8006fe8f75
Replaced MakeDeps and the includeDB files with more standardized solutions. Reviewed-by: coleenp, kvn, kamg
437 lines
14 KiB
C++
437 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
|
|
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
|
|
|
|
#include "gc_implementation/parallelScavenge/psVirtualspace.hpp"
|
|
#include "utilities/bitMap.inline.hpp"
|
|
|
|
class oopDesc;
|
|
class ParMarkBitMapClosure;
|
|
|
|
class ParMarkBitMap: public CHeapObj
|
|
{
|
|
public:
|
|
typedef BitMap::idx_t idx_t;
|
|
|
|
// Values returned by the iterate() methods.
|
|
enum IterationStatus { incomplete, complete, full, would_overflow };
|
|
|
|
inline ParMarkBitMap();
|
|
inline ParMarkBitMap(MemRegion covered_region);
|
|
bool initialize(MemRegion covered_region);
|
|
|
|
// Atomically mark an object as live.
|
|
bool mark_obj(HeapWord* addr, size_t size);
|
|
inline bool mark_obj(oop obj, int size);
|
|
inline bool mark_obj(oop obj);
|
|
|
|
// Return whether the specified begin or end bit is set.
|
|
inline bool is_obj_beg(idx_t bit) const;
|
|
inline bool is_obj_end(idx_t bit) const;
|
|
|
|
// Traditional interface for testing whether an object is marked or not (these
|
|
// test only the begin bits).
|
|
inline bool is_marked(idx_t bit) const;
|
|
inline bool is_marked(HeapWord* addr) const;
|
|
inline bool is_marked(oop obj) const;
|
|
|
|
inline bool is_unmarked(idx_t bit) const;
|
|
inline bool is_unmarked(HeapWord* addr) const;
|
|
inline bool is_unmarked(oop obj) const;
|
|
|
|
// Convert sizes from bits to HeapWords and back. An object that is n bits
|
|
// long will be bits_to_words(n) words long. An object that is m words long
|
|
// will take up words_to_bits(m) bits in the bitmap.
|
|
inline static size_t bits_to_words(idx_t bits);
|
|
inline static idx_t words_to_bits(size_t words);
|
|
|
|
// Return the size in words of an object given a begin bit and an end bit, or
|
|
// the equivalent beg_addr and end_addr.
|
|
inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
|
|
inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
|
|
|
|
// Return the size in words of the object (a search is done for the end bit).
|
|
inline size_t obj_size(idx_t beg_bit) const;
|
|
inline size_t obj_size(HeapWord* addr) const;
|
|
inline size_t obj_size(oop obj) const;
|
|
|
|
// Synonyms for the above.
|
|
size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
|
|
size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
|
|
|
|
// Apply live_closure to each live object that lies completely within the
|
|
// range [live_range_beg, live_range_end). This is used to iterate over the
|
|
// compacted region of the heap. Return values:
|
|
//
|
|
// incomplete The iteration is not complete. The last object that
|
|
// begins in the range does not end in the range;
|
|
// closure->source() is set to the start of that object.
|
|
//
|
|
// complete The iteration is complete. All objects in the range
|
|
// were processed and the closure is not full;
|
|
// closure->source() is set one past the end of the range.
|
|
//
|
|
// full The closure is full; closure->source() is set to one
|
|
// past the end of the last object processed.
|
|
//
|
|
// would_overflow The next object in the range would overflow the closure;
|
|
// closure->source() is set to the start of that object.
|
|
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
idx_t range_beg, idx_t range_end) const;
|
|
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
HeapWord* range_beg,
|
|
HeapWord* range_end) const;
|
|
|
|
// Apply live closure as above and additionally apply dead_closure to all dead
|
|
// space in the range [range_beg, dead_range_end). Note that dead_range_end
|
|
// must be >= range_end. This is used to iterate over the dense prefix.
|
|
//
|
|
// This method assumes that if the first bit in the range (range_beg) is not
|
|
// marked, then dead space begins at that point and the dead_closure is
|
|
// applied. Thus callers must ensure that range_beg is not in the middle of a
|
|
// live object.
|
|
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
ParMarkBitMapClosure* dead_closure,
|
|
idx_t range_beg, idx_t range_end,
|
|
idx_t dead_range_end) const;
|
|
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
ParMarkBitMapClosure* dead_closure,
|
|
HeapWord* range_beg,
|
|
HeapWord* range_end,
|
|
HeapWord* dead_range_end) const;
|
|
|
|
// Return the number of live words in the range [beg_addr, end_addr) due to
|
|
// objects that start in the range. If a live object extends onto the range,
|
|
// the caller must detect and account for any live words due to that object.
