
} else if (type == longType) {
|
|
cmp.load_item_force(FrameMap::long0_opr);
|
|
val.load_item_force(FrameMap::long1_opr);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
LIR_Opr addr = new_pointer_register();
|
|
LIR_Address* a;
|
|
if(offset.result()->is_constant()) {
|
|
a = new LIR_Address(obj.result(),
|
|
NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
|
|
as_BasicType(type));
|
|
} else {
|
|
a = new LIR_Address(obj.result(),
|
|
offset.result(),
|
|
LIR_Address::times_1,
|
|
0,
|
|
as_BasicType(type));
|
|
}
|
|
__ leal(LIR_OprFact::address(a), addr);
|
|
|
|
if (type == objectType) { // Write-barrier needed for Object fields.
|
|
// Do the pre-write barrier, if any.
|
|
pre_barrier(addr, false, NULL);
|
|
}
|
|
|
|
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
|
|
if (type == objectType)
|
|
__ cas_obj(addr, cmp.result(), val.result(), ill, ill);
|
|
else if (type == intType)
|
|
__ cas_int(addr, cmp.result(), val.result(), ill, ill);
|
|
else if (type == longType)
|
|
__ cas_long(addr, cmp.result(), val.result(), ill, ill);
|
|
else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// generate conditional move of boolean result
|
|
LIR_Opr result = rlock_result(x);
|
|
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
|
|
if (type == objectType) { // Write-barrier needed for Object fields.
|
|
// Seems to be precise
|
|
post_barrier(addr, val.result());
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
|
|
assert(x->number_of_arguments() == 1, "wrong type");
|
|
LIRItem value(x->argument_at(0), this);
|
|
|
|
bool use_fpu = false;
|
|
if (UseSSE >= 2) {
|
|
switch(x->id()) {
|
|
case vmIntrinsics::_dsin:
|
|
case vmIntrinsics::_dcos:
|
|
case vmIntrinsics::_dtan:
|
|
case vmIntrinsics::_dlog:
|
|
case vmIntrinsics::_dlog10:
|
|
use_fpu = true;
|
|
}
|
|
} else {
|
|
value.set_destroys_register();
|
|
}
|
|
|
|
value.load_item();
|
|
|
|
LIR_Opr calc_input = value.result();
|
|
LIR_Opr calc_result = rlock_result(x);
|
|
|
|
// sin and cos need two free fpu stack slots, so register two temporary operands
|
|
LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
|
|
LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
|
|
|
|
if (use_fpu) {
|
|
LIR_Opr tmp = FrameMap::fpu0_double_opr;
|
|
__ move(calc_input, tmp);
|
|
|
|
calc_input = tmp;
|
|
calc_result = tmp;
|
|
tmp1 = FrameMap::caller_save_fpu_reg_at(1);
|
|
tmp2 = FrameMap::caller_save_fpu_reg_at(2);
|
|
}
|
|
|
|
switch(x->id()) {
|
|
case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
|
|
case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
|
|
case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
|
|
case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
|
|
case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
|
|
case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break;
|
|
case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
if (use_fpu) {
|
|
__ move(calc_result, x->operand());
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
|
|
assert(x->number_of_arguments() == 5, "wrong type");
|
|
LIRItem src(x->argument_at(0), this);
|
|
LIRItem src_pos(x->argument_at(1), this);
|
|
LIRItem dst(x->argument_at(2), this);
|
|
LIRItem dst_pos(x->argument_at(3), this);
|
|
LIRItem length(x->argument_at(4), this);
|
|
|
|
// operands for arraycopy must use fixed registers, otherwise
|
|
// LinearScan will fail allocation (because arraycopy always needs a
|
|
// call)
|
|
|
|
#ifndef _LP64
|
|
src.load_item_force (FrameMap::rcx_oop_opr);
|
|
src_pos.load_item_force (FrameMap::rdx_opr);
|
|
dst.load_item_force (FrameMap::rax_oop_opr);
|
|
dst_pos.load_item_force (FrameMap::rbx_opr);
|
|
length.load_item_force (FrameMap::rdi_opr);
|
|
LIR_Opr tmp = (FrameMap::rsi_opr);
|
|
#else
|
|
|
|
// The java calling convention will give us enough registers
|
|
// so that on the stub side the args will be perfect already.
|
|
// On the other slow/special case side we call C and the arg
|
|
// positions are not similar enough to pick one as the best.
