80fa8a7208
Reviewed-by: kbarrett, sjohanss
5346 lines
197 KiB
C++
5346 lines
197 KiB
C++
/*
|
|
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/metadataOnStackMark.hpp"
|
|
#include "classfile/stringTable.hpp"
|
|
#include "classfile/symbolTable.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "gc/g1/bufferingOopClosure.hpp"
|
|
#include "gc/g1/concurrentMarkThread.inline.hpp"
|
|
#include "gc/g1/g1Allocator.inline.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1CollectionSet.hpp"
|
|
#include "gc/g1/g1CollectorPolicy.hpp"
|
|
#include "gc/g1/g1CollectorState.hpp"
|
|
#include "gc/g1/g1ConcurrentRefine.hpp"
|
|
#include "gc/g1/g1ConcurrentRefineThread.hpp"
|
|
#include "gc/g1/g1EvacStats.inline.hpp"
|
|
#include "gc/g1/g1FullCollector.hpp"
|
|
#include "gc/g1/g1GCPhaseTimes.hpp"
|
|
#include "gc/g1/g1HeapSizingPolicy.hpp"
|
|
#include "gc/g1/g1HeapTransition.hpp"
|
|
#include "gc/g1/g1HeapVerifier.hpp"
|
|
#include "gc/g1/g1HotCardCache.hpp"
|
|
#include "gc/g1/g1MemoryPool.hpp"
|
|
#include "gc/g1/g1OopClosures.inline.hpp"
|
|
#include "gc/g1/g1ParScanThreadState.inline.hpp"
|
|
#include "gc/g1/g1Policy.hpp"
|
|
#include "gc/g1/g1RegionToSpaceMapper.hpp"
|
|
#include "gc/g1/g1RemSet.hpp"
|
|
#include "gc/g1/g1RootClosures.hpp"
|
|
#include "gc/g1/g1RootProcessor.hpp"
|
|
#include "gc/g1/g1StringDedup.hpp"
|
|
#include "gc/g1/g1YCTypes.hpp"
|
|
#include "gc/g1/g1YoungRemSetSamplingThread.hpp"
|
|
#include "gc/g1/heapRegion.inline.hpp"
|
|
#include "gc/g1/heapRegionRemSet.hpp"
|
|
#include "gc/g1/heapRegionSet.inline.hpp"
|
|
#include "gc/g1/vm_operations_g1.hpp"
|
|
#include "gc/shared/gcHeapSummary.hpp"
|
|
#include "gc/shared/gcId.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "gc/shared/gcTimer.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/gcTraceTime.inline.hpp"
|
|
#include "gc/shared/generationSpec.hpp"
|
|
#include "gc/shared/isGCActiveMark.hpp"
|
|
#include "gc/shared/preservedMarks.inline.hpp"
|
|
#include "gc/shared/suspendibleThreadSet.hpp"
|
|
#include "gc/shared/referenceProcessor.inline.hpp"
|
|
#include "gc/shared/taskqueue.inline.hpp"
|
|
#include "gc/shared/weakProcessor.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/iterator.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/resolvedMethodTable.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/init.hpp"
|
|
#include "runtime/orderAccess.inline.hpp"
|
|
#include "runtime/threadSMR.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/stack.inline.hpp"
|
|
|
|
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
|
|
|
|
// INVARIANTS/NOTES
|
|
//
|
|
// All allocation activity covered by the G1CollectedHeap interface is
|
|
// serialized by acquiring the HeapLock. This happens in mem_allocate
|
|
// and allocate_new_tlab, which are the "entry" points to the
|
|
// allocation code from the rest of the JVM. (Note that this does not
|
|
// apply to TLAB allocation, which is not part of this interface: it
|
|
// is done by clients of this interface.)
|
|
|
|
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
|
|
private:
|
|
size_t _num_dirtied;
|
|
G1CollectedHeap* _g1h;
|
|
G1SATBCardTableLoggingModRefBS* _g1_bs;
|
|
|
|
HeapRegion* region_for_card(jbyte* card_ptr) const {
|
|
return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
|
|
}
|
|
|
|
bool will_become_free(HeapRegion* hr) const {
|
|
// A region will be freed by free_collection_set if the region is in the
|
|
// collection set and has not had an evacuation failure.
|
|
return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
|
|
}
|
|
|
|
public:
|
|
RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
|
|
_num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
|
|
|
|
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
|
|
HeapRegion* hr = region_for_card(card_ptr);
|
|
|
|
// Should only dirty cards in regions that won't be freed.
|
|
if (!will_become_free(hr)) {
|
|
*card_ptr = CardTableModRefBS::dirty_card_val();
|
|
_num_dirtied++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t num_dirtied() const { return _num_dirtied; }
|
|
};
|
|
|
|
|
|
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
|
|
HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
|
|
}
|
|
|
|
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
|
|
// The from card cache is not the memory that is actually committed. So we cannot
|
|
// take advantage of the zero_filled parameter.
|
|
reset_from_card_cache(start_idx, num_regions);
|
|
}
|
|
|
|
|
|
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
|
|
MemRegion mr) {
|
|
return new HeapRegion(hrs_index, bot(), mr);
|
|
}
|
|
|
|
// Private methods.
|
|
|
|
HeapRegion*
|
|
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
|
|
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
while (!_secondary_free_list.is_empty() || free_regions_coming()) {
|
|
if (!_secondary_free_list.is_empty()) {
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
|
|
"secondary_free_list has %u entries",
|
|
_secondary_free_list.length());
|
|
// It looks as if there are free regions available on the
|
|
// secondary_free_list. Let's move them to the free_list and try
|
|
// again to allocate from it.
|
|
append_secondary_free_list();
|
|
|
|
assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
|
|
"empty we should have moved at least one entry to the free_list");
|
|
HeapRegion* res = _hrm.allocate_free_region(is_old);
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
|
|
"allocated " HR_FORMAT " from secondary_free_list",
|
|
HR_FORMAT_PARAMS(res));
|
|
return res;
|
|
}
|
|
|
|
// Wait here until we get notified either when (a) there are no
|
|
// more free regions coming or (b) some regions have been moved on
|
|
// the secondary_free_list.
|
|
SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
|
|
"could not allocate from secondary_free_list");
|
|
return NULL;
|
|
}
|
|
|
|
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
|
|
assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
|
|
"the only time we use this to allocate a humongous region is "
|
|
"when we are allocating a single humongous region");
|
|
|
|
HeapRegion* res;
|
|
if (G1StressConcRegionFreeing) {
|
|
if (!_secondary_free_list.is_empty()) {
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
|
|
"forced to look at the secondary_free_list");
|
|
res = new_region_try_secondary_free_list(is_old);
|
|
if (res != NULL) {
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
res = _hrm.allocate_free_region(is_old);
|
|
|
|
if (res == NULL) {
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
|
|
"res == NULL, trying the secondary_free_list");
|
|
res = new_region_try_secondary_free_list(is_old);
|
|
}
|
|
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
|
|
// Currently, only attempts to allocate GC alloc regions set
|
|
// do_expand to true. So, we should only reach here during a
|
|
// safepoint. If this assumption changes we might have to
|
|
// reconsider the use of _expand_heap_after_alloc_failure.
|
|
assert(SafepointSynchronize::is_at_safepoint(), "invariant");
|
|
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
|
|
word_size * HeapWordSize);
|
|
|
|
if (expand(word_size * HeapWordSize)) {
|
|
// Given that expand() succeeded in expanding the heap, and we
|
|
// always expand the heap by an amount aligned to the heap
|
|
// region size, the free list should in theory not be empty.
|
|
// In either case allocate_free_region() will check for NULL.
|
|
res = _hrm.allocate_free_region(is_old);
|
|
} else {
|
|
_expand_heap_after_alloc_failure = false;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
HeapWord*
|
|
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
|
|
uint num_regions,
|
|
size_t word_size,
|
|
AllocationContext_t context) {
|
|
assert(first != G1_NO_HRM_INDEX, "pre-condition");
|
|
assert(is_humongous(word_size), "word_size should be humongous");
|
|
assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
|
|
|
|
// Index of last region in the series.
|
|
uint last = first + num_regions - 1;
|
|
|
|
// We need to initialize the region(s) we just discovered. This is
|
|
// a bit tricky given that it can happen concurrently with
|
|
// refinement threads refining cards on these regions and
|
|
// potentially wanting to refine the BOT as they are scanning
|
|
// those cards (this can happen shortly after a cleanup; see CR
|
|
// 6991377). So we have to set up the region(s) carefully and in
|
|
// a specific order.
|
|
|
|
// The word size sum of all the regions we will allocate.
|
|
size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
|
|
assert(word_size <= word_size_sum, "sanity");
|
|
|
|
// This will be the "starts humongous" region.
|
|
HeapRegion* first_hr = region_at(first);
|
|
// The header of the new object will be placed at the bottom of
|
|
// the first region.
|
|
HeapWord* new_obj = first_hr->bottom();
|
|
// This will be the new top of the new object.
|
|
HeapWord* obj_top = new_obj + word_size;
|
|
|
|
// First, we need to zero the header of the space that we will be
|
|
// allocating. When we update top further down, some refinement
|
|
// threads might try to scan the region. By zeroing the header we
|
|
// ensure that any thread that will try to scan the region will
|
|
// come across the zero klass word and bail out.
|
|
//
|
|
// NOTE: It would not have been correct to have used
|
|
// CollectedHeap::fill_with_object() and make the space look like
|
|
// an int array. The thread that is doing the allocation will
|
|
// later update the object header to a potentially different array
|
|
// type and, for a very short period of time, the klass and length
|
|
// fields will be inconsistent. This could cause a refinement
|
|
// thread to calculate the object size incorrectly.
|
|
Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
|
|
|
|
// Next, pad out the unused tail of the last region with filler
|
|
// objects, for improved usage accounting.
|
|
// How many words we use for filler objects.
|
|
size_t word_fill_size = word_size_sum - word_size;
|
|
|
|
// How many words memory we "waste" which cannot hold a filler object.
|
|
size_t words_not_fillable = 0;
|
|
|
|
if (word_fill_size >= min_fill_size()) {
|
|
fill_with_objects(obj_top, word_fill_size);
|
|
} else if (word_fill_size > 0) {
|
|
// We have space to fill, but we cannot fit an object there.
|
|
words_not_fillable = word_fill_size;
|
|
word_fill_size = 0;
|
|
}
|
|
|
|
// We will set up the first region as "starts humongous". This
|
|
// will also update the BOT covering all the regions to reflect
|
|
// that there is a single object that starts at the bottom of the
|
|
// first region.
|
|
first_hr->set_starts_humongous(obj_top, word_fill_size);
|
|
first_hr->set_allocation_context(context);
|
|
// Then, if there are any, we will set up the "continues
|
|
// humongous" regions.
|
|
HeapRegion* hr = NULL;
|
|
for (uint i = first + 1; i <= last; ++i) {
|
|
hr = region_at(i);
|
|
hr->set_continues_humongous(first_hr);
|
|
hr->set_allocation_context(context);
|
|
}
|
|
|
|
// Up to this point no concurrent thread would have been able to
|
|
// do any scanning on any region in this series. All the top
|
|
// fields still point to bottom, so the intersection between
|
|
// [bottom,top] and [card_start,card_end] will be empty. Before we
|
|
// update the top fields, we'll do a storestore to make sure that
|
|
// no thread sees the update to top before the zeroing of the
|
|
// object header and the BOT initialization.
|
|
OrderAccess::storestore();
|
|
|
|
// Now, we will update the top fields of the "continues humongous"
|
|
// regions except the last one.
|
|
for (uint i = first; i < last; ++i) {
|
|
hr = region_at(i);
|
|
hr->set_top(hr->end());
|
|
}
|
|
|
|
hr = region_at(last);
|
|
// If we cannot fit a filler object, we must set top to the end
|
|
// of the humongous object, otherwise we cannot iterate the heap
|
|
// and the BOT will not be complete.
|
|
hr->set_top(hr->end() - words_not_fillable);
|
|
|
|
assert(hr->bottom() < obj_top && obj_top <= hr->end(),
|
|
"obj_top should be in last region");
|
|
|
|
_verifier->check_bitmaps("Humongous Region Allocation", first_hr);
|
|
|
|
assert(words_not_fillable == 0 ||
|
|
first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
|
|
"Miscalculation in humongous allocation");
|
|
|
|
increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
|
|
|
|
for (uint i = first; i <= last; ++i) {
|
|
hr = region_at(i);
|
|
_humongous_set.add(hr);
|
|
_hr_printer.alloc(hr);
|
|
}
|
|
|
|
return new_obj;
|
|
}
|
|
|
|
size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
|
|
assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
|
|
return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
|
|
}
|
|
|
|
// If could fit into free regions w/o expansion, try.
|
|
// Otherwise, if can expand, do so.
|
|
// Otherwise, if using ex regions might help, try with ex given back.
|
|
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
|
|
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
_verifier->verify_region_sets_optional();
|
|
|
|
uint first = G1_NO_HRM_INDEX;
|
|
uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
|
|
|
|
if (obj_regions == 1) {
|
|
// Only one region to allocate, try to use a fast path by directly allocating
|
|
// from the free lists. Do not try to expand here, we will potentially do that
|
|
// later.
|
|
HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
|
|
if (hr != NULL) {
|
|
first = hr->hrm_index();
|
|
}
|
|
} else {
|
|
// We can't allocate humongous regions spanning more than one region while
|
|
// cleanupComplete() is running, since some of the regions we find to be
|
|
// empty might not yet be added to the free list. It is not straightforward
|
|
// to know in which list they are on so that we can remove them. We only
|
|
// need to do this if we need to allocate more than one region to satisfy the
|
|
// current humongous allocation request. If we are only allocating one region
|
|
// we use the one-region region allocation code (see above), that already
|
|
// potentially waits for regions from the secondary free list.
|
|
wait_while_free_regions_coming();
|
|
append_secondary_free_list_if_not_empty_with_lock();
|
|
|
|
// Policy: Try only empty regions (i.e. already committed first). Maybe we
|
|
// are lucky enough to find some.
|
|
first = _hrm.find_contiguous_only_empty(obj_regions);
|
|
if (first != G1_NO_HRM_INDEX) {
|
|
_hrm.allocate_free_regions_starting_at(first, obj_regions);
|
|
}
|
|
}
|
|
|
|
if (first == G1_NO_HRM_INDEX) {
|
|
// Policy: We could not find enough regions for the humongous object in the
|
|
// free list. Look through the heap to find a mix of free and uncommitted regions.
|
|
// If so, try expansion.
|
|
first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
|
|
if (first != G1_NO_HRM_INDEX) {
|
|
// We found something. Make sure these regions are committed, i.e. expand
|
|
// the heap. Alternatively we could do a defragmentation GC.
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
|
|
word_size * HeapWordSize);
|
|
|
|
_hrm.expand_at(first, obj_regions, workers());
|
|
g1_policy()->record_new_heap_size(num_regions());
|
|
|
|
#ifdef ASSERT
|
|
for (uint i = first; i < first + obj_regions; ++i) {
|
|
HeapRegion* hr = region_at(i);
|
|
assert(hr->is_free(), "sanity");
|
|
assert(hr->is_empty(), "sanity");
|
|
assert(is_on_master_free_list(hr), "sanity");
|
|
}
|
|
#endif
|
|
_hrm.allocate_free_regions_starting_at(first, obj_regions);
|
|
} else {
|
|
// Policy: Potentially trigger a defragmentation GC.
|
|
}
|
|
}
|
|
|
|
HeapWord* result = NULL;
|
|
if (first != G1_NO_HRM_INDEX) {
|
|
result = humongous_obj_allocate_initialize_regions(first, obj_regions,
|
|
word_size, context);
|
|
assert(result != NULL, "it should always return a valid result");
|
|
|
|
// A successful humongous object allocation changes the used space
|
|
// information of the old generation so we need to recalculate the
|
|
// sizes and update the jstat counters here.
|
|
g1mm()->update_sizes();
|
|
}
|
|
|
|
_verifier->verify_region_sets_optional();
|
|
|
|
return result;
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
assert(!is_humongous(word_size), "we do not allow humongous TLABs");
|
|
|
|
return attempt_allocation(word_size);
|
|
}
|
|
|
|
HeapWord*
|
|
G1CollectedHeap::mem_allocate(size_t word_size,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
|
|
if (is_humongous(word_size)) {
|
|
return attempt_allocation_humongous(word_size);
|
|
}
|
|
return attempt_allocation(word_size);
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
|
|
AllocationContext_t context) {
|
|
ResourceMark rm; // For retrieving the thread names in log messages.
|
|
|
|
// Make sure you read the note in attempt_allocation_humongous().
|
|
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
|
|
"be called for humongous allocation requests");
|
|
|
|
// We should only get here after the first-level allocation attempt
|
|
// (attempt_allocation()) failed to allocate.
|
|
|
|
// We will loop until a) we manage to successfully perform the
|
|
// allocation or b) we successfully schedule a collection which
|
|
// fails to perform the allocation. b) is the only case when we'll
|
|
// return NULL.
|
|
HeapWord* result = NULL;
|
|
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
|
|
bool should_try_gc;
|
|
uint gc_count_before;
|
|
|
|
{
|
|
MutexLockerEx x(Heap_lock);
|
|
result = _allocator->attempt_allocation_locked(word_size, context);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// If the GCLocker is active and we are bound for a GC, try expanding young gen.
|
|
// This is different to when only GCLocker::needs_gc() is set: try to avoid
|
|
// waiting because the GCLocker is active to not wait too long.
|
|
if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
|
|
// No need for an ergo message here, can_expand_young_list() does this when
|
|
// it returns true.
|
|
result = _allocator->attempt_allocation_force(word_size, context);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
|
|
// the GCLocker initiated GC has been performed and then retry. This includes
|
|
// the case when the GC Locker is not active but has not been performed.
|
|
should_try_gc = !GCLocker::needs_gc();
|
|
// Read the GC count while still holding the Heap_lock.
|
|
gc_count_before = total_collections();
|
|
}
|
|
|
|
if (should_try_gc) {
|
|
bool succeeded;
|
|
result = do_collection_pause(word_size, gc_count_before, &succeeded,
|
|
GCCause::_g1_inc_collection_pause);
|
|
if (result != NULL) {
|
|
assert(succeeded, "only way to get back a non-NULL result");
|
|
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
|
|
Thread::current()->name(), p2i(result));
|
|
return result;
|
|
}
|
|
|
|
if (succeeded) {
|
|
// We successfully scheduled a collection which failed to allocate. No
|
|
// point in trying to allocate further. We'll just return NULL.
|
|
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
|
|
SIZE_FORMAT " words", Thread::current()->name(), word_size);
|
|
return NULL;
|
|
}
|
|
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
|
|
Thread::current()->name(), word_size);
|
|
} else {
|
|
// Failed to schedule a collection.
|
|
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
|
|
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
|
|
SIZE_FORMAT " words", Thread::current()->name(), word_size);
|
|
return NULL;
|
|
}
|
|
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
|
|
// The GCLocker is either active or the GCLocker initiated
|
|
// GC has not yet been performed. Stall until it is and
|
|
// then retry the allocation.
|
|
GCLocker::stall_until_clear();
|
|
gclocker_retry_count += 1;
|
|
}
|
|
|
|
// We can reach here if we were unsuccessful in scheduling a
|
|
// collection (because another thread beat us to it) or if we were
|
|
// stalled due to the GC locker. In either can we should retry the
|
|
// allocation attempt in case another thread successfully
|
|
// performed a collection and reclaimed enough space. We do the
|
|
// first attempt (without holding the Heap_lock) here and the
|
|
// follow-on attempt will be at the start of the next loop
|
|
// iteration (after taking the Heap_lock).
|
|
|
|
result = _allocator->attempt_allocation(word_size, context);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// Give a warning if we seem to be looping forever.
