8006fe8f75
Replaced MakeDeps and the includeDB files with more standardized solutions. Reviewed-by: coleenp, kvn, kamg
805 lines
32 KiB
C++
805 lines
32 KiB
C++
/*
|
|
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
|
|
#include "gc_implementation/shared/gcPolicyCounters.hpp"
|
|
#include "gc_implementation/shared/vmGCOperations.hpp"
|
|
#include "memory/cardTableRS.hpp"
|
|
#include "memory/collectorPolicy.hpp"
|
|
#include "memory/gcLocker.inline.hpp"
|
|
#include "memory/genCollectedHeap.hpp"
|
|
#include "memory/generationSpec.hpp"
|
|
#include "memory/space.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/globals_extension.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#ifdef TARGET_OS_FAMILY_linux
|
|
# include "thread_linux.inline.hpp"
|
|
#endif
|
|
#ifdef TARGET_OS_FAMILY_solaris
|
|
# include "thread_solaris.inline.hpp"
|
|
#endif
|
|
#ifdef TARGET_OS_FAMILY_windows
|
|
# include "thread_windows.inline.hpp"
|
|
#endif
|
|
#ifndef SERIALGC
|
|
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
|
|
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
|
|
#endif
|
|
|
|
// CollectorPolicy methods.
|
|
|
|
void CollectorPolicy::initialize_flags() {
|
|
if (PermSize > MaxPermSize) {
|
|
MaxPermSize = PermSize;
|
|
}
|
|
PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
|
|
// Don't increase Perm size limit above specified.
|
|
MaxPermSize = align_size_down(MaxPermSize, max_alignment());
|
|
if (PermSize > MaxPermSize) {
|
|
PermSize = MaxPermSize;
|
|
}
|
|
|
|
MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
|
|
MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
|
|
|
|
MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
|
|
|
|
SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
|
|
SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
|
|
SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
|
|
|
|
assert(PermSize % min_alignment() == 0, "permanent space alignment");
|
|
assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
|
|
assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
|
|
assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
|
|
assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
|
|
if (PermSize < M) {
|
|
vm_exit_during_initialization("Too small initial permanent heap");
|
|
}
|
|
}
|
|
|
|
void CollectorPolicy::initialize_size_info() {
|
|
// User inputs from -mx and ms are aligned
|
|
set_initial_heap_byte_size(InitialHeapSize);
|
|
if (initial_heap_byte_size() == 0) {
|
|
set_initial_heap_byte_size(NewSize + OldSize);
|
|
}
|
|
set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
|
|
min_alignment()));
|
|
|
|
set_min_heap_byte_size(Arguments::min_heap_size());
|
|
if (min_heap_byte_size() == 0) {
|
|
set_min_heap_byte_size(NewSize + OldSize);
|
|
}
|
|
set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
|
|
min_alignment()));
|
|
|
|
set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
|
|
|
|
// Check heap parameter properties
|
|
if (initial_heap_byte_size() < M) {
|
|
vm_exit_during_initialization("Too small initial heap");
|
|
}
|
|
// Check heap parameter properties
|
|
if (min_heap_byte_size() < M) {
|
|
vm_exit_during_initialization("Too small minimum heap");
|
|
}
|
|
if (initial_heap_byte_size() <= NewSize) {
|
|
// make sure there is at least some room in old space
|
|
vm_exit_during_initialization("Too small initial heap for new size specified");
|
|
}
|
|
if (max_heap_byte_size() < min_heap_byte_size()) {
|
|
vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
|
|
}
|
|
if (initial_heap_byte_size() < min_heap_byte_size()) {
|
|
vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
|
|
}
|
|
if (max_heap_byte_size() < initial_heap_byte_size()) {
|
|
vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
|
|
}
|
|
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
|
|
SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
|
|
min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
|
|
}
|
|
}
|
|
|
|
void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
|
|
_permanent_generation =
|
|
new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
|
|
SharedReadOnlySize,
|
|
SharedReadWriteSize,
|
|
SharedMiscDataSize,
|
|
SharedMiscCodeSize);
|
|
if (_permanent_generation == NULL) {
|
|
vm_exit_during_initialization("Unable to allocate gen spec");
|
|
}
|
|
}
|
|
|
|
bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
|
|
bool result = _should_clear_all_soft_refs;
|
|
set_should_clear_all_soft_refs(false);
|
|
return result;
|
|
}
|
|
|
|
GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
|
|
int max_covered_regions) {
|
|
switch (rem_set_name()) {
|
|
case GenRemSet::CardTable: {
|
|
CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
|
|
return res;
|
|
}
|
|
default:
|
|
guarantee(false, "unrecognized GenRemSet::Name");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void CollectorPolicy::cleared_all_soft_refs() {
|
|
// If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
|
|
// have been cleared in the last collection but if the gc overhear
|
|
// limit continues to be near, SoftRefs should still be cleared.