|
|
// Also because the java calling convention is a "shifted" version
|
|
// of the C convention we can process the java args trivially into C
|
|
// args without worry of overwriting during the xfer
|
|
|
|
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
|
|
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
|
|
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
|
|
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
|
|
length.load_item_force (FrameMap::as_opr(j_rarg4));
|
|
|
|
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
|
|
#endif // LP64
|
|
|
|
set_no_result(x);
|
|
|
|
int flags;
|
|
ciArrayKlass* expected_type;
|
|
arraycopy_helper(x, &flags, &expected_type);
|
|
|
|
CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
|
|
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
|
|
}
|
|
|
|
|
|
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
|
|
// _i2b, _i2c, _i2s
|
|
LIR_Opr fixed_register_for(BasicType type) {
|
|
switch (type) {
|
|
case T_FLOAT: return FrameMap::fpu0_float_opr;
|
|
case T_DOUBLE: return FrameMap::fpu0_double_opr;
|
|
case T_INT: return FrameMap::rax_opr;
|
|
case T_LONG: return FrameMap::long0_opr;
|
|
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::do_Convert(Convert* x) {
|
|
// flags that vary for the different operations and different SSE-settings
|
|
bool fixed_input, fixed_result, round_result, needs_stub;
|
|
|
|
switch (x->op()) {
|
|
case Bytecodes::_i2l: // fall through
|
|
case Bytecodes::_l2i: // fall through
|
|
case Bytecodes::_i2b: // fall through
|
|
case Bytecodes::_i2c: // fall through
|
|
case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
|
|
|
|
case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
|
|
case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
|
|
case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
|
|
case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
|
|
case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
|
|
case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
|
|
case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
|
|
case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
|
|
case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
|
|
case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
LIRItem value(x->value(), this);
|
|
value.load_item();
|
|
LIR_Opr input = value.result();
|
|
LIR_Opr result = rlock(x);
|
|
|
|
// arguments of lir_convert
|
|
LIR_Opr conv_input = input;
|
|
LIR_Opr conv_result = result;
|
|
ConversionStub* stub = NULL;
|
|
|
|
if (fixed_input) {
|
|
conv_input = fixed_register_for(input->type());
|
|
__ move(input, conv_input);
|
|
}
|
|
|
|
assert(fixed_result == false || round_result == false, "cannot set both");
|
|
if (fixed_result) {
|
|
conv_result = fixed_register_for(result->type());
|
|
} else if (round_result) {
|
|
result = new_register(result->type());
|
|
set_vreg_flag(result, must_start_in_memory);
|
|
}
|
|
|
|
if (needs_stub) {
|
|
stub = new ConversionStub(x->op(), conv_input, conv_result);
|
|
}
|
|
|
|
__ convert(x->op(), conv_input, conv_result, stub);
|
|
|
|
if (result != conv_result) {
|
|
__ move(conv_result, result);
|
|
}
|
|
|
|
assert(result->is_virtual(), "result must be virtual register");
|
|
set_result(x, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NewInstance(NewInstance* x) {
|
|
#ifndef PRODUCT
|
|
if (PrintNotLoaded && !x->klass()->is_loaded()) {
|
|
tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
|
|
}
|
|
#endif
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
LIR_Opr klass_reg = new_register(objectType);
|
|
new_instance(reg, x->klass(),
|
|
FrameMap::rcx_oop_opr,
|
|
FrameMap::rdi_oop_opr,
|
|
FrameMap::rsi_oop_opr,
|
|
LIR_OprFact::illegalOpr,
|
|
FrameMap::rdx_oop_opr, info);
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
LIRItem length(x->length(), this);
|
|
length.load_item_force(FrameMap::rbx_opr);
|
|
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
|
|
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
|
|
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
|
|
LIR_Opr tmp4 = reg;
|
|
LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
|
|
LIR_Opr len = length.result();
|
|
BasicType elem_type = x->elt_type();
|
|
|
|
__ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
|
|
|
|
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
|
|
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
|
|
LIRItem length(x->length(), this);
|
|
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
|
|
// and therefore provide the state before the parameters have been consumed
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || PatchALot) {
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
const LIR_Opr reg = result_register_for(x->type());
|
|
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
|
|
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
|
|
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
|
|
LIR_Opr tmp4 = reg;
|
|
LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
|
|
|
|
length.load_item_force(FrameMap::rbx_opr);
|
|
LIR_Opr len = length.result();
|
|
|
|
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
|
|
ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
|
|
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
|
|
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
|
|
}
|
|
jobject2reg_with_patching(klass_reg, obj, patching_info);
|
|
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
|
|
Values* dims = x->dims();
|
|
int i = dims->length();
|
|
LIRItemList* items = new LIRItemList(dims->length(), NULL);
|
|
while (i-- > 0) {
|
|
LIRItem* size = new LIRItem(dims->at(i), this);
|
|
items->at_put(i, size);
|
|
}
|
|
|
|
// Evaluate state_for early since it may emit code.