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(try_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
|
|
Thread::current()->name(), try_count, word_size);
|
|
}
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
void G1CollectedHeap::begin_archive_alloc_range(bool open) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
if (_archive_allocator == NULL) {
|
|
_archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
|
|
}
|
|
}
|
|
|
|
bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
|
|
// Allocations in archive regions cannot be of a size that would be considered
|
|
// humongous even for a minimum-sized region, because G1 region sizes/boundaries
|
|
// may be different at archive-restore time.
|
|
return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
|
|
if (is_archive_alloc_too_large(word_size)) {
|
|
return NULL;
|
|
}
|
|
return _archive_allocator->archive_mem_allocate(word_size);
|
|
}
|
|
|
|
void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
|
|
size_t end_alignment_in_bytes) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
|
|
|
|
// Call complete_archive to do the real work, filling in the MemRegion
|
|
// array with the archive regions.
|
|
_archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
|
|
delete _archive_allocator;
|
|
_archive_allocator = NULL;
|
|
}
|
|
|
|
bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
|
|
assert(ranges != NULL, "MemRegion array NULL");
|
|
assert(count != 0, "No MemRegions provided");
|
|
MemRegion reserved = _hrm.reserved();
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
|
|
size_t count,
|
|
bool open) {
|
|
assert(!is_init_completed(), "Expect to be called at JVM init time");
|
|
assert(ranges != NULL, "MemRegion array NULL");
|
|
assert(count != 0, "No MemRegions provided");
|
|
MutexLockerEx x(Heap_lock);
|
|
|
|
MemRegion reserved = _hrm.reserved();
|
|
HeapWord* prev_last_addr = NULL;
|
|
HeapRegion* prev_last_region = NULL;
|
|
|
|
// Temporarily disable pretouching of heap pages. This interface is used
|
|
// when mmap'ing archived heap data in, so pre-touching is wasted.
|
|
FlagSetting fs(AlwaysPreTouch, false);
|
|
|
|
// Enable archive object checking used by G1MarkSweep. We have to let it know
|
|
// about each archive range, so that objects in those ranges aren't marked.
|
|
G1ArchiveAllocator::enable_archive_object_check();
|
|
|
|
// For each specified MemRegion range, allocate the corresponding G1
|
|
// regions and mark them as archive regions. We expect the ranges
|
|
// in ascending starting address order, without overlap.
|
|
for (size_t i = 0; i < count; i++) {
|
|
MemRegion curr_range = ranges[i];
|
|
HeapWord* start_address = curr_range.start();
|
|
size_t word_size = curr_range.word_size();
|
|
HeapWord* last_address = curr_range.last();
|
|
size_t commits = 0;
|
|
|
|
guarantee(reserved.contains(start_address) && reserved.contains(last_address),
|
|
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
|
|
p2i(start_address), p2i(last_address));
|
|
guarantee(start_address > prev_last_addr,
|
|
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
|
|
p2i(start_address), p2i(prev_last_addr));
|
|
prev_last_addr = last_address;
|
|
|
|
// Check for ranges that start in the same G1 region in which the previous
|
|
// range ended, and adjust the start address so we don't try to allocate
|
|
// the same region again. If the current range is entirely within that
|
|
// region, skip it, just adjusting the recorded top.
|
|
HeapRegion* start_region = _hrm.addr_to_region(start_address);
|
|
if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
|
|
start_address = start_region->end();
|
|
if (start_address > last_address) {
|
|
increase_used(word_size * HeapWordSize);
|
|
start_region->set_top(last_address + 1);
|
|
continue;
|
|
}
|
|
start_region->set_top(start_address);
|
|
curr_range = MemRegion(start_address, last_address + 1);
|
|
start_region = _hrm.addr_to_region(start_address);
|
|
}
|
|
|
|
// Perform the actual region allocation, exiting if it fails.
|
|
// Then note how much new space we have allocated.
|
|
if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
|
|
return false;
|
|
}
|
|
increase_used(word_size * HeapWordSize);
|
|
if (commits != 0) {
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
|
|
HeapRegion::GrainWords * HeapWordSize * commits);
|
|
|
|
}
|
|
|
|
// Mark each G1 region touched by the range as archive, add it to
|
|
// the old set, and set the allocation context and top.
|
|
HeapRegion* curr_region = _hrm.addr_to_region(start_address);
|
|
HeapRegion* last_region = _hrm.addr_to_region(last_address);
|
|
prev_last_region = last_region;
|
|
|
|
while (curr_region != NULL) {
|
|
assert(curr_region->is_empty() && !curr_region->is_pinned(),
|
|
"Region already in use (index %u)", curr_region->hrm_index());
|
|
curr_region->set_allocation_context(AllocationContext::system());
|
|
if (open) {
|
|
curr_region->set_open_archive();
|
|
} else {
|
|
curr_region->set_closed_archive();
|
|
}
|
|
_hr_printer.alloc(curr_region);
|
|
_old_set.add(curr_region);
|
|
HeapWord* top;
|
|
HeapRegion* next_region;
|
|
if (curr_region != last_region) {
|
|
top = curr_region->end();
|
|
next_region = _hrm.next_region_in_heap(curr_region);
|
|
} else {
|
|
top = last_address + 1;
|
|
next_region = NULL;
|
|
}
|
|
curr_region->set_top(top);
|
|
curr_region->set_first_dead(top);
|
|
curr_region->set_end_of_live(top);
|
|
curr_region = next_region;
|
|
}
|
|
|
|
// Notify mark-sweep of the archive
|
|
G1ArchiveAllocator::set_range_archive(curr_range, open);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
|
|
assert(!is_init_completed(), "Expect to be called at JVM init time");
|
|
assert(ranges != NULL, "MemRegion array NULL");
|
|
assert(count != 0, "No MemRegions provided");
|
|
MemRegion reserved = _hrm.reserved();
|
|
HeapWord *prev_last_addr = NULL;
|
|
HeapRegion* prev_last_region = NULL;
|
|
|
|
// For each MemRegion, create filler objects, if needed, in the G1 regions
|
|
// that contain the address range. The address range actually within the
|
|
// MemRegion will not be modified. That is assumed to have been initialized
|
|
// elsewhere, probably via an mmap of archived heap data.
|
|
MutexLockerEx x(Heap_lock);
|
|
for (size_t i = 0; i < count; i++) {
|
|
HeapWord* start_address = ranges[i].start();
|
|
HeapWord* last_address = ranges[i].last();
|
|
|
|
assert(reserved.contains(start_address) && reserved.contains(last_address),
|
|
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
|
|
p2i(start_address), p2i(last_address));
|
|
assert(start_address > prev_last_addr,
|
|
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
|
|
p2i(start_address), p2i(prev_last_addr));
|
|
|
|
HeapRegion* start_region = _hrm.addr_to_region(start_address);
|
|
HeapRegion* last_region = _hrm.addr_to_region(last_address);
|
|
HeapWord* bottom_address = start_region->bottom();
|
|
|
|
// Check for a range beginning in the same region in which the
|
|
// previous one ended.
|
|
if (start_region == prev_last_region) {
|
|
bottom_address = prev_last_addr + 1;
|
|
}
|
|
|
|
// Verify that the regions were all marked as archive regions by
|
|
// alloc_archive_regions.
|
|
HeapRegion* curr_region = start_region;
|
|
while (curr_region != NULL) {
|
|
guarantee(curr_region->is_archive(),
|
|
"Expected archive region at index %u", curr_region->hrm_index());
|
|
if (curr_region != last_region) {
|
|
curr_region = _hrm.next_region_in_heap(curr_region);
|
|
} else {
|
|
curr_region = NULL;
|
|
}
|
|
}
|
|
|
|
prev_last_addr = last_address;
|
|
prev_last_region = last_region;
|
|
|
|
// Fill the memory below the allocated range with dummy object(s),
|
|
// if the region bottom does not match the range start, or if the previous
|
|
// range ended within the same G1 region, and there is a gap.
|
|
if (start_address != bottom_address) {
|
|
size_t fill_size = pointer_delta(start_address, bottom_address);
|
|
G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
|
|
increase_used(fill_size * HeapWordSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
assert(!is_humongous(word_size), "attempt_allocation() should not "
|
|
"be called for humongous allocation requests");
|
|
|
|
AllocationContext_t context = AllocationContext::current();
|
|
HeapWord* result = _allocator->attempt_allocation(word_size, context);
|
|
|
|
if (result == NULL) {
|
|
result = attempt_allocation_slow(word_size, context);
|
|
}
|
|
assert_heap_not_locked();
|
|
if (result != NULL) {
|
|
dirty_young_block(result, word_size);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
|
|
assert(!is_init_completed(), "Expect to be called at JVM init time");
|
|
assert(ranges != NULL, "MemRegion array NULL");
|
|
assert(count != 0, "No MemRegions provided");
|
|
MemRegion reserved = _hrm.reserved();
|
|
HeapWord* prev_last_addr = NULL;
|
|
HeapRegion* prev_last_region = NULL;
|
|
size_t size_used = 0;
|
|
size_t uncommitted_regions = 0;
|
|
|
|
// For each Memregion, free the G1 regions that constitute it, and
|
|
// notify mark-sweep that the range is no longer to be considered 'archive.'
|
|
MutexLockerEx x(Heap_lock);
|
|
for (size_t i = 0; i < count; i++) {
|
|
HeapWord* start_address = ranges[i].start();
|
|
HeapWord* last_address = ranges[i].last();
|
|
|
|
assert(reserved.contains(start_address) && reserved.contains(last_address),
|
|
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
|
|
p2i(start_address), p2i(last_address));
|
|
assert(start_address > prev_last_addr,
|
|
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
|
|
p2i(start_address), p2i(prev_last_addr));
|
|
size_used += ranges[i].byte_size();
|
|
prev_last_addr = last_address;
|
|
|
|
HeapRegion* start_region = _hrm.addr_to_region(start_address);
|
|
HeapRegion* last_region = _hrm.addr_to_region(last_address);
|
|
|
|
// Check for ranges that start in the same G1 region in which the previous
|
|
// range ended, and adjust the start address so we don't try to free
|
|
// the same region again. If the current range is entirely within that
|
|
// region, skip it.
|
|
if (start_region == prev_last_region) {
|
|
start_address = start_region->end();
|
|
if (start_address > last_address) {
|
|
continue;
|
|
}
|
|
start_region = _hrm.addr_to_region(start_address);
|
|
}
|
|
prev_last_region = last_region;
|
|
|
|
// After verifying that each region was marked as an archive region by
|
|
// alloc_archive_regions, set it free and empty and uncommit it.
|
|
HeapRegion* curr_region = start_region;
|
|
while (curr_region != NULL) {
|
|
guarantee(curr_region->is_archive(),
|
|
"Expected archive region at index %u", curr_region->hrm_index());
|
|
uint curr_index = curr_region->hrm_index();
|
|
_old_set.remove(curr_region);
|
|
curr_region->set_free();
|
|
curr_region->set_top(curr_region->bottom());
|
|
if (curr_region != last_region) {
|
|
curr_region = _hrm.next_region_in_heap(curr_region);
|
|
} else {
|
|
curr_region = NULL;
|
|
}
|
|
_hrm.shrink_at(curr_index, 1);
|
|
uncommitted_regions++;
|
|
}
|
|
|
|
// Notify mark-sweep that this is no longer an archive range.
|
|
G1ArchiveAllocator::set_range_archive(ranges[i], false);
|
|
}
|
|
|
|
if (uncommitted_regions != 0) {
|
|
log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
|
|
HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
|
|
}
|
|
decrease_used(size_used);
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
|
|
ResourceMark rm; // For retrieving the thread names in log messages.
|
|
|
|
// The structure of this method has a lot of similarities to
|
|
// attempt_allocation_slow(). The reason these two were not merged
|
|
// into a single one is that such a method would require several "if
|
|
// allocation is not humongous do this, otherwise do that"
|
|
// conditional paths which would obscure its flow. In fact, an early
|
|
// version of this code did use a unified method which was harder to
|
|
// follow and, as a result, it had subtle bugs that were hard to
|
|
// track down. So keeping these two methods separate allows each to
|
|
// be more readable. It will be good to keep these two in sync as
|
|
// much as possible.
|
|
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
assert(is_humongous(word_size), "attempt_allocation_humongous() "
|
|
"should only be called for humongous allocations");
|
|
|
|
// Humongous objects can exhaust the heap quickly, so we should check if we
|
|
// need to start a marking cycle at each humongous object allocation. We do
|
|
// the check before we do the actual allocation. The reason for doing it
|
|
// before the allocation is that we avoid having to keep track of the newly
|
|
// allocated memory while we do a GC.
|
|
if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
|
|
word_size)) {
|
|
collect(GCCause::_g1_humongous_allocation);
|
|
}
|
|
|
|
// We will loop until a) we manage to successfully perform the
|
|
// allocation or b) we successfully schedule a collection which
|
|
// fails to perform the allocation. b) is the only case when we'll
|
|
// return NULL.
|
|
HeapWord* result = NULL;
|
|
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
|
|
bool should_try_gc;
|
|
uint gc_count_before;
|
|
|
|
|
|
{
|
|
MutexLockerEx x(Heap_lock);
|
|
|
|
// Given that humongous objects are not allocated in young
|
|
// regions, we'll first try to do the allocation without doing a
|
|
// collection hoping that there's enough space in the heap.
|
|
result = humongous_obj_allocate(word_size, AllocationContext::current());
|
|
if (result != NULL) {
|
|
size_t size_in_regions = humongous_obj_size_in_regions(word_size);
|
|
g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
|
|
return result;
|
|
}
|
|
|
|
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
|
|
// the GCLocker initiated GC has been performed and then retry. This includes
|
|
// the case when the GC Locker is not active but has not been performed.
|
|
should_try_gc = !GCLocker::needs_gc();
|
|
// Read the GC count while still holding the Heap_lock.
|
|
gc_count_before = total_collections();
|
|
}
|
|
|
|
if (should_try_gc) {
|
|
bool succeeded;
|
|
result = do_collection_pause(word_size, gc_count_before, &succeeded,
|
|
GCCause::_g1_humongous_allocation);
|
|
if (result != NULL) {
|
|
assert(succeeded, "only way to get back a non-NULL result");
|
|
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
|
|
Thread::current()->name(), p2i(result));
|
|
return result;
|
|
}
|
|
|
|
if (succeeded) {
|
|
// We successfully scheduled a collection which failed to allocate. No
|
|
// point in trying to allocate further. We'll just return NULL.
|
|
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
|
|
SIZE_FORMAT " words", Thread::current()->name(), word_size);
|
|
return NULL;
|
|
}
|
|
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
|
|
Thread::current()->name(), word_size);
|
|
} else {
|
|
// Failed to schedule a collection.
|
|
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
|
|
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
|
|
SIZE_FORMAT " words", Thread::current()->name(), word_size);
|
|
return NULL;
|
|
}
|
|
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
|
|
// The GCLocker is either active or the GCLocker initiated
|
|
// GC has not yet been performed. Stall until it is and
|
|
// then retry the allocation.
|
|
GCLocker::stall_until_clear();
|
|
gclocker_retry_count += 1;
|
|
}
|
|
|
|
|
|
// We can reach here if we were unsuccessful in scheduling a
|
|
// collection (because another thread beat us to it) or if we were
|
|
// stalled due to the GC locker. In either can we should retry the
|
|
// allocation attempt in case another thread successfully
|
|
// performed a collection and reclaimed enough space.
|
|
// Humongous object allocation always needs a lock, so we wait for the retry
|
|
// in the next iteration of the loop, unlike for the regular iteration case.
|
|
// Give a warning if we seem to be looping forever.
|
|
|
|
if ((QueuedAllocationWarningCount > 0) &&
|
|
(try_count % QueuedAllocationWarningCount == 0)) {
|
|
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
|
|
Thread::current()->name(), try_count, word_size);
|
|
}
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
|
|
AllocationContext_t context,
|
|
bool expect_null_mutator_alloc_region) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
|
|
"the current alloc region was unexpectedly found to be non-NULL");
|
|
|
|
if (!is_humongous(word_size)) {
|
|
return _allocator->attempt_allocation_locked(word_size, context);
|
|
} else {
|
|
HeapWord* result = humongous_obj_allocate(word_size, context);
|
|
if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
|
|
collector_state()->set_initiate_conc_mark_if_possible(true);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
class PostCompactionPrinterClosure: public HeapRegionClosure {
|
|
private:
|
|
G1HRPrinter* _hr_printer;
|
|
public:
|
|
bool do_heap_region(HeapRegion* hr) {
|
|
assert(!hr->is_young(), "not expecting to find young regions");
|
|
_hr_printer->post_compaction(hr);
|
|
return false;
|
|
}
|
|
|
|
PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
|
|
: _hr_printer(hr_printer) { }
|
|
};
|
|
|
|
void G1CollectedHeap::print_hrm_post_compaction() {
|
|
if (_hr_printer.is_active()) {
|
|
PostCompactionPrinterClosure cl(hr_printer());
|
|
heap_region_iterate(&cl);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::abort_concurrent_cycle() {
|
|
// Note: When we have a more flexible GC logging framework that
|
|
// allows us to add optional attributes to a GC log record we
|
|
// could consider timing and reporting how long we wait in the
|
|
// following two methods.
|
|
wait_while_free_regions_coming();
|
|
// If we start the compaction before the CM threads finish
|
|
// scanning the root regions we might trip them over as we'll
|
|
// be moving objects / updating references. So let's wait until
|
|
// they are done. By telling them to abort, they should complete
|
|
// early.