|
|
if (size_policy() != NULL) {
|
|
_should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
|
|
}
|
|
_all_soft_refs_clear = true;
|
|
}
|
|
|
|
|
|
// GenCollectorPolicy methods.
|
|
|
|
size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
|
|
size_t x = base_size / (NewRatio+1);
|
|
size_t new_gen_size = x > min_alignment() ?
|
|
align_size_down(x, min_alignment()) :
|
|
min_alignment();
|
|
return new_gen_size;
|
|
}
|
|
|
|
size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
|
|
size_t maximum_size) {
|
|
size_t alignment = min_alignment();
|
|
size_t max_minus = maximum_size - alignment;
|
|
return desired_size < max_minus ? desired_size : max_minus;
|
|
}
|
|
|
|
|
|
void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
|
|
size_t init_promo_size,
|
|
size_t init_survivor_size) {
|
|
const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
|
|
_size_policy = new AdaptiveSizePolicy(init_eden_size,
|
|
init_promo_size,
|
|
init_survivor_size,
|
|
max_gc_minor_pause_sec,
|
|
GCTimeRatio);
|
|
}
|
|
|
|
size_t GenCollectorPolicy::compute_max_alignment() {
|
|
// The card marking array and the offset arrays for old generations are
|
|
// committed in os pages as well. Make sure they are entirely full (to
|
|
// avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
|
|
// byte entry and the os page size is 4096, the maximum heap size should
|
|
// be 512*4096 = 2MB aligned.
|
|
size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
|
|
|
|
// Parallel GC does its own alignment of the generations to avoid requiring a
|
|
// large page (256M on some platforms) for the permanent generation. The
|
|
// other collectors should also be updated to do their own alignment and then
|
|
// this use of lcm() should be removed.
|
|
if (UseLargePages && !UseParallelGC) {
|
|
// in presence of large pages we have to make sure that our
|
|
// alignment is large page aware
|
|
alignment = lcm(os::large_page_size(), alignment);
|
|
}
|
|
|
|
return alignment;
|
|
}
|
|
|
|
void GenCollectorPolicy::initialize_flags() {
|
|
// All sizes must be multiples of the generation granularity.
|
|
set_min_alignment((uintx) Generation::GenGrain);
|
|
set_max_alignment(compute_max_alignment());
|
|
assert(max_alignment() >= min_alignment() &&
|
|
max_alignment() % min_alignment() == 0,
|
|
"invalid alignment constraints");
|
|
|
|
CollectorPolicy::initialize_flags();
|
|
|
|
// All generational heaps have a youngest gen; handle those flags here.