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || PatchALot) {
|
|
patching_info = state_for(x, x->state_before());
|
|
|
|
// cannot re-use same xhandlers for multiple CodeEmitInfos, so
|
|
// clone all handlers. This is handled transparently in other
|
|
// places by the CodeEmitInfo cloning logic but is handled
|
|
// specially here because a stub isn't being used.
|
|
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
|
|
}
|
|
CodeEmitInfo* info = state_for(x, x->state());
|
|
|
|
i = dims->length();
|
|
while (i-- > 0) {
|
|
LIRItem* size = items->at(i);
|
|
size->load_nonconstant();
|
|
|
|
store_stack_parameter(size->result(), in_ByteSize(i*4));
|
|
}
|
|
|
|
LIR_Opr reg = result_register_for(x->type());
|
|
jobject2reg_with_patching(reg, x->klass(), patching_info);
|
|
|
|
LIR_Opr rank = FrameMap::rbx_opr;
|
|
__ move(LIR_OprFact::intConst(x->rank()), rank);
|
|
LIR_Opr varargs = FrameMap::rcx_opr;
|
|
__ move(FrameMap::rsp_opr, varargs);
|
|
LIR_OprList* args = new LIR_OprList(3);
|
|
args->append(reg);
|
|
args->append(rank);
|
|
args->append(varargs);
|
|
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
|
|
LIR_OprFact::illegalOpr,
|
|
reg, args, info);
|
|
|
|
LIR_Opr result = rlock_result(x);
|
|
__ move(reg, result);
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
|
|
// nothing to do for now
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_CheckCast(CheckCast* x) {
|
|
LIRItem obj(x->obj(), this);
|
|
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
|
|
// must do this before locking the destination register as an oop register,
|
|
// and before the obj is loaded (the latter is for deoptimization)
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
obj.load_item();
|
|
|
|
// info for exceptions
|
|
CodeEmitInfo* info_for_exception = state_for(x);
|
|
|
|
CodeStub* stub;
|
|
if (x->is_incompatible_class_change_check()) {
|
|
assert(patching_info == NULL, "can't patch this");
|
|
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
|
|
} else {
|
|
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
|
|
}
|
|
LIR_Opr reg = rlock_result(x);
|
|
__ checkcast(reg, obj.result(), x->klass(),
|
|
new_register(objectType), new_register(objectType),
|
|
!x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
|
|
x->direct_compare(), info_for_exception, patching_info, stub,
|
|
x->profiled_method(), x->profiled_bci());
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
|
|
LIRItem obj(x->obj(), this);
|
|
|
|
// result and test object may not be in same register
|
|
LIR_Opr reg = rlock_result(x);
|
|
CodeEmitInfo* patching_info = NULL;
|
|
if ((!x->klass()->is_loaded() || PatchALot)) {
|
|
// must do this before locking the destination register as an oop register
|
|
patching_info = state_for(x, x->state_before());
|
|
}
|
|
obj.load_item();
|
|
__ instanceof(reg, obj.result(), x->klass(),
|
|
new_register(objectType), new_register(objectType),
|
|
!x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
|
|
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
|
|
}
|
|
|
|
|
|
void LIRGenerator::do_If(If* x) {
|
|
assert(x->number_of_sux() == 2, "inconsistency");
|
|
ValueTag tag = x->x()->type()->tag();
|
|
bool is_safepoint = x->is_safepoint();
|
|
|
|
If::Condition cond = x->cond();
|
|
|
|
LIRItem xitem(x->x(), this);
|
|
LIRItem yitem(x->y(), this);
|
|
LIRItem* xin = &xitem;
|
|
LIRItem* yin = &yitem;
|
|
|
|
if (tag == longTag) {
|
|
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
|
|
// mirror for other conditions
|
|
if (cond == If::gtr || cond == If::leq) {
|
|
cond = Instruction::mirror(cond);
|
|
xin = &yitem;
|
|
yin = &xitem;
|
|
}
|
|
xin->set_destroys_register();
|
|
}
|
|
xin->load_item();
|
|
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
|
|
// inline long zero
|
|
yin->dont_load_item();
|
|
} else if (tag == longTag || tag == floatTag || tag == doubleTag) {
|
|
// longs cannot handle constants at right side
|
|
yin->load_item();
|
|
} else {
|
|
yin->dont_load_item();
|
|
}
|
|
|
|
// add safepoint before generating condition code so it can be recomputed
|
|
if (x->is_safepoint()) {
|
|
// increment backedge counter if needed
|
|
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
|
|
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
|
|
}
|
|
set_no_result(x);
|
|
|
|
LIR_Opr left = xin->result();
|
|
LIR_Opr right = yin->result();
|
|
__ cmp(lir_cond(cond), left, right);
|
|
// Generate branch profiling. Profiling code doesn't kill flags.