|
|
_cm->root_regions()->abort();
|
|
_cm->root_regions()->wait_until_scan_finished();
|
|
append_secondary_free_list_if_not_empty_with_lock();
|
|
|
|
// Disable discovery and empty the discovered lists
|
|
// for the CM ref processor.
|
|
ref_processor_cm()->disable_discovery();
|
|
ref_processor_cm()->abandon_partial_discovery();
|
|
ref_processor_cm()->verify_no_references_recorded();
|
|
|
|
// Abandon current iterations of concurrent marking and concurrent
|
|
// refinement, if any are in progress.
|
|
concurrent_mark()->abort();
|
|
}
|
|
|
|
void G1CollectedHeap::prepare_heap_for_full_collection() {
|
|
// Make sure we'll choose a new allocation region afterwards.
|
|
_allocator->release_mutator_alloc_region();
|
|
_allocator->abandon_gc_alloc_regions();
|
|
g1_rem_set()->cleanupHRRS();
|
|
|
|
// We may have added regions to the current incremental collection
|
|
// set between the last GC or pause and now. We need to clear the
|
|
// incremental collection set and then start rebuilding it afresh
|
|
// after this full GC.
|
|
abandon_collection_set(collection_set());
|
|
|
|
tear_down_region_sets(false /* free_list_only */);
|
|
collector_state()->set_gcs_are_young(true);
|
|
}
|
|
|
|
void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
|
|
assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
|
|
assert(used() == recalculate_used(), "Should be equal");
|
|
_verifier->verify_region_sets_optional();
|
|
_verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
|
|
_verifier->check_bitmaps("Full GC Start");
|
|
}
|
|
|
|
void G1CollectedHeap::prepare_heap_for_mutators() {
|
|
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
|
|
ClassLoaderDataGraph::purge();
|
|
MetaspaceAux::verify_metrics();
|
|
|
|
// Prepare heap for normal collections.
|
|
assert(num_free_regions() == 0, "we should not have added any free regions");
|
|
rebuild_region_sets(false /* free_list_only */);
|
|
abort_refinement();
|
|
resize_if_necessary_after_full_collection();
|
|
|
|
// Rebuild the strong code root lists for each region
|
|
rebuild_strong_code_roots();
|
|
|
|
// Start a new incremental collection set for the next pause
|
|
start_new_collection_set();
|
|
|
|
_allocator->init_mutator_alloc_region();
|
|
|
|
// Post collection state updates.
|
|
MetaspaceGC::compute_new_size();
|
|
}
|
|
|
|
void G1CollectedHeap::abort_refinement() {
|
|
if (_hot_card_cache->use_cache()) {
|
|
_hot_card_cache->reset_hot_cache();
|
|
}
|
|
|
|
// Discard all remembered set updates.
|
|
JavaThread::dirty_card_queue_set().abandon_logs();
|
|
assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
|
|
}
|
|
|
|
void G1CollectedHeap::verify_after_full_collection() {
|
|
check_gc_time_stamps();
|
|
_hrm.verify_optional();
|
|
_verifier->verify_region_sets_optional();
|
|
_verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
|
|
// Clear the previous marking bitmap, if needed for bitmap verification.
|
|
// Note we cannot do this when we clear the next marking bitmap in
|
|
// G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
|
|
// objects marked during a full GC against the previous bitmap.
|
|
// But we need to clear it before calling check_bitmaps below since
|
|
// the full GC has compacted objects and updated TAMS but not updated
|
|
// the prev bitmap.
|
|
if (G1VerifyBitmaps) {
|
|
GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
|
|
_cm->clear_prev_bitmap(workers());
|
|
}
|
|
_verifier->check_bitmaps("Full GC End");
|
|
|
|
// At this point there should be no regions in the
|
|
// entire heap tagged as young.
|
|
assert(check_young_list_empty(), "young list should be empty at this point");
|
|
|
|
// Note: since we've just done a full GC, concurrent
|
|
// marking is no longer active. Therefore we need not
|
|
// re-enable reference discovery for the CM ref processor.
|
|
// That will be done at the start of the next marking cycle.
|
|
// We also know that the STW processor should no longer
|
|
// discover any new references.
|
|
assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
|
|
assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
|
|
ref_processor_stw()->verify_no_references_recorded();
|
|
ref_processor_cm()->verify_no_references_recorded();
|
|
}
|
|
|
|
void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
|
|
// Post collection logging.
|
|
// We should do this after we potentially resize the heap so
|
|
// that all the COMMIT / UNCOMMIT events are generated before
|
|
// the compaction events.
|
|
print_hrm_post_compaction();
|
|
heap_transition->print();
|
|
print_heap_after_gc();
|
|
print_heap_regions();
|
|
#ifdef TRACESPINNING
|
|
ParallelTaskTerminator::print_termination_counts();
|
|
#endif
|
|
}
|
|
|
|
bool G1CollectedHeap::do_full_collection(bool explicit_gc,
|
|
bool clear_all_soft_refs) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
if (GCLocker::check_active_before_gc()) {
|
|
// Full GC was not completed.
|
|
return false;
|
|
}
|
|
|
|
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
|
|
collector_policy()->should_clear_all_soft_refs();
|
|
|
|
G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
|
|
GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
|
|
|
|
collector.prepare_collection();
|
|
collector.collect();
|
|
collector.complete_collection();
|
|
|
|
// Full collection was successfully completed.
|
|
return true;
|
|
}
|
|
|
|
void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
|
|
// Currently, there is no facility in the do_full_collection(bool) API to notify
|
|
// the caller that the collection did not succeed (e.g., because it was locked
|
|
// out by the GC locker). So, right now, we'll ignore the return value.
|
|
bool dummy = do_full_collection(true, /* explicit_gc */
|
|
clear_all_soft_refs);
|
|
}
|
|
|
|
void G1CollectedHeap::resize_if_necessary_after_full_collection() {
|
|
// Capacity, free and used after the GC counted as full regions to
|
|
// include the waste in the following calculations.
|
|
const size_t capacity_after_gc = capacity();
|
|
const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
|
|
|
|
// This is enforced in arguments.cpp.
|
|
assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
|
|
"otherwise the code below doesn't make sense");
|
|
|
|
// We don't have floating point command-line arguments
|
|
const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
|
|
const double maximum_used_percentage = 1.0 - minimum_free_percentage;
|
|
const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
|
|
const double minimum_used_percentage = 1.0 - maximum_free_percentage;
|
|
|
|
const size_t min_heap_size = collector_policy()->min_heap_byte_size();
|
|
const size_t max_heap_size = collector_policy()->max_heap_byte_size();
|
|
|
|
// We have to be careful here as these two calculations can overflow
|
|
// 32-bit size_t's.
|
|
double used_after_gc_d = (double) used_after_gc;
|
|
double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
|
|
double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
|
|
|
|
// Let's make sure that they are both under the max heap size, which
|
|
// by default will make them fit into a size_t.
|
|
double desired_capacity_upper_bound = (double) max_heap_size;
|
|
minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
|
|
desired_capacity_upper_bound);
|
|
maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
|
|
desired_capacity_upper_bound);
|
|
|
|
// We can now safely turn them into size_t's.
|
|
size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
|
|
size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
|
|
|
|
// This assert only makes sense here, before we adjust them
|
|
// with respect to the min and max heap size.
|
|
assert(minimum_desired_capacity <= maximum_desired_capacity,
|
|
"minimum_desired_capacity = " SIZE_FORMAT ", "
|
|
"maximum_desired_capacity = " SIZE_FORMAT,
|
|
minimum_desired_capacity, maximum_desired_capacity);
|
|
|
|
// Should not be greater than the heap max size. No need to adjust
|
|
// it with respect to the heap min size as it's a lower bound (i.e.,
|
|
// we'll try to make the capacity larger than it, not smaller).
|
|
minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
|
|
// Should not be less than the heap min size. No need to adjust it
|
|
// with respect to the heap max size as it's an upper bound (i.e.,
|
|
// we'll try to make the capacity smaller than it, not greater).
|
|
maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size);
|
|
|
|
if (capacity_after_gc < minimum_desired_capacity) {
|
|
// Don't expand unless it's significant
|
|
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
|
|
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
|
|
"Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
|
|
"min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
|
|
capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
|
|
|
|
expand(expand_bytes, _workers);
|
|
|
|
// No expansion, now see if we want to shrink
|
|
} else if (capacity_after_gc > maximum_desired_capacity) {
|
|
// Capacity too large, compute shrinking size
|
|
size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
|
|
|
|
log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
|
|
"Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
|
|
"maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
|
|
capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
|
|
|
|
shrink(shrink_bytes);
|
|
}
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
|
|
AllocationContext_t context,
|
|
bool do_gc,
|
|
bool clear_all_soft_refs,
|
|
bool expect_null_mutator_alloc_region,
|
|
bool* gc_succeeded) {
|
|
*gc_succeeded = true;
|
|
// Let's attempt the allocation first.
|
|
HeapWord* result =
|
|
attempt_allocation_at_safepoint(word_size,
|
|
context,
|
|
expect_null_mutator_alloc_region);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// In a G1 heap, we're supposed to keep allocation from failing by
|
|
// incremental pauses. Therefore, at least for now, we'll favor
|
|
// expansion over collection. (This might change in the future if we can
|
|
// do something smarter than full collection to satisfy a failed alloc.)
|
|
result = expand_and_allocate(word_size, context);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
if (do_gc) {
|
|
// Expansion didn't work, we'll try to do a Full GC.
|
|
*gc_succeeded = do_full_collection(false, /* explicit_gc */
|
|
clear_all_soft_refs);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
|
|
AllocationContext_t context,
|
|
bool* succeeded) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
// Attempts to allocate followed by Full GC.
|
|
HeapWord* result =
|
|
satisfy_failed_allocation_helper(word_size,
|
|
context,
|
|
true, /* do_gc */
|
|
false, /* clear_all_soft_refs */
|
|
false, /* expect_null_mutator_alloc_region */
|
|
succeeded);
|
|
|
|
if (result != NULL || !*succeeded) {
|
|
return result;
|
|
}
|
|
|
|
// Attempts to allocate followed by Full GC that will collect all soft references.
|
|
result = satisfy_failed_allocation_helper(word_size,
|
|
context,
|
|
true, /* do_gc */
|
|
true, /* clear_all_soft_refs */
|
|
true, /* expect_null_mutator_alloc_region */
|
|
succeeded);
|
|
|
|
if (result != NULL || !*succeeded) {
|
|
return result;
|
|
}
|
|
|
|
// Attempts to allocate, no GC
|
|
result = satisfy_failed_allocation_helper(word_size,
|
|
context,
|
|
false, /* do_gc */
|
|
false, /* clear_all_soft_refs */
|
|
true, /* expect_null_mutator_alloc_region */
|
|
succeeded);
|
|
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
assert(!collector_policy()->should_clear_all_soft_refs(),
|
|
"Flag should have been handled and cleared prior to this point");
|
|
|
|
// What else? We might try synchronous finalization later. If the total
|
|
// space available is large enough for the allocation, then a more
|
|
// complete compaction phase than we've tried so far might be
|
|
// appropriate.
|
|
return NULL;
|
|
}
|
|
|
|
// Attempting to expand the heap sufficiently
|
|
// to support an allocation of the given "word_size". If
|
|
// successful, perform the allocation and return the address of the
|
|
// allocated block, or else "NULL".
|
|
|
|
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
_verifier->verify_region_sets_optional();
|
|
|
|
size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
|
|
word_size * HeapWordSize);
|
|
|
|
|
|
if (expand(expand_bytes, _workers)) {
|
|
_hrm.verify_optional();
|
|
_verifier->verify_region_sets_optional();
|
|
return attempt_allocation_at_safepoint(word_size,
|
|
context,
|
|
false /* expect_null_mutator_alloc_region */);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
|
|
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
|
|
aligned_expand_bytes = align_up(aligned_expand_bytes,
|
|
HeapRegion::GrainBytes);
|
|
|
|
log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
|
|
expand_bytes, aligned_expand_bytes);
|
|
|
|
if (is_maximal_no_gc()) {
|
|
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
|
|
return false;
|
|
}
|
|
|
|
double expand_heap_start_time_sec = os::elapsedTime();
|
|
uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
|
|
assert(regions_to_expand > 0, "Must expand by at least one region");
|
|
|
|
uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
|
|
if (expand_time_ms != NULL) {
|
|
*expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
|
|
}
|
|
|
|
if (expanded_by > 0) {
|
|
size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
|
|
assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
|
|
g1_policy()->record_new_heap_size(num_regions());
|
|
} else {
|
|
log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
|
|
|
|
// The expansion of the virtual storage space was unsuccessful.
|
|
// Let's see if it was because we ran out of swap.
|
|
if (G1ExitOnExpansionFailure &&
|
|
_hrm.available() >= regions_to_expand) {
|
|
// We had head room...
|
|
vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
|
|
}
|
|
}
|
|
return regions_to_expand > 0;
|
|
}
|
|
|
|
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
|
|
size_t aligned_shrink_bytes =
|
|
ReservedSpace::page_align_size_down(shrink_bytes);
|
|
aligned_shrink_bytes = align_down(aligned_shrink_bytes,
|
|
HeapRegion::GrainBytes);
|
|
uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
|
|
|
|
uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
|
|
size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
|
|
|
|
|
|
log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
|
|
shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
|
|
if (num_regions_removed > 0) {
|
|
g1_policy()->record_new_heap_size(num_regions());
|
|
} else {
|
|
log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::shrink(size_t shrink_bytes) {
|
|
_verifier->verify_region_sets_optional();
|
|
|
|
// We should only reach here at the end of a Full GC which means we
|
|
// should not not be holding to any GC alloc regions. The method
|
|
// below will make sure of that and do any remaining clean up.
|
|
_allocator->abandon_gc_alloc_regions();
|
|
|
|
// Instead of tearing down / rebuilding the free lists here, we
|
|
// could instead use the remove_all_pending() method on free_list to
|
|
// remove only the ones that we need to remove.
|
|
tear_down_region_sets(true /* free_list_only */);
|
|
shrink_helper(shrink_bytes);
|
|
rebuild_region_sets(true /* free_list_only */);
|
|
|
|
_hrm.verify_optional();
|
|
_verifier->verify_region_sets_optional();
|
|
}
|
|
|
|
// Public methods.
|
|
|
|
G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
|
|
CollectedHeap(),
|
|
_young_gen_sampling_thread(NULL),
|
|
_collector_policy(collector_policy),
|
|
_memory_manager("G1 Young Generation", "end of minor GC"),
|
|
_full_gc_memory_manager("G1 Old Generation", "end of major GC"),
|
|
_eden_pool(NULL),
|
|
_survivor_pool(NULL),
|
|
_old_pool(NULL),
|
|
_gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
|
|
_gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
|
|
_g1_policy(create_g1_policy(_gc_timer_stw)),
|
|
_collection_set(this, _g1_policy),
|
|
_dirty_card_queue_set(false),
|
|
_is_alive_closure_cm(this),
|
|
_is_alive_closure_stw(this),
|
|
_ref_processor_cm(NULL),
|
|
_ref_processor_stw(NULL),
|
|
_bot(NULL),
|
|
_hot_card_cache(NULL),
|
|
_g1_rem_set(NULL),
|
|
_cr(NULL),
|
|
_g1mm(NULL),
|
|
_preserved_marks_set(true /* in_c_heap */),
|
|
_secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
|
|
_old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
|
|
_humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
|
|
_humongous_reclaim_candidates(),
|
|
_has_humongous_reclaim_candidates(false),
|
|
_archive_allocator(NULL),
|
|
_free_regions_coming(false),
|
|
_gc_time_stamp(0),
|
|
_summary_bytes_used(0),
|
|
_survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
|
|
_old_evac_stats("Old", OldPLABSize, PLABWeight),
|
|
_expand_heap_after_alloc_failure(true),
|
|
_old_marking_cycles_started(0),
|
|
_old_marking_cycles_completed(0),
|
|
_in_cset_fast_test() {
|
|
|
|
_workers = new WorkGang("GC Thread", ParallelGCThreads,
|
|
/* are_GC_task_threads */true,
|
|
/* are_ConcurrentGC_threads */false);
|
|
_workers->initialize_workers();
|
|
_verifier = new G1HeapVerifier(this);
|
|
|
|
_allocator = G1Allocator::create_allocator(this);
|
|
|
|
_heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
|
|
|
|
_humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
|
|
|
|
// Override the default _filler_array_max_size so that no humongous filler
|
|
// objects are created.
|
|
_filler_array_max_size = _humongous_object_threshold_in_words;
|
|
|
|
uint n_queues = ParallelGCThreads;
|
|
_task_queues = new RefToScanQueueSet(n_queues);
|
|
|
|
_evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
|
|
|
|
for (uint i = 0; i < n_queues; i++) {
|
|
RefToScanQueue* q = new RefToScanQueue();
|
|
q->initialize();
|
|
_task_queues->register_queue(i, q);
|
|
::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
|
|
}
|
|
|
|
// Initialize the G1EvacuationFailureALot counters and flags.
|
|
NOT_PRODUCT(reset_evacuation_should_fail();)
|
|
|
|
guarantee(_task_queues != NULL, "task_queues allocation failure.");
|
|
}
|
|
|
|
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
|
|
size_t size,
|
|
size_t translation_factor) {
|
|
size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
|
|
// Allocate a new reserved space, preferring to use large pages.
|
|
ReservedSpace rs(size, preferred_page_size);
|
|
G1RegionToSpaceMapper* result =
|
|
G1RegionToSpaceMapper::create_mapper(rs,
|
|
size,
|
|
rs.alignment(),
|
|
HeapRegion::GrainBytes,
|
|
translation_factor,
|
|
mtGC);
|
|
|
|
os::trace_page_sizes_for_requested_size(description,
|
|
size,
|
|
preferred_page_size,
|
|
rs.alignment(),
|
|
rs.base(),
|
|
rs.size());
|
|
|
|
return result;
|
|
}
|
|
|
|
jint G1CollectedHeap::initialize_concurrent_refinement() {
|
|
jint ecode = JNI_OK;
|
|
_cr = G1ConcurrentRefine::create(&ecode);
|
|
return ecode;
|
|
}
|
|
|
|
jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
|
|
_young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
|
|
if (_young_gen_sampling_thread->osthread() == NULL) {
|
|
vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
|
|
return JNI_ENOMEM;
|
|
}
|
|
return JNI_OK;
|
|
}
|
|
|
|
jint G1CollectedHeap::initialize() {
|
|
CollectedHeap::pre_initialize();
|
|
os::enable_vtime();
|
|
|
|
// Necessary to satisfy locking discipline assertions.