|
|
|
|
// Adjust max size parameters
|
|
if (NewSize > MaxNewSize) {
|
|
MaxNewSize = NewSize;
|
|
}
|
|
NewSize = align_size_down(NewSize, min_alignment());
|
|
MaxNewSize = align_size_down(MaxNewSize, min_alignment());
|
|
|
|
// Check validity of heap flags
|
|
assert(NewSize % min_alignment() == 0, "eden space alignment");
|
|
assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
|
|
|
|
if (NewSize < 3*min_alignment()) {
|
|
// make sure there room for eden and two survivor spaces
|
|
vm_exit_during_initialization("Too small new size specified");
|
|
}
|
|
if (SurvivorRatio < 1 || NewRatio < 1) {
|
|
vm_exit_during_initialization("Invalid heap ratio specified");
|
|
}
|
|
}
|
|
|
|
void TwoGenerationCollectorPolicy::initialize_flags() {
|
|
GenCollectorPolicy::initialize_flags();
|
|
|
|
OldSize = align_size_down(OldSize, min_alignment());
|
|
if (NewSize + OldSize > MaxHeapSize) {
|
|
MaxHeapSize = NewSize + OldSize;
|
|
}
|
|
MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
|
|
|
|
always_do_update_barrier = UseConcMarkSweepGC;
|
|
BlockOffsetArrayUseUnallocatedBlock =
|
|
BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
|
|
|
|
// Check validity of heap flags
|
|
assert(OldSize % min_alignment() == 0, "old space alignment");
|
|
assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
|
|
}
|
|
|
|
// Values set on the command line win over any ergonomically
|
|
// set command line parameters.
|
|
// Ergonomic choice of parameters are done before this
|
|
// method is called. Values for command line parameters such as NewSize
|
|
// and MaxNewSize feed those ergonomic choices into this method.
|
|
// This method makes the final generation sizings consistent with
|
|
// themselves and with overall heap sizings.
|
|
// In the absence of explicitly set command line flags, policies
|
|
// such as the use of NewRatio are used to size the generation.
|
|
void GenCollectorPolicy::initialize_size_info() {
|
|
CollectorPolicy::initialize_size_info();
|
|
|
|
// min_alignment() is used for alignment within a generation.
|
|
// There is additional alignment done down stream for some
|
|
// collectors that sometimes causes unwanted rounding up of
|
|
// generations sizes.
|
|
|
|
// Determine maximum size of gen0
|
|
|
|
size_t max_new_size = 0;
|
|
if (FLAG_IS_CMDLINE(MaxNewSize)) {
|
|
if (MaxNewSize < min_alignment()) {
|
|
max_new_size = min_alignment();
|
|
} else if (MaxNewSize >= max_heap_byte_size()) {
|
|
max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
|
|
min_alignment());
|
|
warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
|
|
"greater than the entire heap (" SIZE_FORMAT "k). A "
|
|
"new generation size of " SIZE_FORMAT "k will be used.",
|
|
MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
|
|
} else {
|
|
max_new_size = align_size_down(MaxNewSize, min_alignment());
|
|
}
|
|
|
|
// The case for FLAG_IS_ERGO(MaxNewSize) could be treated
|
|
// specially at this point to just use an ergonomically set
|
|
// MaxNewSize to set max_new_size. For cases with small
|
|
// heaps such a policy often did not work because the MaxNewSize
|
|
// was larger than the entire heap. The interpretation given
|
|
// to ergonomically set flags is that the flags are set
|
|
// by different collectors for their own special needs but
|
|
// are not allowed to badly shape the heap. This allows the
|
|
// different collectors to decide what's best for themselves
|
|
// without having to factor in the overall heap shape. It
|
|
// can be the case in the future that the collectors would
|
|
// only make "wise" ergonomics choices and this policy could
|
|
// just accept those choices. The choices currently made are
|
|
// not always "wise".
|
|
} else {
|
|
max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
|
|
// Bound the maximum size by NewSize below (since it historically
|
|
// would have been NewSize and because the NewRatio calculation could
|
|
// yield a size that is too small) and bound it by MaxNewSize above.
|
|
// Ergonomics plays here by previously calculating the desired
|
|
// NewSize and MaxNewSize.
|
|
max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
|
|
}
|
|
assert(max_new_size > 0, "All paths should set max_new_size");
|
|
|
|
// Given the maximum gen0 size, determine the initial and
|
|
// minimum sizes.
|
|
|
|
if (max_heap_byte_size() == min_heap_byte_size()) {
|
|
// The maximum and minimum heap sizes are the same so
|
|
// the generations minimum and initial must be the
|
|
// same as its maximum.