|
|
profile_branch(x, cond);
|
|
move_to_phi(x->state());
|
|
if (x->x()->type()->is_float_kind()) {
|
|
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
|
|
} else {
|
|
__ branch(lir_cond(cond), right->type(), x->tsux());
|
|
}
|
|
assert(x->default_sux() == x->fsux(), "wrong destination above");
|
|
__ jump(x->default_sux());
|
|
}
|
|
|
|
|
|
LIR_Opr LIRGenerator::getThreadPointer() {
|
|
#ifdef _LP64
|
|
return FrameMap::as_pointer_opr(r15_thread);
|
|
#else
|
|
LIR_Opr result = new_register(T_INT);
|
|
__ get_thread(result);
|
|
return result;
|
|
#endif //
|
|
}
|
|
|
|
void LIRGenerator::trace_block_entry(BlockBegin* block) {
|
|
store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
|
|
LIR_OprList* args = new LIR_OprList();
|
|
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
|
|
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
|
|
}
|
|
|
|
|
|
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
|
|
CodeEmitInfo* info) {
|
|
if (address->type() == T_LONG) {
|
|
address = new LIR_Address(address->base(),
|
|
address->index(), address->scale(),
|
|
address->disp(), T_DOUBLE);
|
|
// Transfer the value atomically by using FP moves. This means
|
|
// the value has to be moved between CPU and FPU registers. It
|
|
// always has to be moved through spill slot since there's no
|
|
// quick way to pack the value into an SSE register.
|
|
LIR_Opr temp_double = new_register(T_DOUBLE);
|
|
LIR_Opr spill = new_register(T_LONG);
|
|
set_vreg_flag(spill, must_start_in_memory);
|
|
__ move(value, spill);
|
|
__ volatile_move(spill, temp_double, T_LONG);
|
|
__ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
|
|
} else {
|
|
__ store(value, address, info);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
|
|
CodeEmitInfo* info) {
|
|
if (address->type() == T_LONG) {
|
|
address = new LIR_Address(address->base(),
|
|
address->index(), address->scale(),
|
|
address->disp(), T_DOUBLE);
|
|
// Transfer the value atomically by using FP moves. This means
|
|
// the value has to be moved between CPU and FPU registers. In
|
|
// SSE0 and SSE1 mode it has to be moved through spill slot but in
|
|
// SSE2+ mode it can be moved directly.
|
|
LIR_Opr temp_double = new_register(T_DOUBLE);
|
|
__ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
|
|
__ volatile_move(temp_double, result, T_LONG);
|
|
if (UseSSE < 2) {
|
|
// no spill slot needed in SSE2 mode because xmm->cpu register move is possible
|
|
set_vreg_flag(result, must_start_in_memory);
|
|
}
|
|
} else {
|
|
__ load(address, result, info);
|
|
}
|
|
}
|
|
|
|
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
|
|
BasicType type, bool is_volatile) {
|
|
if (is_volatile && type == T_LONG) {
|
|
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
|
|
LIR_Opr tmp = new_register(T_DOUBLE);
|
|
__ load(addr, tmp);
|
|
LIR_Opr spill = new_register(T_LONG);
|
|
set_vreg_flag(spill, must_start_in_memory);
|
|
__ move(tmp, spill);
|
|
__ move(spill, dst);
|
|
} else {
|
|
LIR_Address* addr = new LIR_Address(src, offset, type);
|
|
__ load(addr, dst);
|
|
}
|
|
}
|
|
|
|
|
|
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
|
|
BasicType type, bool is_volatile) {
|
|
if (is_volatile && type == T_LONG) {
|
|
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
|
|
LIR_Opr tmp = new_register(T_DOUBLE);
|
|
LIR_Opr spill = new_register(T_DOUBLE);
|
|
set_vreg_flag(spill, must_start_in_memory);
|
|
__ move(data, spill);
|
|
__ move(spill, tmp);
|
|
__ move(tmp, addr);
|
|
} else {
|
|
LIR_Address* addr = new LIR_Address(src, offset, type);
|
|
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
|
|
if (is_obj) {
|
|
// Do the pre-write barrier, if any.
|
|
pre_barrier(LIR_OprFact::address(addr), false, NULL);
|
|
__ move(data, addr);
|
|
assert(src->is_register(), "must be register");
|
|
// Seems to be a precise address
|
|
post_barrier(LIR_OprFact::address(addr), data);
|
|
} else {
|
|
__ move(data, addr);
|
|
}
|
|
}
|
|
}
|