|
|
|
|
MutexLocker x(Heap_lock);
|
|
|
|
// While there are no constraints in the GC code that HeapWordSize
|
|
// be any particular value, there are multiple other areas in the
|
|
// system which believe this to be true (e.g. oop->object_size in some
|
|
// cases incorrectly returns the size in wordSize units rather than
|
|
// HeapWordSize).
|
|
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
|
|
|
|
size_t init_byte_size = collector_policy()->initial_heap_byte_size();
|
|
size_t max_byte_size = collector_policy()->max_heap_byte_size();
|
|
size_t heap_alignment = collector_policy()->heap_alignment();
|
|
|
|
// Ensure that the sizes are properly aligned.
|
|
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
|
|
Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
|
|
Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
|
|
|
|
// Reserve the maximum.
|
|
|
|
// When compressed oops are enabled, the preferred heap base
|
|
// is calculated by subtracting the requested size from the
|
|
// 32Gb boundary and using the result as the base address for
|
|
// heap reservation. If the requested size is not aligned to
|
|
// HeapRegion::GrainBytes (i.e. the alignment that is passed
|
|
// into the ReservedHeapSpace constructor) then the actual
|
|
// base of the reserved heap may end up differing from the
|
|
// address that was requested (i.e. the preferred heap base).
|
|
// If this happens then we could end up using a non-optimal
|
|
// compressed oops mode.
|
|
|
|
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
|
|
heap_alignment);
|
|
|
|
initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
|
|
|
|
// Create the barrier set for the entire reserved region.
|
|
G1SATBCardTableLoggingModRefBS* bs
|
|
= new G1SATBCardTableLoggingModRefBS(reserved_region());
|
|
bs->initialize();
|
|
assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
|
|
set_barrier_set(bs);
|
|
|
|
// Create the hot card cache.
|
|
_hot_card_cache = new G1HotCardCache(this);
|
|
|
|
// Carve out the G1 part of the heap.
|
|
ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
|
|
size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
|
|
G1RegionToSpaceMapper* heap_storage =
|
|
G1RegionToSpaceMapper::create_mapper(g1_rs,
|
|
g1_rs.size(),
|
|
page_size,
|
|
HeapRegion::GrainBytes,
|
|
1,
|
|
mtJavaHeap);
|
|
os::trace_page_sizes("Heap",
|
|
collector_policy()->min_heap_byte_size(),
|
|
max_byte_size,
|
|
page_size,
|
|
heap_rs.base(),
|
|
heap_rs.size());
|
|
heap_storage->set_mapping_changed_listener(&_listener);
|
|
|
|
// Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
|
|
G1RegionToSpaceMapper* bot_storage =
|
|
create_aux_memory_mapper("Block Offset Table",
|
|
G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
|
|
G1BlockOffsetTable::heap_map_factor());
|
|
|
|
G1RegionToSpaceMapper* cardtable_storage =
|
|
create_aux_memory_mapper("Card Table",
|
|
G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
|
|
G1SATBCardTableLoggingModRefBS::heap_map_factor());
|
|
|
|
G1RegionToSpaceMapper* card_counts_storage =
|
|
create_aux_memory_mapper("Card Counts Table",
|
|
G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
|
|
G1CardCounts::heap_map_factor());
|
|
|
|
size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
|
|
G1RegionToSpaceMapper* prev_bitmap_storage =
|
|
create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
|
|
G1RegionToSpaceMapper* next_bitmap_storage =
|
|
create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
|
|
|
|
_hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
|
|
g1_barrier_set()->initialize(cardtable_storage);
|
|
// Do later initialization work for concurrent refinement.
|
|
_hot_card_cache->initialize(card_counts_storage);
|
|
|
|
// 6843694 - ensure that the maximum region index can fit
|
|
// in the remembered set structures.
|
|
const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
|
|
guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
|
|
|
|
// Also create a G1 rem set.
|
|
_g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
|
|
_g1_rem_set->initialize(max_capacity(), max_regions());
|
|
|
|
size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
|
|
guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
|
|
guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
|
|
"too many cards per region");
|
|
|
|
FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
|
|
|
|
_bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
|
|
|
|
{
|
|
HeapWord* start = _hrm.reserved().start();
|
|
HeapWord* end = _hrm.reserved().end();
|
|
size_t granularity = HeapRegion::GrainBytes;
|
|
|
|
_in_cset_fast_test.initialize(start, end, granularity);
|
|
_humongous_reclaim_candidates.initialize(start, end, granularity);
|
|
}
|
|
|
|
// Create the G1ConcurrentMark data structure and thread.
|
|
// (Must do this late, so that "max_regions" is defined.)
|
|
_cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
|
|
if (_cm == NULL || !_cm->completed_initialization()) {
|
|
vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
|
|
return JNI_ENOMEM;
|
|
}
|
|
_cmThread = _cm->cm_thread();
|
|
|
|
// Now expand into the initial heap size.
|
|
if (!expand(init_byte_size, _workers)) {
|
|
vm_shutdown_during_initialization("Failed to allocate initial heap.");
|
|
return JNI_ENOMEM;
|
|
}
|
|
|
|
// Perform any initialization actions delegated to the policy.
|
|
g1_policy()->init(this, &_collection_set);
|
|
|
|
JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
|
|
SATB_Q_FL_lock,
|
|
G1SATBProcessCompletedThreshold,
|
|
Shared_SATB_Q_lock);
|
|
|
|
jint ecode = initialize_concurrent_refinement();
|
|
if (ecode != JNI_OK) {
|
|
return ecode;
|
|
}
|
|
|
|
ecode = initialize_young_gen_sampling_thread();
|
|
if (ecode != JNI_OK) {
|
|
return ecode;
|
|
}
|
|
|
|
JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
|
|
DirtyCardQ_FL_lock,
|
|
(int)concurrent_refine()->yellow_zone(),
|
|
(int)concurrent_refine()->red_zone(),
|
|
Shared_DirtyCardQ_lock,
|
|
NULL, // fl_owner
|
|
true); // init_free_ids
|
|
|
|
dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
|
|
DirtyCardQ_FL_lock,
|
|
-1, // never trigger processing
|
|
-1, // no limit on length
|
|
Shared_DirtyCardQ_lock,
|
|
&JavaThread::dirty_card_queue_set());
|
|
|
|
// Here we allocate the dummy HeapRegion that is required by the
|
|
// G1AllocRegion class.
|
|
HeapRegion* dummy_region = _hrm.get_dummy_region();
|
|
|
|
// We'll re-use the same region whether the alloc region will
|
|
// require BOT updates or not and, if it doesn't, then a non-young
|
|
// region will complain that it cannot support allocations without
|
|
// BOT updates. So we'll tag the dummy region as eden to avoid that.
|
|
dummy_region->set_eden();
|
|
// Make sure it's full.
|
|
dummy_region->set_top(dummy_region->end());
|
|
G1AllocRegion::setup(this, dummy_region);
|
|
|
|
_allocator->init_mutator_alloc_region();
|
|
|
|
// Do create of the monitoring and management support so that
|
|
// values in the heap have been properly initialized.
|
|
_g1mm = new G1MonitoringSupport(this);
|
|
|
|
G1StringDedup::initialize();
|
|
|
|
_preserved_marks_set.init(ParallelGCThreads);
|
|
|
|
_collection_set.initialize(max_regions());
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
void G1CollectedHeap::initialize_serviceability() {
|
|
_eden_pool = new G1EdenPool(this);
|
|
_survivor_pool = new G1SurvivorPool(this);
|
|
_old_pool = new G1OldGenPool(this);
|
|
|
|
_full_gc_memory_manager.add_pool(_eden_pool);
|
|
_full_gc_memory_manager.add_pool(_survivor_pool);
|
|
_full_gc_memory_manager.add_pool(_old_pool);
|
|
|
|
_memory_manager.add_pool(_eden_pool);
|
|
_memory_manager.add_pool(_survivor_pool);
|
|
|
|
}
|
|
|
|
void G1CollectedHeap::stop() {
|
|
// Stop all concurrent threads. We do this to make sure these threads
|
|
// do not continue to execute and access resources (e.g. logging)
|
|
// that are destroyed during shutdown.
|
|
_cr->stop();
|
|
_young_gen_sampling_thread->stop();
|
|
_cmThread->stop();
|
|
if (G1StringDedup::is_enabled()) {
|
|
G1StringDedup::stop();
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::safepoint_synchronize_begin() {
|
|
SuspendibleThreadSet::synchronize();
|
|
}
|
|
|
|
void G1CollectedHeap::safepoint_synchronize_end() {
|
|
SuspendibleThreadSet::desynchronize();
|
|
}
|
|
|
|
size_t G1CollectedHeap::conservative_max_heap_alignment() {
|
|
return HeapRegion::max_region_size();
|
|
}
|
|
|
|
void G1CollectedHeap::post_initialize() {
|
|
CollectedHeap::post_initialize();
|
|
ref_processing_init();
|
|
}
|
|
|
|
void G1CollectedHeap::ref_processing_init() {
|
|
// Reference processing in G1 currently works as follows:
|
|
//
|
|
// * There are two reference processor instances. One is
|
|
// used to record and process discovered references
|
|
// during concurrent marking; the other is used to
|
|
// record and process references during STW pauses
|
|
// (both full and incremental).
|
|
// * Both ref processors need to 'span' the entire heap as
|
|
// the regions in the collection set may be dotted around.
|
|
//
|
|
// * For the concurrent marking ref processor:
|
|
// * Reference discovery is enabled at initial marking.
|
|
// * Reference discovery is disabled and the discovered
|
|
// references processed etc during remarking.
|
|
// * Reference discovery is MT (see below).
|
|
// * Reference discovery requires a barrier (see below).
|
|
// * Reference processing may or may not be MT
|
|
// (depending on the value of ParallelRefProcEnabled
|
|
// and ParallelGCThreads).
|
|
// * A full GC disables reference discovery by the CM
|
|
// ref processor and abandons any entries on it's
|
|
// discovered lists.
|
|
//
|
|
// * For the STW processor:
|
|
// * Non MT discovery is enabled at the start of a full GC.
|
|
// * Processing and enqueueing during a full GC is non-MT.
|
|
// * During a full GC, references are processed after marking.
|
|
//
|
|
// * Discovery (may or may not be MT) is enabled at the start
|
|
// of an incremental evacuation pause.
|
|
// * References are processed near the end of a STW evacuation pause.
|
|
// * For both types of GC:
|
|
// * Discovery is atomic - i.e. not concurrent.
|
|
// * Reference discovery will not need a barrier.
|
|
|
|
MemRegion mr = reserved_region();
|
|
|
|
bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
|
|
|
|
// Concurrent Mark ref processor
|
|
_ref_processor_cm =
|
|
new ReferenceProcessor(mr, // span
|
|
mt_processing,
|
|
// mt processing
|
|
ParallelGCThreads,
|
|
// degree of mt processing
|
|
(ParallelGCThreads > 1) || (ConcGCThreads > 1),
|
|
// mt discovery
|
|
MAX2(ParallelGCThreads, ConcGCThreads),
|
|
// degree of mt discovery
|
|
false,
|
|
// Reference discovery is not atomic
|
|
&_is_alive_closure_cm);
|
|
// is alive closure
|
|
// (for efficiency/performance)
|
|
|
|
// STW ref processor
|
|
_ref_processor_stw =
|
|
new ReferenceProcessor(mr, // span
|
|
mt_processing,
|
|
// mt processing
|
|
ParallelGCThreads,
|
|
// degree of mt processing
|
|
(ParallelGCThreads > 1),
|
|
// mt discovery
|
|
ParallelGCThreads,
|
|
// degree of mt discovery
|
|
true,
|
|
// Reference discovery is atomic
|
|
&_is_alive_closure_stw);
|
|
// is alive closure
|
|
// (for efficiency/performance)
|
|
}
|
|
|
|
CollectorPolicy* G1CollectedHeap::collector_policy() const {
|
|
return _collector_policy;
|
|
}
|
|
|
|
size_t G1CollectedHeap::capacity() const {
|
|
return _hrm.length() * HeapRegion::GrainBytes;
|
|
}
|
|
|
|
size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
|
|
return _hrm.total_free_bytes();
|
|
}
|
|
|
|
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
|
|
hr->reset_gc_time_stamp();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
|
|
private:
|
|
unsigned _gc_time_stamp;
|
|
bool _failures;
|
|
|
|
public:
|
|
CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
|
|
_gc_time_stamp(gc_time_stamp), _failures(false) { }
|
|
|
|
virtual bool do_heap_region(HeapRegion* hr) {
|
|
unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
|
|
if (_gc_time_stamp != region_gc_time_stamp) {
|
|
log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
|
|
region_gc_time_stamp, _gc_time_stamp);
|
|
_failures = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool failures() { return _failures; }
|
|
};
|
|
|
|
void G1CollectedHeap::check_gc_time_stamps() {
|
|
CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
|
|
heap_region_iterate(&cl);
|
|
guarantee(!cl.failures(), "all GC time stamps should have been reset");
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
|
|
_hot_card_cache->drain(cl, worker_i);
|
|
}
|
|
|
|
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
|
|
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
|
|
size_t n_completed_buffers = 0;
|
|
while (dcqs.apply_closure_during_gc(cl, worker_i)) {
|
|
n_completed_buffers++;
|
|
}
|
|
g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
|
|
dcqs.clear_n_completed_buffers();
|
|
assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
|
|
}
|
|
|
|
// Computes the sum of the storage used by the various regions.
|
|
size_t G1CollectedHeap::used() const {
|
|
size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
|
|
if (_archive_allocator != NULL) {
|
|
result += _archive_allocator->used();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
size_t G1CollectedHeap::used_unlocked() const {
|
|
return _summary_bytes_used;
|
|
}
|
|
|
|
class SumUsedClosure: public HeapRegionClosure {
|
|
size_t _used;
|
|
public:
|
|
SumUsedClosure() : _used(0) {}
|
|
bool do_heap_region(HeapRegion* r) {
|
|
_used += r->used();
|
|
return false;
|
|
}
|
|
size_t result() { return _used; }
|
|
};
|
|
|
|
size_t G1CollectedHeap::recalculate_used() const {
|
|
double recalculate_used_start = os::elapsedTime();
|
|
|
|
SumUsedClosure blk;
|
|
heap_region_iterate(&blk);
|
|
|
|
g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
|
|
return blk.result();
|
|
}
|
|
|
|
bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
|
|
switch (cause) {
|
|
case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent;
|
|
case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent;
|
|
case GCCause::_update_allocation_context_stats_inc: return true;
|
|
case GCCause::_wb_conc_mark: return true;
|
|
default : return false;
|
|
}
|
|
}
|
|
|
|
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
|
|
switch (cause) {
|
|
case GCCause::_gc_locker: return GCLockerInvokesConcurrent;
|
|
case GCCause::_g1_humongous_allocation: return true;
|
|
default: return is_user_requested_concurrent_full_gc(cause);
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void G1CollectedHeap::allocate_dummy_regions() {
|
|
// Let's fill up most of the region
|
|
size_t word_size = HeapRegion::GrainWords - 1024;
|
|
// And as a result the region we'll allocate will be humongous.
|
|
guarantee(is_humongous(word_size), "sanity");
|
|
|
|
// _filler_array_max_size is set to humongous object threshold
|
|
// but temporarily change it to use CollectedHeap::fill_with_object().
|
|
SizeTFlagSetting fs(_filler_array_max_size, word_size);
|
|
|
|
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
|
|
// Let's use the existing mechanism for the allocation
|
|
HeapWord* dummy_obj = humongous_obj_allocate(word_size,
|
|
AllocationContext::system());
|
|
if (dummy_obj != NULL) {
|
|
MemRegion mr(dummy_obj, word_size);
|
|
CollectedHeap::fill_with_object(mr);
|
|
} else {
|
|
// If we can't allocate once, we probably cannot allocate
|
|
// again. Let's get out of the loop.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
void G1CollectedHeap::increment_old_marking_cycles_started() {
|
|
assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
|
|
_old_marking_cycles_started == _old_marking_cycles_completed + 1,
|
|
"Wrong marking cycle count (started: %d, completed: %d)",
|
|
_old_marking_cycles_started, _old_marking_cycles_completed);
|
|
|
|
_old_marking_cycles_started++;
|
|
}
|
|
|
|
void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
|
|
MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
|
|
|
|
// We assume that if concurrent == true, then the caller is a
|
|
// concurrent thread that was joined the Suspendible Thread
|
|
// Set. If there's ever a cheap way to check this, we should add an
|
|
// assert here.
|
|
|
|
// Given that this method is called at the end of a Full GC or of a
|
|
// concurrent cycle, and those can be nested (i.e., a Full GC can
|
|
// interrupt a concurrent cycle), the number of full collections
|
|
// completed should be either one (in the case where there was no
|
|
// nesting) or two (when a Full GC interrupted a concurrent cycle)
|
|
// behind the number of full collections started.
|
|
|
|
// This is the case for the inner caller, i.e. a Full GC.
|
|
assert(concurrent ||
|
|
(_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
|
|
(_old_marking_cycles_started == _old_marking_cycles_completed + 2),
|
|
"for inner caller (Full GC): _old_marking_cycles_started = %u "
|
|
"is inconsistent with _old_marking_cycles_completed = %u",
|
|
_old_marking_cycles_started, _old_marking_cycles_completed);
|
|
|
|
// This is the case for the outer caller, i.e. the concurrent cycle.
|
|
assert(!concurrent ||
|
|
(_old_marking_cycles_started == _old_marking_cycles_completed + 1),
|
|
"for outer caller (concurrent cycle): "
|
|
"_old_marking_cycles_started = %u "
|
|
"is inconsistent with _old_marking_cycles_completed = %u",
|
|
_old_marking_cycles_started, _old_marking_cycles_completed);
|
|
|
|
_old_marking_cycles_completed += 1;
|
|
|
|
// We need to clear the "in_progress" flag in the CM thread before
|
|
// we wake up any waiters (especially when ExplicitInvokesConcurrent
|
|
// is set) so that if a waiter requests another System.gc() it doesn't
|
|
// incorrectly see that a marking cycle is still in progress.
|
|
if (concurrent) {
|
|
_cmThread->set_idle();
|
|
}
|
|
|
|
// This notify_all() will ensure that a thread that called
|
|
// System.gc() with (with ExplicitGCInvokesConcurrent set or not)
|
|
// and it's waiting for a full GC to finish will be woken up. It is
|
|
// waiting in VM_G1CollectForAllocation::doit_epilogue().