|
|
set_min_gen0_size(max_new_size);
|
|
set_initial_gen0_size(max_new_size);
|
|
set_max_gen0_size(max_new_size);
|
|
} else {
|
|
size_t desired_new_size = 0;
|
|
if (!FLAG_IS_DEFAULT(NewSize)) {
|
|
// If NewSize is set ergonomically (for example by cms), it
|
|
// would make sense to use it. If it is used, also use it
|
|
// to set the initial size. Although there is no reason
|
|
// the minimum size and the initial size have to be the same,
|
|
// the current implementation gets into trouble during the calculation
|
|
// of the tenured generation sizes if they are different.
|
|
// Note that this makes the initial size and the minimum size
|
|
// generally small compared to the NewRatio calculation.
|
|
_min_gen0_size = NewSize;
|
|
desired_new_size = NewSize;
|
|
max_new_size = MAX2(max_new_size, NewSize);
|
|
} else {
|
|
// For the case where NewSize is the default, use NewRatio
|
|
// to size the minimum and initial generation sizes.
|
|
// Use the default NewSize as the floor for these values. If
|
|
// NewRatio is overly large, the resulting sizes can be too
|
|
// small.
|
|
_min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
|
|
NewSize);
|
|
desired_new_size =
|
|
MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
|
|
NewSize);
|
|
}
|
|
|
|
assert(_min_gen0_size > 0, "Sanity check");
|
|
set_initial_gen0_size(desired_new_size);
|
|
set_max_gen0_size(max_new_size);
|
|
|
|
// At this point the desirable initial and minimum sizes have been
|
|
// determined without regard to the maximum sizes.
|
|
|
|
// Bound the sizes by the corresponding overall heap sizes.
|
|
set_min_gen0_size(
|
|
bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
|
|
set_initial_gen0_size(
|
|
bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
|
|
set_max_gen0_size(
|
|
bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
|
|
|
|
// At this point all three sizes have been checked against the
|
|
// maximum sizes but have not been checked for consistency
|
|
// among the three.
|
|
|
|
// Final check min <= initial <= max
|
|
set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
|
|
set_initial_gen0_size(
|
|
MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
|
|
set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
|
|
}
|
|
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
|
|
SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
|
|
min_gen0_size(), initial_gen0_size(), max_gen0_size());
|
|
}
|
|
}
|
|
|
|
// Call this method during the sizing of the gen1 to make
|
|
// adjustments to gen0 because of gen1 sizing policy. gen0 initially has
|
|
// the most freedom in sizing because it is done before the
|
|
// policy for gen1 is applied. Once gen1 policies have been applied,
|
|
// there may be conflicts in the shape of the heap and this method
|
|
// is used to make the needed adjustments. The application of the
|
|
// policies could be more sophisticated (iterative for example) but
|
|
// keeping it simple also seems a worthwhile goal.
|
|
bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
|
|
size_t* gen1_size_ptr,
|
|
size_t heap_size,
|
|
size_t min_gen0_size) {
|
|
bool result = false;
|
|
if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
|
|
if (((*gen0_size_ptr + OldSize) > heap_size) &&
|
|
(heap_size - min_gen0_size) >= min_alignment()) {
|
|
// Adjust gen0 down to accomodate OldSize
|
|
*gen0_size_ptr = heap_size - min_gen0_size;
|
|
*gen0_size_ptr =
|
|
MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
|
|
min_alignment());
|
|
assert(*gen0_size_ptr > 0, "Min gen0 is too large");
|
|
result = true;
|
|
} else {
|
|
*gen1_size_ptr = heap_size - *gen0_size_ptr;
|
|
*gen1_size_ptr =
|
|
MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
|
|
min_alignment());
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Minimum sizes of the generations may be different than
|
|
// the initial sizes. An inconsistently is permitted here
|
|
// in the total size that can be specified explicitly by
|
|
// command line specification of OldSize and NewSize and
|
|
// also a command line specification of -Xms. Issue a warning
|
|
// but allow the values to pass.
|
|
|
|
void TwoGenerationCollectorPolicy::initialize_size_info() {
|
|
GenCollectorPolicy::initialize_size_info();
|
|
|
|
// At this point the minimum, initial and maximum sizes
|
|
// of the overall heap and of gen0 have been determined.