|
|
// If a live object extends beyond the end of the range, only the words within
|
|
// the range are included in the result.
|
|
size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
|
|
|
|
// Same as the above, except the end of the range must be a live object, which
|
|
// is the case when updating pointers. This allows a branch to be removed
|
|
// from inside the loop.
|
|
size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
|
|
|
|
inline HeapWord* region_start() const;
|
|
inline HeapWord* region_end() const;
|
|
inline size_t region_size() const;
|
|
inline size_t size() const;
|
|
|
|
// Convert a heap address to/from a bit index.
|
|
inline idx_t addr_to_bit(HeapWord* addr) const;
|
|
inline HeapWord* bit_to_addr(idx_t bit) const;
|
|
|
|
// Return the bit index of the first marked object that begins (or ends,
|
|
// respectively) in the range [beg, end). If no object is found, return end.
|
|
inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
|
|
inline idx_t find_obj_end(idx_t beg, idx_t end) const;
|
|
|
|
inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
|
|
inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
|
|
|
|
// Clear a range of bits or the entire bitmap (both begin and end bits are
|
|
// cleared).
|
|
inline void clear_range(idx_t beg, idx_t end);
|
|
inline void clear() { clear_range(0, size()); }
|
|
|
|
// Return the number of bits required to represent the specified number of
|
|
// HeapWords, or the specified region.
|
|
static inline idx_t bits_required(size_t words);
|
|
static inline idx_t bits_required(MemRegion covered_region);
|
|
static inline idx_t words_required(MemRegion covered_region);
|
|
|
|
#ifndef PRODUCT
|
|
// CAS statistics.
|
|
size_t cas_tries() { return _cas_tries; }
|
|
size_t cas_retries() { return _cas_retries; }
|
|
size_t cas_by_another() { return _cas_by_another; }
|
|
|
|
void reset_counters();
|
|
#endif // #ifndef PRODUCT
|
|
|
|
#ifdef ASSERT
|
|
void verify_clear() const;
|
|
inline void verify_bit(idx_t bit) const;
|
|
inline void verify_addr(HeapWord* addr) const;
|
|
#endif // #ifdef ASSERT
|
|
|
|
private:
|
|
// Each bit in the bitmap represents one unit of 'object granularity.' Objects
|
|
// are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
|
|
// granularity is 2, 64-bit is 1.
|
|
static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
|
|
static inline int obj_granularity_shift() { return LogMinObjAlignment; }
|
|
|
|
HeapWord* _region_start;
|
|
size_t _region_size;
|
|
BitMap _beg_bits;
|
|
BitMap _end_bits;
|
|
PSVirtualSpace* _virtual_space;
|
|
|
|
#ifndef PRODUCT
|
|
size_t _cas_tries;
|
|
size_t _cas_retries;
|
|
size_t _cas_by_another;
|
|
#endif // #ifndef PRODUCT
|
|
};
|
|
|
|
inline ParMarkBitMap::ParMarkBitMap():
|
|
_beg_bits(),
|
|
_end_bits()
|
|
{
|
|
_region_start = 0;
|
|
_virtual_space = 0;
|
|
}
|
|
|
|
inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
|
|
_beg_bits(),
|
|
_end_bits()
|
|
{
|
|
initialize(covered_region);
|
|
}
|
|
|
|
inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
|
|
{
|
|
_beg_bits.clear_range(beg, end);
|
|
_end_bits.clear_range(beg, end);
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::bits_required(size_t words)
|
|
{
|
|
// Need two bits (one begin bit, one end bit) for each unit of 'object
|
|
// granularity' in the heap.