|
|
FullGCCount_lock->notify_all();
|
|
}
|
|
|
|
void G1CollectedHeap::collect(GCCause::Cause cause) {
|
|
assert_heap_not_locked();
|
|
|
|
uint gc_count_before;
|
|
uint old_marking_count_before;
|
|
uint full_gc_count_before;
|
|
bool retry_gc;
|
|
|
|
do {
|
|
retry_gc = false;
|
|
|
|
{
|
|
MutexLocker ml(Heap_lock);
|
|
|
|
// Read the GC count while holding the Heap_lock
|
|
gc_count_before = total_collections();
|
|
full_gc_count_before = total_full_collections();
|
|
old_marking_count_before = _old_marking_cycles_started;
|
|
}
|
|
|
|
if (should_do_concurrent_full_gc(cause)) {
|
|
// Schedule an initial-mark evacuation pause that will start a
|
|
// concurrent cycle. We're setting word_size to 0 which means that
|
|
// we are not requesting a post-GC allocation.
|
|
VM_G1CollectForAllocation op(0, /* word_size */
|
|
gc_count_before,
|
|
cause,
|
|
true, /* should_initiate_conc_mark */
|
|
g1_policy()->max_pause_time_ms(),
|
|
AllocationContext::current());
|
|
VMThread::execute(&op);
|
|
if (!op.pause_succeeded()) {
|
|
if (old_marking_count_before == _old_marking_cycles_started) {
|
|
retry_gc = op.should_retry_gc();
|
|
} else {
|
|
// A Full GC happened while we were trying to schedule the
|
|
// initial-mark GC. No point in starting a new cycle given
|
|
// that the whole heap was collected anyway.
|
|
}
|
|
|
|
if (retry_gc) {
|
|
if (GCLocker::is_active_and_needs_gc()) {
|
|
GCLocker::stall_until_clear();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
|
|
DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
|
|
|
|
// Schedule a standard evacuation pause. We're setting word_size
|
|
// to 0 which means that we are not requesting a post-GC allocation.
|
|
VM_G1CollectForAllocation op(0, /* word_size */
|
|
gc_count_before,
|
|
cause,
|
|
false, /* should_initiate_conc_mark */
|
|
g1_policy()->max_pause_time_ms(),
|
|
AllocationContext::current());
|
|
VMThread::execute(&op);
|
|
} else {
|
|
// Schedule a Full GC.
|
|
VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
|
|
VMThread::execute(&op);
|
|
}
|
|
}
|
|
} while (retry_gc);
|
|
}
|
|
|
|
bool G1CollectedHeap::is_in(const void* p) const {
|
|
if (_hrm.reserved().contains(p)) {
|
|
// Given that we know that p is in the reserved space,
|
|
// heap_region_containing() should successfully
|
|
// return the containing region.
|
|
HeapRegion* hr = heap_region_containing(p);
|
|
return hr->is_in(p);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
bool G1CollectedHeap::is_in_exact(const void* p) const {
|
|
bool contains = reserved_region().contains(p);
|
|
bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
|
|
if (contains && available) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Iteration functions.
|
|
|
|
// Iterates an ObjectClosure over all objects within a HeapRegion.
|
|
|
|
class IterateObjectClosureRegionClosure: public HeapRegionClosure {
|
|
ObjectClosure* _cl;
|
|
public:
|
|
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
|
|
bool do_heap_region(HeapRegion* r) {
|
|
if (!r->is_continues_humongous()) {
|
|
r->object_iterate(_cl);
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
|
|
IterateObjectClosureRegionClosure blk(cl);
|
|
heap_region_iterate(&blk);
|
|
}
|
|
|
|
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
|
|
_hrm.iterate(cl);
|
|
}
|
|
|
|
void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
|
|
HeapRegionClaimer *hrclaimer,
|
|
uint worker_id) const {
|
|
_hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
|
|
}
|
|
|
|
void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
|
|
HeapRegionClaimer *hrclaimer) const {
|
|
_hrm.par_iterate(cl, hrclaimer, 0);
|
|
}
|
|
|
|
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
|
|
_collection_set.iterate(cl);
|
|
}
|
|
|
|
void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
|
|
_collection_set.iterate_from(cl, worker_id, workers()->active_workers());
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::block_start(const void* addr) const {
|
|
HeapRegion* hr = heap_region_containing(addr);
|
|
return hr->block_start(addr);
|
|
}
|
|
|
|
size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
|
|
HeapRegion* hr = heap_region_containing(addr);
|
|
return hr->block_size(addr);
|
|
}
|
|
|
|
bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
|
|
HeapRegion* hr = heap_region_containing(addr);
|
|
return hr->block_is_obj(addr);
|
|
}
|
|
|
|
bool G1CollectedHeap::supports_tlab_allocation() const {
|
|
return true;
|
|
}
|
|
|
|
size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
|
|
return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
|
|
}
|
|
|
|
size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
|
|
return _eden.length() * HeapRegion::GrainBytes;
|
|
}
|
|
|
|
// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
|
|
// must be equal to the humongous object limit.
|
|
size_t G1CollectedHeap::max_tlab_size() const {
|
|
return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
|
|
}
|
|
|
|
size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
|
|
AllocationContext_t context = AllocationContext::current();
|
|
return _allocator->unsafe_max_tlab_alloc(context);
|
|
}
|
|
|
|
size_t G1CollectedHeap::max_capacity() const {
|
|
return _hrm.reserved().byte_size();
|
|
}
|
|
|
|
jlong G1CollectedHeap::millis_since_last_gc() {
|
|
// See the notes in GenCollectedHeap::millis_since_last_gc()
|
|
// for more information about the implementation.
|
|
jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
|
|
_g1_policy->collection_pause_end_millis();
|
|
if (ret_val < 0) {
|
|
log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
|
|
". returning zero instead.", ret_val);
|
|
return 0;
|
|
}
|
|
return ret_val;
|
|
}
|
|
|
|
void G1CollectedHeap::prepare_for_verify() {
|
|
_verifier->prepare_for_verify();
|
|
}
|
|
|
|
void G1CollectedHeap::verify(VerifyOption vo) {
|
|
_verifier->verify(vo);
|
|
}
|
|
|
|
bool G1CollectedHeap::supports_concurrent_phase_control() const {
|
|
return true;
|
|
}
|
|
|
|
const char* const* G1CollectedHeap::concurrent_phases() const {
|
|
return _cmThread->concurrent_phases();
|
|
}
|
|
|
|
bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
|
|
return _cmThread->request_concurrent_phase(phase);
|
|
}
|
|
|
|
class PrintRegionClosure: public HeapRegionClosure {
|
|
outputStream* _st;
|
|
public:
|
|
PrintRegionClosure(outputStream* st) : _st(st) {}
|
|
bool do_heap_region(HeapRegion* r) {
|
|
r->print_on(_st);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
|
|
const HeapRegion* hr,
|
|
const VerifyOption vo) const {
|
|
switch (vo) {
|
|
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
|
|
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
|
|
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
|
|
default: ShouldNotReachHere();
|
|
}
|
|
return false; // keep some compilers happy
|
|
}
|
|
|
|
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
|
|
const VerifyOption vo) const {
|
|
switch (vo) {
|
|
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
|
|
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
|
|
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
|
|
default: ShouldNotReachHere();
|
|
}
|
|
return false; // keep some compilers happy
|
|
}
|
|
|
|
void G1CollectedHeap::print_heap_regions() const {
|
|
LogTarget(Trace, gc, heap, region) lt;
|
|
if (lt.is_enabled()) {
|
|
LogStream ls(lt);
|
|
print_regions_on(&ls);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::print_on(outputStream* st) const {
|
|
st->print(" %-20s", "garbage-first heap");
|
|
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
|
|
capacity()/K, used_unlocked()/K);
|
|
st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
|
|
p2i(_hrm.reserved().start()),
|
|
p2i(_hrm.reserved().end()));
|
|
st->cr();
|
|
st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
|
|
uint young_regions = young_regions_count();
|
|
st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
|
|
(size_t) young_regions * HeapRegion::GrainBytes / K);
|
|
uint survivor_regions = survivor_regions_count();
|
|
st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
|
|
(size_t) survivor_regions * HeapRegion::GrainBytes / K);
|
|
st->cr();
|
|
MetaspaceAux::print_on(st);
|
|
}
|
|
|
|
void G1CollectedHeap::print_regions_on(outputStream* st) const {
|
|
st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
|
|
"HS=humongous(starts), HC=humongous(continues), "
|
|
"CS=collection set, F=free, A=archive, TS=gc time stamp, "
|
|
"AC=allocation context, "
|
|
"TAMS=top-at-mark-start (previous, next)");
|
|
PrintRegionClosure blk(st);
|
|
heap_region_iterate(&blk);
|
|
}
|
|
|
|
void G1CollectedHeap::print_extended_on(outputStream* st) const {
|
|
print_on(st);
|
|
|
|
// Print the per-region information.
|
|
print_regions_on(st);
|
|
}
|
|
|
|
void G1CollectedHeap::print_on_error(outputStream* st) const {
|
|
this->CollectedHeap::print_on_error(st);
|
|
|
|
if (_cm != NULL) {
|
|
st->cr();
|
|
_cm->print_on_error(st);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
|
|
workers()->print_worker_threads_on(st);
|
|
_cmThread->print_on(st);
|
|
st->cr();
|
|
_cm->print_worker_threads_on(st);
|
|
_cr->print_threads_on(st);
|
|
_young_gen_sampling_thread->print_on(st);
|
|
if (G1StringDedup::is_enabled()) {
|
|
G1StringDedup::print_worker_threads_on(st);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
|
|
workers()->threads_do(tc);
|
|
tc->do_thread(_cmThread);
|
|
_cm->threads_do(tc);
|
|
_cr->threads_do(tc);
|
|
tc->do_thread(_young_gen_sampling_thread);
|
|
if (G1StringDedup::is_enabled()) {
|
|
G1StringDedup::threads_do(tc);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::print_tracing_info() const {
|
|
g1_rem_set()->print_summary_info();
|
|
concurrent_mark()->print_summary_info();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Helpful for debugging RSet issues.
|
|
|
|
class PrintRSetsClosure : public HeapRegionClosure {
|
|
private:
|
|
const char* _msg;
|
|
size_t _occupied_sum;
|
|
|
|
public:
|
|
bool do_heap_region(HeapRegion* r) {
|
|
HeapRegionRemSet* hrrs = r->rem_set();
|
|
size_t occupied = hrrs->occupied();
|
|
_occupied_sum += occupied;
|
|
|
|
tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
|
|
if (occupied == 0) {
|
|
tty->print_cr(" RSet is empty");
|
|
} else {
|
|
hrrs->print();
|
|
}
|
|
tty->print_cr("----------");
|
|
return false;
|
|
}
|
|
|
|
PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
|
|
tty->cr();
|
|
tty->print_cr("========================================");
|
|
tty->print_cr("%s", msg);
|
|
tty->cr();
|
|
}
|
|
|
|
~PrintRSetsClosure() {
|
|
tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
|
|
tty->print_cr("========================================");
|
|
tty->cr();
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::print_cset_rsets() {
|
|
PrintRSetsClosure cl("Printing CSet RSets");
|
|
collection_set_iterate(&cl);
|
|
}
|
|
|
|
void G1CollectedHeap::print_all_rsets() {
|
|
PrintRSetsClosure cl("Printing All RSets");;
|
|
heap_region_iterate(&cl);
|
|
}
|
|
#endif // PRODUCT
|
|
|
|
G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
|
|
|
|
size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
|
|
size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
|
|
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
|
|
|
|
size_t eden_capacity_bytes =
|
|
(g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
|
|
|
|
VirtualSpaceSummary heap_summary = create_heap_space_summary();
|
|
return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
|
|
eden_capacity_bytes, survivor_used_bytes, num_regions());
|
|
}
|
|
|
|
G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
|
|
return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
|
|
stats->unused(), stats->used(), stats->region_end_waste(),
|
|
stats->regions_filled(), stats->direct_allocated(),
|
|
stats->failure_used(), stats->failure_waste());
|
|
}
|
|
|
|
void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
|
|
const G1HeapSummary& heap_summary = create_g1_heap_summary();
|
|
gc_tracer->report_gc_heap_summary(when, heap_summary);
|
|
|
|
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
|
|
gc_tracer->report_metaspace_summary(when, metaspace_summary);
|
|
}
|
|
|
|
G1CollectedHeap* G1CollectedHeap::heap() {
|
|
CollectedHeap* heap = Universe::heap();
|
|
assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
|
|
assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
|
|
return (G1CollectedHeap*)heap;
|
|
}
|
|
|
|
void G1CollectedHeap::gc_prologue(bool full) {
|
|
// always_do_update_barrier = false;
|
|
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
|
|
|
|
// This summary needs to be printed before incrementing total collections.
|
|
g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
|
|
|
|
// Update common counters.
|
|
increment_total_collections(full /* full gc */);
|
|
if (full) {
|
|
increment_old_marking_cycles_started();
|
|
reset_gc_time_stamp();
|
|
} else {
|
|
increment_gc_time_stamp();
|
|
}
|
|
|
|
// Fill TLAB's and such
|
|
double start = os::elapsedTime();
|
|
accumulate_statistics_all_tlabs();
|
|
ensure_parsability(true);
|
|
g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
|
|
}
|
|
|
|
void G1CollectedHeap::gc_epilogue(bool full) {
|
|
// Update common counters.
|
|
if (full) {
|
|
// Update the number of full collections that have been completed.
|
|
increment_old_marking_cycles_completed(false /* concurrent */);
|
|
}
|
|
|
|
// We are at the end of the GC. Total collections has already been increased.
|
|
g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
|
|
|
|
// FIXME: what is this about?
|
|
// I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
|
|
// is set.
|
|
#if COMPILER2_OR_JVMCI
|
|
assert(DerivedPointerTable::is_empty(), "derived pointer present");
|
|
#endif
|
|
// always_do_update_barrier = true;
|
|
|
|
double start = os::elapsedTime();
|
|
resize_all_tlabs();
|
|
g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
|
|
|
|
allocation_context_stats().update(full);
|
|
|
|
MemoryService::track_memory_usage();
|
|
// We have just completed a GC. Update the soft reference
|
|
// policy with the new heap occupancy
|
|
Universe::update_heap_info_at_gc();
|
|
}
|
|
|
|
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
|
|
uint gc_count_before,
|
|
bool* succeeded,
|
|
GCCause::Cause gc_cause) {
|
|
assert_heap_not_locked_and_not_at_safepoint();
|
|
VM_G1CollectForAllocation op(word_size,
|
|
gc_count_before,
|
|
gc_cause,
|
|
false, /* should_initiate_conc_mark */
|
|
g1_policy()->max_pause_time_ms(),
|
|
AllocationContext::current());
|
|
VMThread::execute(&op);
|
|
|
|
HeapWord* result = op.result();
|
|
bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
|
|
assert(result == NULL || ret_succeeded,
|
|
"the result should be NULL if the VM did not succeed");
|
|
*succeeded = ret_succeeded;
|
|
|
|
assert_heap_not_locked();
|
|
return result;
|
|
}
|
|
|
|
void
|
|
G1CollectedHeap::doConcurrentMark() {
|
|
MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
|
|
if (!_cmThread->in_progress()) {
|
|
_cmThread->set_started();
|
|
CGC_lock->notify();
|
|
}
|
|
}
|
|
|
|
size_t G1CollectedHeap::pending_card_num() {
|
|
size_t extra_cards = 0;
|
|
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
|
|
DirtyCardQueue& dcq = curr->dirty_card_queue();
|
|
extra_cards += dcq.size();
|
|
}
|
|
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
|
|
size_t buffer_size = dcqs.buffer_size();
|
|
size_t buffer_num = dcqs.completed_buffers_num();
|
|
|
|
return buffer_size * buffer_num + extra_cards;
|
|
}
|
|
|
|
class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
|
|
private:
|
|
size_t _total_humongous;
|
|
size_t _candidate_humongous;
|
|
|
|
DirtyCardQueue _dcq;
|
|
|
|
// We don't nominate objects with many remembered set entries, on
|
|
// the assumption that such objects are likely still live.
|
|
bool is_remset_small(HeapRegion* region) const {
|
|
HeapRegionRemSet* const rset = region->rem_set();
|
|
return G1EagerReclaimHumongousObjectsWithStaleRefs
|
|
? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
|
|
: rset->is_empty();
|
|
}
|
|
|
|
bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
|
|
assert(region->is_starts_humongous(), "Must start a humongous object");
|
|
|
|
oop obj = oop(region->bottom());
|
|
|
|
// Dead objects cannot be eager reclaim candidates. Due to class
|
|
// unloading it is unsafe to query their classes so we return early.
|
|
if (heap->is_obj_dead(obj, region)) {
|
|
return false;
|
|
}
|
|
|
|
// Candidate selection must satisfy the following constraints
|
|
// while concurrent marking is in progress:
|
|
//
|
|
// * In order to maintain SATB invariants, an object must not be
|
|
// reclaimed if it was allocated before the start of marking and
|
|
// has not had its references scanned. Such an object must have
|
|
// its references (including type metadata) scanned to ensure no
|
|
// live objects are missed by the marking process. Objects
|
|
// allocated after the start of concurrent marking don't need to
|
|
// be scanned.
|
|
//
|
|
// * An object must not be reclaimed if it is on the concurrent
|
|
// mark stack. Objects allocated after the start of concurrent
|
|
// marking are never pushed on the mark stack.
|
|
//
|
|
// Nominating only objects allocated after the start of concurrent
|
|
// marking is sufficient to meet both constraints. This may miss
|
|
// some objects that satisfy the constraints, but the marking data
|
|
// structures don't support efficiently performing the needed
|
|
// additional tests or scrubbing of the mark stack.
|
|
//
|
|
// However, we presently only nominate is_typeArray() objects.
|
|
// A humongous object containing references induces remembered
|
|
// set entries on other regions. In order to reclaim such an
|
|
// object, those remembered sets would need to be cleaned up.
|
|
//
|
|
// We also treat is_typeArray() objects specially, allowing them
|
|
// to be reclaimed even if allocated before the start of
|
|
// concurrent mark. For this we rely on mark stack insertion to
|
|
// exclude is_typeArray() objects, preventing reclaiming an object
|
|
// that is in the mark stack. We also rely on the metadata for
|
|
// such objects to be built-in and so ensured to be kept live.
|
|
// Frequent allocation and drop of large binary blobs is an
|
|
// important use case for eager reclaim, and this special handling
|
|
// may reduce needed headroom.