|
|
// The maximum gen1 size can be determined from the maximum gen0
|
|
// and maximum heap size since not explicit flags exits
|
|
// for setting the gen1 maximum.
|
|
_max_gen1_size = max_heap_byte_size() - _max_gen0_size;
|
|
_max_gen1_size =
|
|
MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
|
|
min_alignment());
|
|
// If no explicit command line flag has been set for the
|
|
// gen1 size, use what is left for gen1.
|
|
if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
|
|
// The user has not specified any value or ergonomics
|
|
// has chosen a value (which may or may not be consistent
|
|
// with the overall heap size). In either case make
|
|
// the minimum, maximum and initial sizes consistent
|
|
// with the gen0 sizes and the overall heap sizes.
|
|
assert(min_heap_byte_size() > _min_gen0_size,
|
|
"gen0 has an unexpected minimum size");
|
|
set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
|
|
set_min_gen1_size(
|
|
MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
|
|
min_alignment()));
|
|
set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
|
|
set_initial_gen1_size(
|
|
MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
|
|
min_alignment()));
|
|
|
|
} else {
|
|
// It's been explicitly set on the command line. Use the
|
|
// OldSize and then determine the consequences.
|
|
set_min_gen1_size(OldSize);
|
|
set_initial_gen1_size(OldSize);
|
|
|
|
// If the user has explicitly set an OldSize that is inconsistent
|
|
// with other command line flags, issue a warning.
|
|
// The generation minimums and the overall heap mimimum should
|
|
// be within one heap alignment.
|
|
if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
|
|
min_heap_byte_size()) {
|
|
warning("Inconsistency between minimum heap size and minimum "
|
|
"generation sizes: using minimum heap = " SIZE_FORMAT,
|
|
min_heap_byte_size());
|
|
}
|
|
if ((OldSize > _max_gen1_size)) {
|
|
warning("Inconsistency between maximum heap size and maximum "
|
|
"generation sizes: using maximum heap = " SIZE_FORMAT
|
|
" -XX:OldSize flag is being ignored",
|
|
max_heap_byte_size());
|
|
}
|
|
// If there is an inconsistency between the OldSize and the minimum and/or
|
|
// initial size of gen0, since OldSize was explicitly set, OldSize wins.
|
|
if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
|
|
min_heap_byte_size(), OldSize)) {
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
|
|
SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
|
|
min_gen0_size(), initial_gen0_size(), max_gen0_size());
|
|
}
|
|
}
|
|
// Initial size
|
|
if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
|
|
initial_heap_byte_size(), OldSize)) {
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT " Initial gen0 "
|
|
SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
|
|
min_gen0_size(), initial_gen0_size(), max_gen0_size());
|
|
}
|
|
}
|
|
}
|
|
// Enforce the maximum gen1 size.
|
|
set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
|
|
|
|
// Check that min gen1 <= initial gen1 <= max gen1
|
|
set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
|
|
set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
|
|
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
|
|
SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
|
|
min_gen1_size(), initial_gen1_size(), max_gen1_size());
|
|
}
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
|
|
bool is_tlab,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
|
|
debug_only(gch->check_for_valid_allocation_state());
|
|
assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
|
|
|
|
// In general gc_overhead_limit_was_exceeded should be false so
|
|
// set it so here and reset it to true only if the gc time
|
|
// limit is being exceeded as checked below.
|
|
*gc_overhead_limit_was_exceeded = false;
|
|
|
|
HeapWord* result = NULL;
|
|
|
|
// Loop until the allocation is satisified,
|
|
// or unsatisfied after GC.
|
|
for (int try_count = 1; /* return or throw */; try_count += 1) {
|
|
HandleMark hm; // discard any handles allocated in each iteration
|
|
|
|
// First allocation attempt is lock-free.
|
|
Generation *gen0 = gch->get_gen(0);
|
|
assert(gen0->supports_inline_contig_alloc(),
|
|
"Otherwise, must do alloc within heap lock");
|
|
if (gen0->should_allocate(size, is_tlab)) {
|
|
result = gen0->par_allocate(size, is_tlab);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
}
|
|
unsigned int gc_count_before; // read inside the Heap_lock locked region
|
|
{
|
|
MutexLocker ml(Heap_lock);
|
|
if (PrintGC && Verbose) {
|
|
gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
|
|
" attempting locked slow path allocation");
|
|
}
|
|
// Note that only large objects get a shot at being
|
|
// allocated in later generations.