|
|
return words_to_bits(words * 2);
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::bits_required(MemRegion covered_region)
|
|
{
|
|
return bits_required(covered_region.word_size());
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::words_required(MemRegion covered_region)
|
|
{
|
|
return bits_required(covered_region) / BitsPerWord;
|
|
}
|
|
|
|
inline HeapWord*
|
|
ParMarkBitMap::region_start() const
|
|
{
|
|
return _region_start;
|
|
}
|
|
|
|
inline HeapWord*
|
|
ParMarkBitMap::region_end() const
|
|
{
|
|
return region_start() + region_size();
|
|
}
|
|
|
|
inline size_t
|
|
ParMarkBitMap::region_size() const
|
|
{
|
|
return _region_size;
|
|
}
|
|
|
|
inline size_t
|
|
ParMarkBitMap::size() const
|
|
{
|
|
return _beg_bits.size();
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
|
|
{
|
|
return _beg_bits.at(bit);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
|
|
{
|
|
return _end_bits.at(bit);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_marked(idx_t bit) const
|
|
{
|
|
return is_obj_beg(bit);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
|
|
{
|
|
return is_marked(addr_to_bit(addr));
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_marked(oop obj) const
|
|
{
|
|
return is_marked((HeapWord*)obj);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
|
|
{
|
|
return !is_marked(bit);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
|
|
{
|
|
return !is_marked(addr);
|
|
}
|
|
|
|
inline bool ParMarkBitMap::is_unmarked(oop obj) const
|
|
{
|
|
return !is_marked(obj);
|
|
}
|
|
|
|
inline size_t
|
|
ParMarkBitMap::bits_to_words(idx_t bits)
|
|
{
|
|
return bits << obj_granularity_shift();
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::words_to_bits(size_t words)
|
|
{
|
|
return words >> obj_granularity_shift();
|
|
}
|
|
|
|
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
|
|
{
|
|
DEBUG_ONLY(verify_bit(beg_bit);)
|
|
DEBUG_ONLY(verify_bit(end_bit);)
|
|
return bits_to_words(end_bit - beg_bit + 1);
|
|
}
|
|
|
|
inline size_t
|
|
ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
|
|
{
|
|
DEBUG_ONLY(verify_addr(beg_addr);)
|
|
DEBUG_ONLY(verify_addr(end_addr);)
|
|
return pointer_delta(end_addr, beg_addr) + obj_granularity();
|
|
}
|
|
|
|
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
|
|
{
|
|
const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
|
|
assert(is_marked(beg_bit), "obj not marked");
|
|
assert(end_bit < size(), "end bit missing");
|
|
return obj_size(beg_bit, end_bit);
|
|
}
|
|
|
|
inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
|
|
{
|
|
return obj_size(addr_to_bit(addr));
|
|
}
|
|
|
|
inline size_t ParMarkBitMap::obj_size(oop obj) const
|
|
{
|
|
return obj_size((HeapWord*)obj);
|
|
}
|
|
|
|
inline ParMarkBitMap::IterationStatus
|
|
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
|
|
HeapWord* range_beg,
|
|
HeapWord* range_end) const
|
|
{
|
|
return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
|
|
}
|
|
|
|
inline ParMarkBitMap::IterationStatus
|
|
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
|
|
ParMarkBitMapClosure* dead_closure,
|
|
HeapWord* range_beg,
|
|
HeapWord* range_end,
|
|
HeapWord* dead_range_end) const
|
|
{
|
|
return iterate(live_closure, dead_closure,
|
|
addr_to_bit(range_beg), addr_to_bit(range_end),
|
|
addr_to_bit(dead_range_end));
|
|
}
|
|
|
|
inline bool
|
|
ParMarkBitMap::mark_obj(oop obj, int size)
|
|
{
|
|
return mark_obj((HeapWord*)obj, (size_t)size);
|
|
}
|
|
|
|
inline BitMap::idx_t
|
|
ParMarkBitMap::addr_to_bit(HeapWord* addr) const
|
|
{
|
|
DEBUG_ONLY(verify_addr(addr);)
|
|
return words_to_bits(pointer_delta(addr, region_start()));
|
|
}
|
|
|
|
inline HeapWord*
|
|
ParMarkBitMap::bit_to_addr(idx_t bit) const
|
|
{
|
|
DEBUG_ONLY(verify_bit(bit);)
|
|
return region_start() + bits_to_words(bit);
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
|
|
{
|
|
return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
|
|
}
|
|
|
|
inline ParMarkBitMap::idx_t
|
|
ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
|
|
{
|
|
return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
|
|
}
|
|
|
|
inline HeapWord*
|
|
ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
|
|
{
|
|
const idx_t beg_bit = addr_to_bit(beg);
|
|
const idx_t end_bit = addr_to_bit(end);
|
|
const idx_t search_end = BitMap::word_align_up(end_bit);
|
|
const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
|
|
return bit_to_addr(res_bit);
|
|
}
|
|
|
|
inline HeapWord*
|
|
ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
|
|
{
|
|
const idx_t beg_bit = addr_to_bit(beg);
|
|
const idx_t end_bit = addr_to_bit(end);
|
|
const idx_t search_end = BitMap::word_align_up(end_bit);
|
|
const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
|
|
return bit_to_addr(res_bit);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
inline void ParMarkBitMap::verify_bit(idx_t bit) const {
|
|
// Allow one past the last valid bit; useful for loop bounds.
|
|
assert(bit <= _beg_bits.size(), "bit out of range");
|
|
}
|
|
|
|
inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
|
|
// Allow one past the last valid address; useful for loop bounds.
|
|
assert(addr >= region_start(), "addr too small");
|
|
assert(addr <= region_start() + region_size(), "addr too big");
|
|
}
|
|
#endif // #ifdef ASSERT
|
|
|
|
#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
|