|
|
|
|
return obj->is_typeArray() && is_remset_small(region);
|
|
}
|
|
|
|
public:
|
|
RegisterHumongousWithInCSetFastTestClosure()
|
|
: _total_humongous(0),
|
|
_candidate_humongous(0),
|
|
_dcq(&JavaThread::dirty_card_queue_set()) {
|
|
}
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
if (!r->is_starts_humongous()) {
|
|
return false;
|
|
}
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
bool is_candidate = humongous_region_is_candidate(g1h, r);
|
|
uint rindex = r->hrm_index();
|
|
g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
|
|
if (is_candidate) {
|
|
_candidate_humongous++;
|
|
g1h->register_humongous_region_with_cset(rindex);
|
|
// Is_candidate already filters out humongous object with large remembered sets.
|
|
// If we have a humongous object with a few remembered sets, we simply flush these
|
|
// remembered set entries into the DCQS. That will result in automatic
|
|
// re-evaluation of their remembered set entries during the following evacuation
|
|
// phase.
|
|
if (!r->rem_set()->is_empty()) {
|
|
guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
|
|
"Found a not-small remembered set here. This is inconsistent with previous assumptions.");
|
|
G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
|
|
HeapRegionRemSetIterator hrrs(r->rem_set());
|
|
size_t card_index;
|
|
while (hrrs.has_next(card_index)) {
|
|
jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
|
|
// The remembered set might contain references to already freed
|
|
// regions. Filter out such entries to avoid failing card table
|
|
// verification.
|
|
if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
|
|
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
|
|
*card_ptr = CardTableModRefBS::dirty_card_val();
|
|
_dcq.enqueue(card_ptr);
|
|
}
|
|
}
|
|
}
|
|
assert(hrrs.n_yielded() == r->rem_set()->occupied(),
|
|
"Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
|
|
hrrs.n_yielded(), r->rem_set()->occupied());
|
|
r->rem_set()->clear_locked();
|
|
}
|
|
assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
|
|
}
|
|
_total_humongous++;
|
|
|
|
return false;
|
|
}
|
|
|
|
size_t total_humongous() const { return _total_humongous; }
|
|
size_t candidate_humongous() const { return _candidate_humongous; }
|
|
|
|
void flush_rem_set_entries() { _dcq.flush(); }
|
|
};
|
|
|
|
void G1CollectedHeap::register_humongous_regions_with_cset() {
|
|
if (!G1EagerReclaimHumongousObjects) {
|
|
g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
|
|
return;
|
|
}
|
|
double time = os::elapsed_counter();
|
|
|
|
// Collect reclaim candidate information and register candidates with cset.
|
|
RegisterHumongousWithInCSetFastTestClosure cl;
|
|
heap_region_iterate(&cl);
|
|
|
|
time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
|
|
g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
|
|
cl.total_humongous(),
|
|
cl.candidate_humongous());
|
|
_has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
|
|
|
|
// Finally flush all remembered set entries to re-check into the global DCQS.
|
|
cl.flush_rem_set_entries();
|
|
}
|
|
|
|
class VerifyRegionRemSetClosure : public HeapRegionClosure {
|
|
public:
|
|
bool do_heap_region(HeapRegion* hr) {
|
|
if (!hr->is_archive() && !hr->is_continues_humongous()) {
|
|
hr->verify_rem_set();
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
uint G1CollectedHeap::num_task_queues() const {
|
|
return _task_queues->size();
|
|
}
|
|
|
|
#if TASKQUEUE_STATS
|
|
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
|
|
st->print_raw_cr("GC Task Stats");
|
|
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
|
|
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
|
|
}
|
|
|
|
void G1CollectedHeap::print_taskqueue_stats() const {
|
|
if (!log_is_enabled(Trace, gc, task, stats)) {
|
|
return;
|
|
}
|
|
Log(gc, task, stats) log;
|
|
ResourceMark rm;
|
|
LogStream ls(log.trace());
|
|
outputStream* st = &ls;
|
|
|
|
print_taskqueue_stats_hdr(st);
|
|
|
|
TaskQueueStats totals;
|
|
const uint n = num_task_queues();
|
|
for (uint i = 0; i < n; ++i) {
|
|
st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
|
|
totals += task_queue(i)->stats;
|
|
}
|
|
st->print_raw("tot "); totals.print(st); st->cr();
|
|
|
|
DEBUG_ONLY(totals.verify());
|
|
}
|
|
|
|
void G1CollectedHeap::reset_taskqueue_stats() {
|
|
const uint n = num_task_queues();
|
|
for (uint i = 0; i < n; ++i) {
|
|
task_queue(i)->stats.reset();
|
|
}
|
|
}
|
|
#endif // TASKQUEUE_STATS
|
|
|
|
void G1CollectedHeap::wait_for_root_region_scanning() {
|
|
double scan_wait_start = os::elapsedTime();
|
|
// We have to wait until the CM threads finish scanning the
|
|
// root regions as it's the only way to ensure that all the
|
|
// objects on them have been correctly scanned before we start
|
|
// moving them during the GC.
|
|
bool waited = _cm->root_regions()->wait_until_scan_finished();
|
|
double wait_time_ms = 0.0;
|
|
if (waited) {
|
|
double scan_wait_end = os::elapsedTime();
|
|
wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
|
|
}
|
|
g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
|
|
}
|
|
|
|
class G1PrintCollectionSetClosure : public HeapRegionClosure {
|
|
private:
|
|
G1HRPrinter* _hr_printer;
|
|
public:
|
|
G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
_hr_printer->cset(r);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::start_new_collection_set() {
|
|
collection_set()->start_incremental_building();
|
|
|
|
clear_cset_fast_test();
|
|
|
|
guarantee(_eden.length() == 0, "eden should have been cleared");
|
|
g1_policy()->transfer_survivors_to_cset(survivor());
|
|
}
|
|
|
|
bool
|
|
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
guarantee(!is_gc_active(), "collection is not reentrant");
|
|
|
|
if (GCLocker::check_active_before_gc()) {
|
|
return false;
|
|
}
|
|
|
|
_gc_timer_stw->register_gc_start();
|
|
|
|
GCIdMark gc_id_mark;
|
|
_gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
|
|
|
|
SvcGCMarker sgcm(SvcGCMarker::MINOR);
|
|
ResourceMark rm;
|
|
|
|
g1_policy()->note_gc_start();
|
|
|
|
wait_for_root_region_scanning();
|
|
|
|
print_heap_before_gc();
|
|
print_heap_regions();
|
|
trace_heap_before_gc(_gc_tracer_stw);
|
|
|
|
_verifier->verify_region_sets_optional();
|
|
_verifier->verify_dirty_young_regions();
|
|
|
|
// We should not be doing initial mark unless the conc mark thread is running
|
|
if (!_cmThread->should_terminate()) {
|
|
// This call will decide whether this pause is an initial-mark
|
|
// pause. If it is, during_initial_mark_pause() will return true
|
|
// for the duration of this pause.
|
|
g1_policy()->decide_on_conc_mark_initiation();
|
|
}
|
|
|
|
// We do not allow initial-mark to be piggy-backed on a mixed GC.
|
|
assert(!collector_state()->during_initial_mark_pause() ||
|
|
collector_state()->gcs_are_young(), "sanity");
|
|
|
|
// We also do not allow mixed GCs during marking.
|
|
assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
|
|
|
|
// Record whether this pause is an initial mark. When the current
|
|
// thread has completed its logging output and it's safe to signal
|
|
// the CM thread, the flag's value in the policy has been reset.
|
|
bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
|
|
|
|
// Inner scope for scope based logging, timers, and stats collection
|
|
{
|
|
EvacuationInfo evacuation_info;
|
|
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
// We are about to start a marking cycle, so we increment the
|
|
// full collection counter.
|
|
increment_old_marking_cycles_started();
|
|
_cm->gc_tracer_cm()->set_gc_cause(gc_cause());
|
|
}
|
|
|
|
_gc_tracer_stw->report_yc_type(collector_state()->yc_type());
|
|
|
|
GCTraceCPUTime tcpu;
|
|
|
|
G1HeapVerifier::G1VerifyType verify_type;
|
|
FormatBuffer<> gc_string("Pause ");
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
gc_string.append("Initial Mark");
|
|
verify_type = G1HeapVerifier::G1VerifyInitialMark;
|
|
} else if (collector_state()->gcs_are_young()) {
|
|
gc_string.append("Young");
|
|
verify_type = G1HeapVerifier::G1VerifyYoungOnly;
|
|
} else {
|
|
gc_string.append("Mixed");
|
|
verify_type = G1HeapVerifier::G1VerifyMixed;
|
|
}
|
|
GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
|
|
|
|
uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
|
|
workers()->active_workers(),
|
|
Threads::number_of_non_daemon_threads());
|
|
workers()->update_active_workers(active_workers);
|
|
log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
|
|
|
|
TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
|
|
TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
|
|
|
|
// If the secondary_free_list is not empty, append it to the
|
|
// free_list. No need to wait for the cleanup operation to finish;
|
|
// the region allocation code will check the secondary_free_list
|
|
// and wait if necessary. If the G1StressConcRegionFreeing flag is
|
|
// set, skip this step so that the region allocation code has to
|
|
// get entries from the secondary_free_list.
|
|
if (!G1StressConcRegionFreeing) {
|
|
append_secondary_free_list_if_not_empty_with_lock();
|
|
}
|
|
|
|
G1HeapTransition heap_transition(this);
|
|
size_t heap_used_bytes_before_gc = used();
|
|
|
|
// Don't dynamically change the number of GC threads this early. A value of
|
|
// 0 is used to indicate serial work. When parallel work is done,
|
|
// it will be set.
|
|
|
|
{ // Call to jvmpi::post_class_unload_events must occur outside of active GC
|
|
IsGCActiveMark x;
|
|
|
|
gc_prologue(false);
|
|
|
|
if (VerifyRememberedSets) {
|
|
log_info(gc, verify)("[Verifying RemSets before GC]");
|
|
VerifyRegionRemSetClosure v_cl;
|
|
heap_region_iterate(&v_cl);
|
|
}
|
|
|
|
_verifier->verify_before_gc(verify_type);
|
|
|
|
_verifier->check_bitmaps("GC Start");
|
|
|
|
#if COMPILER2_OR_JVMCI
|
|
DerivedPointerTable::clear();
|
|
#endif
|
|
|
|
// Please see comment in g1CollectedHeap.hpp and
|
|
// G1CollectedHeap::ref_processing_init() to see how
|
|
// reference processing currently works in G1.
|
|
|
|
// Enable discovery in the STW reference processor
|
|
if (g1_policy()->should_process_references()) {
|
|
ref_processor_stw()->enable_discovery();
|
|
} else {
|
|
ref_processor_stw()->disable_discovery();
|
|
}
|
|
|
|
{
|
|
// We want to temporarily turn off discovery by the
|
|
// CM ref processor, if necessary, and turn it back on
|
|
// on again later if we do. Using a scoped
|
|
// NoRefDiscovery object will do this.
|
|
NoRefDiscovery no_cm_discovery(ref_processor_cm());
|
|
|
|
// Forget the current alloc region (we might even choose it to be part
|
|
// of the collection set!).
|
|
_allocator->release_mutator_alloc_region();
|
|
|
|
// This timing is only used by the ergonomics to handle our pause target.
|
|
// It is unclear why this should not include the full pause. We will
|
|
// investigate this in CR 7178365.
|
|
//
|
|
// Preserving the old comment here if that helps the investigation:
|
|
//
|
|
// The elapsed time induced by the start time below deliberately elides
|
|
// the possible verification above.
|
|
double sample_start_time_sec = os::elapsedTime();
|
|
|
|
g1_policy()->record_collection_pause_start(sample_start_time_sec);
|
|
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
concurrent_mark()->checkpoint_roots_initial_pre();
|
|
}
|
|
|
|
g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
|
|
|
|
evacuation_info.set_collectionset_regions(collection_set()->region_length());
|
|
|
|
// Make sure the remembered sets are up to date. This needs to be
|
|
// done before register_humongous_regions_with_cset(), because the
|
|
// remembered sets are used there to choose eager reclaim candidates.
|
|
// If the remembered sets are not up to date we might miss some
|
|
// entries that need to be handled.
|
|
g1_rem_set()->cleanupHRRS();
|
|
|
|
register_humongous_regions_with_cset();
|
|
|
|
assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
|
|
|
|
// We call this after finalize_cset() to
|
|
// ensure that the CSet has been finalized.
|
|
_cm->verify_no_cset_oops();
|
|
|
|
if (_hr_printer.is_active()) {
|
|
G1PrintCollectionSetClosure cl(&_hr_printer);
|
|
_collection_set.iterate(&cl);
|
|
}
|
|
|
|
// Initialize the GC alloc regions.
|
|
_allocator->init_gc_alloc_regions(evacuation_info);
|
|
|
|
G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
|
|
pre_evacuate_collection_set();
|
|
|
|
// Actually do the work...
|
|
evacuate_collection_set(evacuation_info, &per_thread_states);
|
|
|
|
post_evacuate_collection_set(evacuation_info, &per_thread_states);
|
|
|
|
const size_t* surviving_young_words = per_thread_states.surviving_young_words();
|
|
free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
|
|
|
|
eagerly_reclaim_humongous_regions();
|
|
|
|
record_obj_copy_mem_stats();
|
|
_survivor_evac_stats.adjust_desired_plab_sz();
|
|
_old_evac_stats.adjust_desired_plab_sz();
|
|
|
|
double start = os::elapsedTime();
|
|
start_new_collection_set();
|
|
g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
|
|
|
|
if (evacuation_failed()) {
|
|
set_used(recalculate_used());
|
|
if (_archive_allocator != NULL) {
|
|
_archive_allocator->clear_used();
|
|
}
|
|
for (uint i = 0; i < ParallelGCThreads; i++) {
|
|
if (_evacuation_failed_info_array[i].has_failed()) {
|
|
_gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
|
|
}
|
|
}
|
|
} else {
|
|
// The "used" of the the collection set have already been subtracted
|
|
// when they were freed. Add in the bytes evacuated.
|
|
increase_used(g1_policy()->bytes_copied_during_gc());
|
|
}
|
|
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
// We have to do this before we notify the CM threads that
|
|
// they can start working to make sure that all the
|
|
// appropriate initialization is done on the CM object.
|
|
concurrent_mark()->checkpoint_roots_initial_post();
|
|
collector_state()->set_mark_in_progress(true);
|
|
// Note that we don't actually trigger the CM thread at
|
|
// this point. We do that later when we're sure that
|
|
// the current thread has completed its logging output.
|
|
}
|
|
|
|
allocate_dummy_regions();
|
|
|
|
_allocator->init_mutator_alloc_region();
|
|
|
|
{
|
|
size_t expand_bytes = _heap_sizing_policy->expansion_amount();
|
|
if (expand_bytes > 0) {
|
|
size_t bytes_before = capacity();
|
|
// No need for an ergo logging here,
|
|
// expansion_amount() does this when it returns a value > 0.
|
|
double expand_ms;
|
|
if (!expand(expand_bytes, _workers, &expand_ms)) {
|
|
// We failed to expand the heap. Cannot do anything about it.
|
|
}
|
|
g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
|
|
}
|
|
}
|
|
|
|
// We redo the verification but now wrt to the new CSet which
|
|
// has just got initialized after the previous CSet was freed.
|
|
_cm->verify_no_cset_oops();
|
|
|
|
// This timing is only used by the ergonomics to handle our pause target.
|
|
// It is unclear why this should not include the full pause. We will
|
|
// investigate this in CR 7178365.
|
|
double sample_end_time_sec = os::elapsedTime();
|
|
double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
|
|
size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
|
|
g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
|
|
|
|
evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
|
|
evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
|
|
|
|
if (VerifyRememberedSets) {
|
|
log_info(gc, verify)("[Verifying RemSets after GC]");
|
|
VerifyRegionRemSetClosure v_cl;
|
|
heap_region_iterate(&v_cl);
|
|
}
|
|
|
|
_verifier->verify_after_gc(verify_type);
|
|
_verifier->check_bitmaps("GC End");
|
|
|
|
assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
|
|
ref_processor_stw()->verify_no_references_recorded();
|
|
|
|
// CM reference discovery will be re-enabled if necessary.
|
|
}
|
|
|
|
#ifdef TRACESPINNING
|
|
ParallelTaskTerminator::print_termination_counts();
|
|
#endif
|
|
|
|
gc_epilogue(false);
|
|
}
|
|
|
|
// Print the remainder of the GC log output.
|
|
if (evacuation_failed()) {
|
|
log_info(gc)("To-space exhausted");
|
|
}
|
|
|
|
g1_policy()->print_phases();
|
|
heap_transition.print();
|
|
|
|
// It is not yet to safe to tell the concurrent mark to
|
|
// start as we have some optional output below. We don't want the
|
|
// output from the concurrent mark thread interfering with this
|
|
// logging output either.
|
|
|
|
_hrm.verify_optional();
|
|
_verifier->verify_region_sets_optional();
|
|
|
|
TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
|
|
TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
|
|
|
|
print_heap_after_gc();
|
|
print_heap_regions();
|
|
trace_heap_after_gc(_gc_tracer_stw);
|
|
|
|
// We must call G1MonitoringSupport::update_sizes() in the same scoping level
|
|
// as an active TraceMemoryManagerStats object (i.e. before the destructor for the
|
|
// TraceMemoryManagerStats is called) so that the G1 memory pools are updated
|
|
// before any GC notifications are raised.
|
|
g1mm()->update_sizes();
|
|
|
|
_gc_tracer_stw->report_evacuation_info(&evacuation_info);
|
|
_gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
|
|
_gc_timer_stw->register_gc_end();
|
|
_gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
|
|
}
|
|
// It should now be safe to tell the concurrent mark thread to start
|
|
// without its logging output interfering with the logging output
|
|
// that came from the pause.
|
|
|
|
if (should_start_conc_mark) {
|
|
// CAUTION: after the doConcurrentMark() call below,
|
|
// the concurrent marking thread(s) could be running
|
|
// concurrently with us. Make sure that anything after
|
|
// this point does not assume that we are the only GC thread
|
|
// running. Note: of course, the actual marking work will
|
|
// not start until the safepoint itself is released in
|
|
// SuspendibleThreadSet::desynchronize().