|
|
bool first_only = ! should_try_older_generation_allocation(size);
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, first_only);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
if (GC_locker::is_active_and_needs_gc()) {
|
|
if (is_tlab) {
|
|
return NULL; // Caller will retry allocating individual object
|
|
}
|
|
if (!gch->is_maximal_no_gc()) {
|
|
// Try and expand heap to satisfy request
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
// result could be null if we are out of space
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// If this thread is not in a jni critical section, we stall
|
|
// the requestor until the critical section has cleared and
|
|
// GC allowed. When the critical section clears, a GC is
|
|
// initiated by the last thread exiting the critical section; so
|
|
// we retry the allocation sequence from the beginning of the loop,
|
|
// rather than causing more, now probably unnecessary, GC attempts.
|
|
JavaThread* jthr = JavaThread::current();
|
|
if (!jthr->in_critical()) {
|
|
MutexUnlocker mul(Heap_lock);
|
|
// Wait for JNI critical section to be exited
|
|
GC_locker::stall_until_clear();
|
|
continue;
|
|
} else {
|
|
if (CheckJNICalls) {
|
|
fatal("Possible deadlock due to allocating while"
|
|
" in jni critical section");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Read the gc count while the heap lock is held.
|
|
gc_count_before = Universe::heap()->total_collections();
|
|
}
|
|
|
|
VM_GenCollectForAllocation op(size,
|
|
is_tlab,
|
|
gc_count_before);
|
|
VMThread::execute(&op);
|
|
if (op.prologue_succeeded()) {
|
|
result = op.result();
|
|
if (op.gc_locked()) {
|
|
assert(result == NULL, "must be NULL if gc_locked() is true");
|
|
continue; // retry and/or stall as necessary
|
|
}
|
|
|
|
// Allocation has failed and a collection
|
|
// has been done. If the gc time limit was exceeded the
|
|
// this time, return NULL so that an out-of-memory
|
|
// will be thrown. Clear gc_overhead_limit_exceeded
|
|
// so that the overhead exceeded does not persist.
|
|
|
|
const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
|
|
const bool softrefs_clear = all_soft_refs_clear();
|
|
assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
|
|
if (limit_exceeded && softrefs_clear) {
|
|
*gc_overhead_limit_was_exceeded = true;
|
|
size_policy()->set_gc_overhead_limit_exceeded(false);
|
|
if (op.result() != NULL) {
|
|
CollectedHeap::fill_with_object(op.result(), size);
|
|
}
|
|
return NULL;
|
|
}
|
|
assert(result == NULL || gch->is_in_reserved(result),
|
|
"result not in heap");
|
|
return result;
|
|
}
|
|
|
|
// Give a warning if we seem to be looping forever.
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(try_count % QueuedAllocationWarningCount == 0)) {
|
|
warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
|
|
" size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
|
|
}
|
|
}
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
|
|
bool is_tlab) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
HeapWord* result = NULL;
|
|
for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
|
|
Generation *gen = gch->get_gen(i);
|
|
if (gen->should_allocate(size, is_tlab)) {
|
|
result = gen->expand_and_allocate(size, is_tlab);
|
|
}
|
|
}
|
|
assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
|
|
bool is_tlab) {
|
|
GenCollectedHeap *gch = GenCollectedHeap::heap();
|
|
GCCauseSetter x(gch, GCCause::_allocation_failure);
|
|
HeapWord* result = NULL;
|
|
|
|
assert(size != 0, "Precondition violated");
|
|
if (GC_locker::is_active_and_needs_gc()) {
|
|
// GC locker is active; instead of a collection we will attempt
|
|
// to expand the heap, if there's room for expansion.
|
|
if (!gch->is_maximal_no_gc()) {
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
}
|
|
return result; // could be null if we are out of space
|
|
} else if (!gch->incremental_collection_will_fail()) {
|
|
// Do an incremental collection.