|
|
doConcurrentMark();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void G1CollectedHeap::remove_self_forwarding_pointers() {
|
|
G1ParRemoveSelfForwardPtrsTask rsfp_task;
|
|
workers()->run_task(&rsfp_task);
|
|
}
|
|
|
|
void G1CollectedHeap::restore_after_evac_failure() {
|
|
double remove_self_forwards_start = os::elapsedTime();
|
|
|
|
remove_self_forwarding_pointers();
|
|
SharedRestorePreservedMarksTaskExecutor task_executor(workers());
|
|
_preserved_marks_set.restore(&task_executor);
|
|
|
|
g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
|
|
}
|
|
|
|
void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
|
|
if (!_evacuation_failed) {
|
|
_evacuation_failed = true;
|
|
}
|
|
|
|
_evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
|
|
_preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
|
|
}
|
|
|
|
bool G1ParEvacuateFollowersClosure::offer_termination() {
|
|
G1ParScanThreadState* const pss = par_scan_state();
|
|
start_term_time();
|
|
const bool res = terminator()->offer_termination();
|
|
end_term_time();
|
|
return res;
|
|
}
|
|
|
|
void G1ParEvacuateFollowersClosure::do_void() {
|
|
G1ParScanThreadState* const pss = par_scan_state();
|
|
pss->trim_queue();
|
|
do {
|
|
pss->steal_and_trim_queue(queues());
|
|
} while (!offer_termination());
|
|
}
|
|
|
|
class G1ParTask : public AbstractGangTask {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ParScanThreadStateSet* _pss;
|
|
RefToScanQueueSet* _queues;
|
|
G1RootProcessor* _root_processor;
|
|
ParallelTaskTerminator _terminator;
|
|
uint _n_workers;
|
|
|
|
public:
|
|
G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
|
|
: AbstractGangTask("G1 collection"),
|
|
_g1h(g1h),
|
|
_pss(per_thread_states),
|
|
_queues(task_queues),
|
|
_root_processor(root_processor),
|
|
_terminator(n_workers, _queues),
|
|
_n_workers(n_workers)
|
|
{}
|
|
|
|
void work(uint worker_id) {
|
|
if (worker_id >= _n_workers) return; // no work needed this round
|
|
|
|
double start_sec = os::elapsedTime();
|
|
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
|
|
|
|
{
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
|
|
ReferenceProcessor* rp = _g1h->ref_processor_stw();
|
|
|
|
G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
|
|
pss->set_ref_processor(rp);
|
|
|
|
double start_strong_roots_sec = os::elapsedTime();
|
|
|
|
_root_processor->evacuate_roots(pss->closures(), worker_id);
|
|
|
|
// We pass a weak code blobs closure to the remembered set scanning because we want to avoid
|
|
// treating the nmethods visited to act as roots for concurrent marking.
|
|
// We only want to make sure that the oops in the nmethods are adjusted with regard to the
|
|
// objects copied by the current evacuation.
|
|
_g1h->g1_rem_set()->oops_into_collection_set_do(pss,
|
|
pss->closures()->weak_codeblobs(),
|
|
worker_id);
|
|
|
|
double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
|
|
|
|
double term_sec = 0.0;
|
|
size_t evac_term_attempts = 0;
|
|
{
|
|
double start = os::elapsedTime();
|
|
G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
|
|
evac.do_void();
|
|
|
|
evac_term_attempts = evac.term_attempts();
|
|
term_sec = evac.term_time();
|
|
double elapsed_sec = os::elapsedTime() - start;
|
|
_g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
|
|
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
|
|
_g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
|
|
}
|
|
|
|
assert(pss->queue_is_empty(), "should be empty");
|
|
|
|
if (log_is_enabled(Debug, gc, task, stats)) {
|
|
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
|
|
size_t lab_waste;
|
|
size_t lab_undo_waste;
|
|
pss->waste(lab_waste, lab_undo_waste);
|
|
_g1h->print_termination_stats(worker_id,
|
|
(os::elapsedTime() - start_sec) * 1000.0, /* elapsed time */
|
|
strong_roots_sec * 1000.0, /* strong roots time */
|
|
term_sec * 1000.0, /* evac term time */
|
|
evac_term_attempts, /* evac term attempts */
|
|
lab_waste, /* alloc buffer waste */
|
|
lab_undo_waste /* undo waste */
|
|
);
|
|
}
|
|
|
|
// Close the inner scope so that the ResourceMark and HandleMark
|
|
// destructors are executed here and are included as part of the
|
|
// "GC Worker Time".
|
|
}
|
|
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::print_termination_stats_hdr() {
|
|
log_debug(gc, task, stats)("GC Termination Stats");
|
|
log_debug(gc, task, stats)(" elapsed --strong roots-- -------termination------- ------waste (KiB)------");
|
|
log_debug(gc, task, stats)("thr ms ms %% ms %% attempts total alloc undo");
|
|
log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
|
|
}
|
|
|
|
void G1CollectedHeap::print_termination_stats(uint worker_id,
|
|
double elapsed_ms,
|
|
double strong_roots_ms,
|
|
double term_ms,
|
|
size_t term_attempts,
|
|
size_t alloc_buffer_waste,
|
|
size_t undo_waste) const {
|
|
log_debug(gc, task, stats)
|
|
("%3d %9.2f %9.2f %6.2f "
|
|
"%9.2f %6.2f " SIZE_FORMAT_W(8) " "
|
|
SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
|
|
worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
|
|
term_ms, term_ms * 100 / elapsed_ms, term_attempts,
|
|
(alloc_buffer_waste + undo_waste) * HeapWordSize / K,
|
|
alloc_buffer_waste * HeapWordSize / K,
|
|
undo_waste * HeapWordSize / K);
|
|
}
|
|
|
|
class G1StringAndSymbolCleaningTask : public AbstractGangTask {
|
|
private:
|
|
BoolObjectClosure* _is_alive;
|
|
G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
|
|
|
|
int _initial_string_table_size;
|
|
int _initial_symbol_table_size;
|
|
|
|
bool _process_strings;
|
|
int _strings_processed;
|
|
int _strings_removed;
|
|
|
|
bool _process_symbols;
|
|
int _symbols_processed;
|
|
int _symbols_removed;
|
|
|
|
bool _process_string_dedup;
|
|
|
|
public:
|
|
G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
|
|
AbstractGangTask("String/Symbol Unlinking"),
|
|
_is_alive(is_alive),
|
|
_dedup_closure(is_alive, NULL, false),
|
|
_process_strings(process_strings), _strings_processed(0), _strings_removed(0),
|
|
_process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
|
|
_process_string_dedup(process_string_dedup) {
|
|
|
|
_initial_string_table_size = StringTable::the_table()->table_size();
|
|
_initial_symbol_table_size = SymbolTable::the_table()->table_size();
|
|
if (process_strings) {
|
|
StringTable::clear_parallel_claimed_index();
|
|
}
|
|
if (process_symbols) {
|
|
SymbolTable::clear_parallel_claimed_index();
|
|
}
|
|
}
|
|
|
|
~G1StringAndSymbolCleaningTask() {
|
|
guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
|
|
"claim value %d after unlink less than initial string table size %d",
|
|
StringTable::parallel_claimed_index(), _initial_string_table_size);
|
|
guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
|
|
"claim value %d after unlink less than initial symbol table size %d",
|
|
SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
|
|
|
|
log_info(gc, stringtable)(
|
|
"Cleaned string and symbol table, "
|
|
"strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
|
|
"symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
|
|
strings_processed(), strings_removed(),
|
|
symbols_processed(), symbols_removed());
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
int strings_processed = 0;
|
|
int strings_removed = 0;
|
|
int symbols_processed = 0;
|
|
int symbols_removed = 0;
|
|
if (_process_strings) {
|
|
StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
|
|
Atomic::add(strings_processed, &_strings_processed);
|
|
Atomic::add(strings_removed, &_strings_removed);
|
|
}
|
|
if (_process_symbols) {
|
|
SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
|
|
Atomic::add(symbols_processed, &_symbols_processed);
|
|
Atomic::add(symbols_removed, &_symbols_removed);
|
|
}
|
|
if (_process_string_dedup) {
|
|
G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
|
|
}
|
|
}
|
|
|
|
size_t strings_processed() const { return (size_t)_strings_processed; }
|
|
size_t strings_removed() const { return (size_t)_strings_removed; }
|
|
|
|
size_t symbols_processed() const { return (size_t)_symbols_processed; }
|
|
size_t symbols_removed() const { return (size_t)_symbols_removed; }
|
|
};
|
|
|
|
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
|
|
private:
|
|
static Monitor* _lock;
|
|
|
|
BoolObjectClosure* const _is_alive;
|
|
const bool _unloading_occurred;
|
|
const uint _num_workers;
|
|
|
|
// Variables used to claim nmethods.
|
|
CompiledMethod* _first_nmethod;
|
|
CompiledMethod* volatile _claimed_nmethod;
|
|
|
|
// The list of nmethods that need to be processed by the second pass.
|
|
CompiledMethod* volatile _postponed_list;
|
|
volatile uint _num_entered_barrier;
|
|
|
|
public:
|
|
G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
|
|
_is_alive(is_alive),
|
|
_unloading_occurred(unloading_occurred),
|
|
_num_workers(num_workers),
|
|
_first_nmethod(NULL),
|
|
_claimed_nmethod(NULL),
|
|
_postponed_list(NULL),
|
|
_num_entered_barrier(0)
|
|
{
|
|
CompiledMethod::increase_unloading_clock();
|
|
// Get first alive nmethod
|
|
CompiledMethodIterator iter = CompiledMethodIterator();
|
|
if(iter.next_alive()) {
|
|
_first_nmethod = iter.method();
|
|
}
|
|
_claimed_nmethod = _first_nmethod;
|
|
}
|
|
|
|
~G1CodeCacheUnloadingTask() {
|
|
CodeCache::verify_clean_inline_caches();
|
|
|
|
CodeCache::set_needs_cache_clean(false);
|
|
guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
|
|
|
|
CodeCache::verify_icholder_relocations();
|
|
}
|
|
|
|
private:
|
|
void add_to_postponed_list(CompiledMethod* nm) {
|
|
CompiledMethod* old;
|
|
do {
|
|
old = _postponed_list;
|
|
nm->set_unloading_next(old);
|
|
} while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
|
|
}
|
|
|
|
void clean_nmethod(CompiledMethod* nm) {
|
|
bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
|
|
|
|
if (postponed) {
|
|
// This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
|
|
add_to_postponed_list(nm);
|
|
}
|
|
|
|
// Mark that this thread has been cleaned/unloaded.
|
|
// After this call, it will be safe to ask if this nmethod was unloaded or not.
|
|
nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
|
|
}
|
|
|
|
void clean_nmethod_postponed(CompiledMethod* nm) {
|
|
nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
|
|
}
|
|
|
|
static const int MaxClaimNmethods = 16;
|
|
|
|
void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
|
|
CompiledMethod* first;
|
|
CompiledMethodIterator last;
|
|
|
|
do {
|
|
*num_claimed_nmethods = 0;
|
|
|
|
first = _claimed_nmethod;
|
|
last = CompiledMethodIterator(first);
|
|
|
|
if (first != NULL) {
|
|
|
|
for (int i = 0; i < MaxClaimNmethods; i++) {
|
|
if (!last.next_alive()) {
|
|
break;
|
|
}
|
|
claimed_nmethods[i] = last.method();
|
|
(*num_claimed_nmethods)++;
|
|
}
|
|
}
|
|
|
|
} while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
|
|
}
|
|
|
|
CompiledMethod* claim_postponed_nmethod() {
|
|
CompiledMethod* claim;
|
|
CompiledMethod* next;
|
|
|
|
do {
|
|
claim = _postponed_list;
|
|
if (claim == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
next = claim->unloading_next();
|
|
|
|
} while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
|
|
|
|
return claim;
|
|
}
|
|
|
|
public:
|
|
// Mark that we're done with the first pass of nmethod cleaning.
|
|
void barrier_mark(uint worker_id) {
|
|
MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
|
|
_num_entered_barrier++;
|
|
if (_num_entered_barrier == _num_workers) {
|
|
ml.notify_all();
|
|
}
|
|
}
|
|
|
|
// See if we have to wait for the other workers to
|
|
// finish their first-pass nmethod cleaning work.
|
|
void barrier_wait(uint worker_id) {
|
|
if (_num_entered_barrier < _num_workers) {
|
|
MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
|
|
while (_num_entered_barrier < _num_workers) {
|
|
ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cleaning and unloading of nmethods. Some work has to be postponed
|
|
// to the second pass, when we know which nmethods survive.
|
|
void work_first_pass(uint worker_id) {
|
|
// The first nmethods is claimed by the first worker.
|
|
if (worker_id == 0 && _first_nmethod != NULL) {
|
|
clean_nmethod(_first_nmethod);
|
|
_first_nmethod = NULL;
|
|
}
|
|
|
|
int num_claimed_nmethods;
|
|
CompiledMethod* claimed_nmethods[MaxClaimNmethods];
|
|
|
|
while (true) {
|
|
claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
|
|
|
|
if (num_claimed_nmethods == 0) {
|
|
break;
|
|
}
|
|
|
|
for (int i = 0; i < num_claimed_nmethods; i++) {
|
|
clean_nmethod(claimed_nmethods[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void work_second_pass(uint worker_id) {
|
|
CompiledMethod* nm;
|
|
// Take care of postponed nmethods.
|
|
while ((nm = claim_postponed_nmethod()) != NULL) {
|
|
clean_nmethod_postponed(nm);
|
|
}
|
|
}
|
|
};
|
|
|
|
Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
|
|
|
|
class G1KlassCleaningTask : public StackObj {
|
|
BoolObjectClosure* _is_alive;
|
|
volatile int _clean_klass_tree_claimed;
|
|
ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
|
|
|
|
public:
|
|
G1KlassCleaningTask(BoolObjectClosure* is_alive) :
|
|
_is_alive(is_alive),
|
|
_clean_klass_tree_claimed(0),
|
|
_klass_iterator() {
|
|
}
|
|
|
|
private:
|
|
bool claim_clean_klass_tree_task() {
|
|
if (_clean_klass_tree_claimed) {
|
|
return false;
|
|
}
|
|
|
|
return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
|
|
}
|
|
|
|
InstanceKlass* claim_next_klass() {
|
|
Klass* klass;
|
|
do {
|
|
klass =_klass_iterator.next_klass();
|
|
} while (klass != NULL && !klass->is_instance_klass());
|
|
|
|
// this can be null so don't call InstanceKlass::cast
|
|
return static_cast<InstanceKlass*>(klass);
|
|
}
|
|
|
|
public:
|
|
|
|
void clean_klass(InstanceKlass* ik) {
|
|
ik->clean_weak_instanceklass_links(_is_alive);
|
|
}
|
|
|
|
void work() {
|
|
ResourceMark rm;
|
|
|
|
// One worker will clean the subklass/sibling klass tree.
|
|
if (claim_clean_klass_tree_task()) {
|
|
Klass::clean_subklass_tree(_is_alive);
|
|
}
|
|
|
|
// All workers will help cleaning the classes,
|
|
InstanceKlass* klass;
|
|
while ((klass = claim_next_klass()) != NULL) {
|
|
clean_klass(klass);
|
|
}
|
|
}
|
|
};
|
|
|
|
class G1ResolvedMethodCleaningTask : public StackObj {
|
|
BoolObjectClosure* _is_alive;
|
|
volatile int _resolved_method_task_claimed;
|
|
public:
|
|
G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
|
|
_is_alive(is_alive), _resolved_method_task_claimed(0) {}
|
|
|
|
bool claim_resolved_method_task() {
|
|
if (_resolved_method_task_claimed) {
|
|
return false;
|
|
}
|
|
return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
|
|
}
|
|
|
|
// These aren't big, one thread can do it all.
|
|
void work() {
|
|
if (claim_resolved_method_task()) {
|
|
ResolvedMethodTable::unlink(_is_alive);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// To minimize the remark pause times, the tasks below are done in parallel.
|
|
class G1ParallelCleaningTask : public AbstractGangTask {
|
|
private:
|
|
G1StringAndSymbolCleaningTask _string_symbol_task;
|
|
G1CodeCacheUnloadingTask _code_cache_task;
|
|
G1KlassCleaningTask _klass_cleaning_task;
|
|
G1ResolvedMethodCleaningTask _resolved_method_cleaning_task;
|
|
|
|
public:
|
|
// The constructor is run in the VMThread.
|
|
G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
|
|
AbstractGangTask("Parallel Cleaning"),
|
|
_string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
|
|
_code_cache_task(num_workers, is_alive, unloading_occurred),
|
|
_klass_cleaning_task(is_alive),
|
|
_resolved_method_cleaning_task(is_alive) {
|
|
}
|
|
|
|
// The parallel work done by all worker threads.
|
|
void work(uint worker_id) {
|
|
// Do first pass of code cache cleaning.
|
|
_code_cache_task.work_first_pass(worker_id);
|
|
|
|
// Let the threads mark that the first pass is done.
|
|
_code_cache_task.barrier_mark(worker_id);
|
|
|
|
// Clean the Strings and Symbols.
|
|
_string_symbol_task.work(worker_id);
|
|
|
|
// Clean unreferenced things in the ResolvedMethodTable
|
|
_resolved_method_cleaning_task.work();
|
|
|
|
// Wait for all workers to finish the first code cache cleaning pass.
|
|
_code_cache_task.barrier_wait(worker_id);
|
|
|
|
// Do the second code cache cleaning work, which realize on
|
|
// the liveness information gathered during the first pass.
|
|
_code_cache_task.work_second_pass(worker_id);
|
|
|
|
// Clean all klasses that were not unloaded.
|
|
_klass_cleaning_task.work();
|
|
}
|
|
};
|
|
|
|
|
|
void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
|
|
bool class_unloading_occurred) {
|
|
uint n_workers = workers()->active_workers();
|
|
|
|
G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
|
|
workers()->run_task(&g1_unlink_task);
|
|
}
|
|
|
|
void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
|
|
bool process_strings,
|
|
bool process_symbols,
|
|
bool process_string_dedup) {
|
|
if (!process_strings && !process_symbols && !process_string_dedup) {
|
|
// Nothing to clean.
|
|
return;
|
|
}
|
|
|
|
G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
|
|
workers()->run_task(&g1_unlink_task);
|
|
|
|
}
|
|
|
|
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
|
|
private:
|
|
DirtyCardQueueSet* _queue;
|
|
G1CollectedHeap* _g1h;
|
|
public:
|
|
G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
|
|
_queue(queue), _g1h(g1h) { }
|
|
|
|
virtual void work(uint worker_id) {
|
|
G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
|
|
G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
|
|
|
|
RedirtyLoggedCardTableEntryClosure cl(_g1h);
|
|
_queue->par_apply_closure_to_all_completed_buffers(&cl);
|
|
|
|
phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::redirty_logged_cards() {
|
|
double redirty_logged_cards_start = os::elapsedTime();
|
|
|
|
G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
|
|
dirty_card_queue_set().reset_for_par_iteration();
|
|
workers()->run_task(&redirty_task);
|
|
|
|
DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
|
|
dcq.merge_bufferlists(&dirty_card_queue_set());
|
|
assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
|
|
|
|
g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
|
|
}
|
|
|
|
// Weak Reference Processing support
|
|
|
|
// An always "is_alive" closure that is used to preserve referents.