|
|
gch->do_collection(false /* full */,
|
|
false /* clear_all_soft_refs */,
|
|
size /* size */,
|
|
is_tlab /* is_tlab */,
|
|
number_of_generations() - 1 /* max_level */);
|
|
} else {
|
|
// Try a full collection; see delta for bug id 6266275
|
|
// for the original code and why this has been simplified
|
|
// with from-space allocation criteria modified and
|
|
// such allocation moved out of the safepoint path.
|
|
gch->do_collection(true /* full */,
|
|
false /* clear_all_soft_refs */,
|
|
size /* size */,
|
|
is_tlab /* is_tlab */,
|
|
number_of_generations() - 1 /* max_level */);
|
|
}
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
|
|
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
// OK, collection failed, try expansion.
|
|
result = expand_heap_and_allocate(size, is_tlab);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// If we reach this point, we're really out of memory. Try every trick
|
|
// we can to reclaim memory. Force collection of soft references. Force
|
|
// a complete compaction of the heap. Any additional methods for finding
|
|
// free memory should be here, especially if they are expensive. If this
|
|
// attempt fails, an OOM exception will be thrown.
|
|
{
|
|
IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
|
|
|
|
gch->do_collection(true /* full */,
|
|
true /* clear_all_soft_refs */,
|
|
size /* size */,
|
|
is_tlab /* is_tlab */,
|
|
number_of_generations() - 1 /* max_level */);
|
|
}
|
|
|
|
result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
|
|
if (result != NULL) {
|
|
assert(gch->is_in_reserved(result), "result not in heap");
|
|
return result;
|
|
}
|
|
|
|
assert(!should_clear_all_soft_refs(),
|
|
"Flag should have been handled and cleared prior to this point");
|
|
|
|
// What else? We might try synchronous finalization later. If the total
|
|
// space available is large enough for the allocation, then a more
|
|
// complete compaction phase than we've tried so far might be
|
|
// appropriate.
|
|
return NULL;
|
|
}
|
|
|
|
size_t GenCollectorPolicy::large_typearray_limit() {
|
|
return FastAllocateSizeLimit;
|
|
}
|
|
|
|
// Return true if any of the following is true:
|
|
// . the allocation won't fit into the current young gen heap
|
|
// . gc locker is occupied (jni critical section)
|
|
// . heap memory is tight -- the most recent previous collection
|
|
// was a full collection because a partial collection (would
|
|
// have) failed and is likely to fail again
|
|
bool GenCollectorPolicy::should_try_older_generation_allocation(
|
|
size_t word_size) const {
|
|
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
|
|
return (word_size > heap_word_size(gen0_capacity))
|
|
|| GC_locker::is_active_and_needs_gc()
|
|
|| gch->incremental_collection_failed();
|
|
}
|
|
|
|
|
|
//
|
|
// MarkSweepPolicy methods
|
|
//
|
|
|
|
MarkSweepPolicy::MarkSweepPolicy() {
|
|
initialize_all();
|
|
}
|
|
|
|
void MarkSweepPolicy::initialize_generations() {
|
|
initialize_perm_generation(PermGen::MarkSweepCompact);
|
|
_generations = new GenerationSpecPtr[number_of_generations()];
|
|
if (_generations == NULL)
|
|
vm_exit_during_initialization("Unable to allocate gen spec");
|
|
|
|
if (UseParNewGC && ParallelGCThreads > 0) {
|
|
_generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
|
|
} else {
|
|
_generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
|
|
}
|
|
_generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
|
|
|
|
if (_generations[0] == NULL || _generations[1] == NULL)
|
|
vm_exit_during_initialization("Unable to allocate gen spec");
|
|
}
|
|
|
|
void MarkSweepPolicy::initialize_gc_policy_counters() {
|
|
// initialize the policy counters - 2 collectors, 3 generations
|
|
if (UseParNewGC && ParallelGCThreads > 0) {
|
|
_gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
|
|
}
|
|
else {
|
|
_gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
|
|
}
|
|
}
|