|
|
// If the object is non-null then it's alive. Used in the preservation
|
|
// of referent objects that are pointed to by reference objects
|
|
// discovered by the CM ref processor.
|
|
class G1AlwaysAliveClosure: public BoolObjectClosure {
|
|
G1CollectedHeap* _g1;
|
|
public:
|
|
G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
|
|
bool do_object_b(oop p) {
|
|
if (p != NULL) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
bool G1STWIsAliveClosure::do_object_b(oop p) {
|
|
// An object is reachable if it is outside the collection set,
|
|
// or is inside and copied.
|
|
return !_g1->is_in_cset(p) || p->is_forwarded();
|
|
}
|
|
|
|
// Non Copying Keep Alive closure
|
|
class G1KeepAliveClosure: public OopClosure {
|
|
G1CollectedHeap* _g1;
|
|
public:
|
|
G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
|
|
void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
|
|
void do_oop(oop* p) {
|
|
oop obj = *p;
|
|
assert(obj != NULL, "the caller should have filtered out NULL values");
|
|
|
|
const InCSetState cset_state = _g1->in_cset_state(obj);
|
|
if (!cset_state.is_in_cset_or_humongous()) {
|
|
return;
|
|
}
|
|
if (cset_state.is_in_cset()) {
|
|
assert( obj->is_forwarded(), "invariant" );
|
|
*p = obj->forwardee();
|
|
} else {
|
|
assert(!obj->is_forwarded(), "invariant" );
|
|
assert(cset_state.is_humongous(),
|
|
"Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
|
|
_g1->set_humongous_is_live(obj);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Copying Keep Alive closure - can be called from both
|
|
// serial and parallel code as long as different worker
|
|
// threads utilize different G1ParScanThreadState instances
|
|
// and different queues.
|
|
|
|
class G1CopyingKeepAliveClosure: public OopClosure {
|
|
G1CollectedHeap* _g1h;
|
|
OopClosure* _copy_non_heap_obj_cl;
|
|
G1ParScanThreadState* _par_scan_state;
|
|
|
|
public:
|
|
G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
|
|
OopClosure* non_heap_obj_cl,
|
|
G1ParScanThreadState* pss):
|
|
_g1h(g1h),
|
|
_copy_non_heap_obj_cl(non_heap_obj_cl),
|
|
_par_scan_state(pss)
|
|
{}
|
|
|
|
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
|
|
virtual void do_oop( oop* p) { do_oop_work(p); }
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
oop obj = oopDesc::load_decode_heap_oop(p);
|
|
|
|
if (_g1h->is_in_cset_or_humongous(obj)) {
|
|
// If the referent object has been forwarded (either copied
|
|
// to a new location or to itself in the event of an
|
|
// evacuation failure) then we need to update the reference
|
|
// field and, if both reference and referent are in the G1
|
|
// heap, update the RSet for the referent.
|
|
//
|
|
// If the referent has not been forwarded then we have to keep
|
|
// it alive by policy. Therefore we have copy the referent.
|
|
//
|
|
// If the reference field is in the G1 heap then we can push
|
|
// on the PSS queue. When the queue is drained (after each
|
|
// phase of reference processing) the object and it's followers
|
|
// will be copied, the reference field set to point to the
|
|
// new location, and the RSet updated. Otherwise we need to
|
|
// use the the non-heap or metadata closures directly to copy
|
|
// the referent object and update the pointer, while avoiding
|
|
// updating the RSet.
|
|
|
|
if (_g1h->is_in_g1_reserved(p)) {
|
|
_par_scan_state->push_on_queue(p);
|
|
} else {
|
|
assert(!Metaspace::contains((const void*)p),
|
|
"Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
|
|
_copy_non_heap_obj_cl->do_oop(p);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// Serial drain queue closure. Called as the 'complete_gc'
|
|
// closure for each discovered list in some of the
|
|
// reference processing phases.
|
|
|
|
class G1STWDrainQueueClosure: public VoidClosure {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ParScanThreadState* _par_scan_state;
|
|
|
|
G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
|
|
|
|
public:
|
|
G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
|
|
_g1h(g1h),
|
|
_par_scan_state(pss)
|
|
{ }
|
|
|
|
void do_void() {
|
|
G1ParScanThreadState* const pss = par_scan_state();
|
|
pss->trim_queue();
|
|
}
|
|
};
|
|
|
|
// Parallel Reference Processing closures
|
|
|
|
// Implementation of AbstractRefProcTaskExecutor for parallel reference
|
|
// processing during G1 evacuation pauses.
|
|
|
|
class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
|
|
private:
|
|
G1CollectedHeap* _g1h;
|
|
G1ParScanThreadStateSet* _pss;
|
|
RefToScanQueueSet* _queues;
|
|
WorkGang* _workers;
|
|
uint _active_workers;
|
|
|
|
public:
|
|
G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
|
|
G1ParScanThreadStateSet* per_thread_states,
|
|
WorkGang* workers,
|
|
RefToScanQueueSet *task_queues,
|
|
uint n_workers) :
|
|
_g1h(g1h),
|
|
_pss(per_thread_states),
|
|
_queues(task_queues),
|
|
_workers(workers),
|
|
_active_workers(n_workers)
|
|
{
|
|
g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
|
|
}
|
|
|
|
// Executes the given task using concurrent marking worker threads.
|
|
virtual void execute(ProcessTask& task);
|
|
virtual void execute(EnqueueTask& task);
|
|
};
|
|
|
|
// Gang task for possibly parallel reference processing
|
|
|
|
class G1STWRefProcTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
|
|
ProcessTask& _proc_task;
|
|
G1CollectedHeap* _g1h;
|
|
G1ParScanThreadStateSet* _pss;
|
|
RefToScanQueueSet* _task_queues;
|
|
ParallelTaskTerminator* _terminator;
|
|
|
|
public:
|
|
G1STWRefProcTaskProxy(ProcessTask& proc_task,
|
|
G1CollectedHeap* g1h,
|
|
G1ParScanThreadStateSet* per_thread_states,
|
|
RefToScanQueueSet *task_queues,
|
|
ParallelTaskTerminator* terminator) :
|
|
AbstractGangTask("Process reference objects in parallel"),
|
|
_proc_task(proc_task),
|
|
_g1h(g1h),
|
|
_pss(per_thread_states),
|
|
_task_queues(task_queues),
|
|
_terminator(terminator)
|
|
{}
|
|
|
|
virtual void work(uint worker_id) {
|
|
// The reference processing task executed by a single worker.
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
|
|
G1STWIsAliveClosure is_alive(_g1h);
|
|
|
|
G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
|
|
pss->set_ref_processor(NULL);
|
|
|
|
// Keep alive closure.
|
|
G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
|
|
|
|
// Complete GC closure
|
|
G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
|
|
|
|
// Call the reference processing task's work routine.
|
|
_proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
|
|
|
|
// Note we cannot assert that the refs array is empty here as not all
|
|
// of the processing tasks (specifically phase2 - pp2_work) execute
|
|
// the complete_gc closure (which ordinarily would drain the queue) so
|
|
// the queue may not be empty.
|
|
}
|
|
};
|
|
|
|
// Driver routine for parallel reference processing.
|
|
// Creates an instance of the ref processing gang
|
|
// task and has the worker threads execute it.
|
|
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
|
|
assert(_workers != NULL, "Need parallel worker threads.");
|
|
|
|
ParallelTaskTerminator terminator(_active_workers, _queues);
|
|
G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
|
|
|
|
_workers->run_task(&proc_task_proxy);
|
|
}
|
|
|
|
// Gang task for parallel reference enqueueing.
|
|
|
|
class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
|
|
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
|
|
EnqueueTask& _enq_task;
|
|
|
|
public:
|
|
G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
|
|
AbstractGangTask("Enqueue reference objects in parallel"),
|
|
_enq_task(enq_task)
|
|
{ }
|
|
|
|
virtual void work(uint worker_id) {
|
|
_enq_task.work(worker_id);
|
|
}
|
|
};
|
|
|
|
// Driver routine for parallel reference enqueueing.
|
|
// Creates an instance of the ref enqueueing gang
|
|
// task and has the worker threads execute it.
|
|
|
|
void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
|
|
assert(_workers != NULL, "Need parallel worker threads.");
|
|
|
|
G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
|
|
|
|
_workers->run_task(&enq_task_proxy);
|
|
}
|
|
|
|
// End of weak reference support closures
|
|
|
|
// Abstract task used to preserve (i.e. copy) any referent objects
|
|
// that are in the collection set and are pointed to by reference
|
|
// objects discovered by the CM ref processor.
|
|
|
|
class G1ParPreserveCMReferentsTask: public AbstractGangTask {
|
|
protected:
|
|
G1CollectedHeap* _g1h;
|
|
G1ParScanThreadStateSet* _pss;
|
|
RefToScanQueueSet* _queues;
|
|
ParallelTaskTerminator _terminator;
|
|
uint _n_workers;
|
|
|
|
public:
|
|
G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
|
|
AbstractGangTask("ParPreserveCMReferents"),
|
|
_g1h(g1h),
|
|
_pss(per_thread_states),
|
|
_queues(task_queues),
|
|
_terminator(workers, _queues),
|
|
_n_workers(workers)
|
|
{
|
|
g1h->ref_processor_cm()->set_active_mt_degree(workers);
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
|
|
|
|
ResourceMark rm;
|
|
HandleMark hm;
|
|
|
|
G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
|
|
pss->set_ref_processor(NULL);
|
|
assert(pss->queue_is_empty(), "both queue and overflow should be empty");
|
|
|
|
// Is alive closure
|
|
G1AlwaysAliveClosure always_alive(_g1h);
|
|
|
|
// Copying keep alive closure. Applied to referent objects that need
|
|
// to be copied.
|
|
G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
|
|
|
|
ReferenceProcessor* rp = _g1h->ref_processor_cm();
|
|
|
|
uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
|
|
uint stride = MIN2(MAX2(_n_workers, 1U), limit);
|
|
|
|
// limit is set using max_num_q() - which was set using ParallelGCThreads.
|
|
// So this must be true - but assert just in case someone decides to
|
|
// change the worker ids.
|
|
assert(worker_id < limit, "sanity");
|
|
assert(!rp->discovery_is_atomic(), "check this code");
|
|
|
|
// Select discovered lists [i, i+stride, i+2*stride,...,limit)
|
|
for (uint idx = worker_id; idx < limit; idx += stride) {
|
|
DiscoveredList& ref_list = rp->discovered_refs()[idx];
|
|
|
|
DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
|
|
while (iter.has_next()) {
|
|
// Since discovery is not atomic for the CM ref processor, we
|
|
// can see some null referent objects.
|
|
iter.load_ptrs(DEBUG_ONLY(true));
|
|
oop ref = iter.obj();
|
|
|
|
// This will filter nulls.
|
|
if (iter.is_referent_alive()) {
|
|
iter.make_referent_alive();
|
|
}
|
|
iter.move_to_next();
|
|
}
|
|
}
|
|
|
|
// Drain the queue - which may cause stealing
|
|
G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
|
|
drain_queue.do_void();
|
|
// Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
|
|
assert(pss->queue_is_empty(), "should be");
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
|
|
// Any reference objects, in the collection set, that were 'discovered'
|
|
// by the CM ref processor should have already been copied (either by
|
|
// applying the external root copy closure to the discovered lists, or
|
|
// by following an RSet entry).
|
|
//
|
|
// But some of the referents, that are in the collection set, that these
|
|
// reference objects point to may not have been copied: the STW ref
|
|
// processor would have seen that the reference object had already
|
|
// been 'discovered' and would have skipped discovering the reference,
|
|
// but would not have treated the reference object as a regular oop.
|
|
// As a result the copy closure would not have been applied to the
|
|
// referent object.
|
|
//
|
|
// We need to explicitly copy these referent objects - the references
|
|
// will be processed at the end of remarking.
|
|
//
|
|
// We also need to do this copying before we process the reference
|
|
// objects discovered by the STW ref processor in case one of these
|
|
// referents points to another object which is also referenced by an
|
|
// object discovered by the STW ref processor.
|
|
double preserve_cm_referents_time = 0.0;
|
|
|
|
// To avoid spawning task when there is no work to do, check that
|
|
// a concurrent cycle is active and that some references have been
|
|
// discovered.
|
|
if (concurrent_mark()->cm_thread()->during_cycle() &&
|
|
ref_processor_cm()->has_discovered_references()) {
|
|
double preserve_cm_referents_start = os::elapsedTime();
|
|
uint no_of_gc_workers = workers()->active_workers();
|
|
G1ParPreserveCMReferentsTask keep_cm_referents(this,
|
|
per_thread_states,
|
|
no_of_gc_workers,
|
|
_task_queues);
|
|
workers()->run_task(&keep_cm_referents);
|
|
preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
|
|
}
|
|
|
|
g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
|
|
}
|
|
|
|
// Weak Reference processing during an evacuation pause (part 1).
|
|
void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
|
|
double ref_proc_start = os::elapsedTime();
|
|
|
|
ReferenceProcessor* rp = _ref_processor_stw;
|
|
assert(rp->discovery_enabled(), "should have been enabled");
|
|
|
|
// Closure to test whether a referent is alive.
|
|
G1STWIsAliveClosure is_alive(this);
|
|
|
|
// Even when parallel reference processing is enabled, the processing
|
|
// of JNI refs is serial and performed serially by the current thread
|
|
// rather than by a worker. The following PSS will be used for processing
|
|
// JNI refs.
|
|
|
|
// Use only a single queue for this PSS.
|
|
G1ParScanThreadState* pss = per_thread_states->state_for_worker(0);
|
|
pss->set_ref_processor(NULL);
|
|
assert(pss->queue_is_empty(), "pre-condition");
|
|
|
|
// Keep alive closure.
|
|
G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
|
|
|
|
// Serial Complete GC closure
|
|
G1STWDrainQueueClosure drain_queue(this, pss);
|
|
|
|
// Setup the soft refs policy...
|
|
rp->setup_policy(false);
|
|
|
|
ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
|
|
|
|
ReferenceProcessorStats stats;
|
|
if (!rp->processing_is_mt()) {
|
|
// Serial reference processing...
|
|
stats = rp->process_discovered_references(&is_alive,
|
|
&keep_alive,
|
|
&drain_queue,
|
|
NULL,
|
|
pt);
|
|
} else {
|
|
uint no_of_gc_workers = workers()->active_workers();
|
|
|
|
// Parallel reference processing
|
|
assert(no_of_gc_workers <= rp->max_num_q(),
|
|
"Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
|
|
no_of_gc_workers, rp->max_num_q());
|
|
|
|
G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
|
|
stats = rp->process_discovered_references(&is_alive,
|
|
&keep_alive,
|
|
&drain_queue,
|
|
&par_task_executor,
|
|
pt);
|
|
}
|
|
|
|
_gc_tracer_stw->report_gc_reference_stats(stats);
|
|
|
|
// We have completed copying any necessary live referent objects.
|
|
assert(pss->queue_is_empty(), "both queue and overflow should be empty");
|
|
|
|
double ref_proc_time = os::elapsedTime() - ref_proc_start;
|
|
g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
|
|
}
|
|
|
|
// Weak Reference processing during an evacuation pause (part 2).
|
|
void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
|
|
double ref_enq_start = os::elapsedTime();
|
|
|
|
ReferenceProcessor* rp = _ref_processor_stw;
|
|
assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
|
|
|
|
ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
|
|
|
|
// Now enqueue any remaining on the discovered lists on to
|
|
// the pending list.
|
|
if (!rp->processing_is_mt()) {
|
|
// Serial reference processing...
|
|
rp->enqueue_discovered_references(NULL, pt);
|
|
} else {
|
|
// Parallel reference enqueueing
|
|
|
|
uint n_workers = workers()->active_workers();
|
|
|
|
assert(n_workers <= rp->max_num_q(),
|
|
"Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
|
|
n_workers, rp->max_num_q());
|
|
|
|
G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
|
|
rp->enqueue_discovered_references(&par_task_executor, pt);
|
|
}
|
|
|
|
rp->verify_no_references_recorded();
|
|
assert(!rp->discovery_enabled(), "should have been disabled");
|
|
|
|
// If during an initial mark pause we install a pending list head which is not otherwise reachable
|
|
// ensure that it is marked in the bitmap for concurrent marking to discover.
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
oop pll_head = Universe::reference_pending_list();
|
|
if (pll_head != NULL) {
|
|
_cm->mark_in_next_bitmap(pll_head);
|
|
}
|
|
}
|
|
|
|
// FIXME
|
|
// CM's reference processing also cleans up the string and symbol tables.
|
|
// Should we do that here also? We could, but it is a serial operation
|
|
// and could significantly increase the pause time.
|
|
|
|
double ref_enq_time = os::elapsedTime() - ref_enq_start;
|
|
g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
|
|
}
|
|
|
|
void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
|
|
double merge_pss_time_start = os::elapsedTime();
|
|
per_thread_states->flush();
|
|
g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
|
|
}
|
|
|
|
void G1CollectedHeap::pre_evacuate_collection_set() {
|
|
_expand_heap_after_alloc_failure = true;
|
|
_evacuation_failed = false;
|
|
|
|
// Disable the hot card cache.
|
|
_hot_card_cache->reset_hot_cache_claimed_index();
|
|
_hot_card_cache->set_use_cache(false);
|
|
|
|
g1_rem_set()->prepare_for_oops_into_collection_set_do();
|
|
_preserved_marks_set.assert_empty();
|
|
|
|
G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
|
|
|
|
// InitialMark needs claim bits to keep track of the marked-through CLDs.
|
|
if (collector_state()->during_initial_mark_pause()) {
|
|
double start_clear_claimed_marks = os::elapsedTime();
|
|
|
|
ClassLoaderDataGraph::clear_claimed_marks();
|
|
|
|
double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
|
|
phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
|
|
// Should G1EvacuationFailureALot be in effect for this GC?
|
|
NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
|
|
|
|
assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
|
|
|
|
G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
|
|
|
|
double start_par_time_sec = os::elapsedTime();
|
|
double end_par_time_sec;
|
|
|
|
{
|
|
const uint n_workers = workers()->active_workers();
|
|
G1RootProcessor root_processor(this, n_workers);
|
|
G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
|
|
|
|
print_termination_stats_hdr();
|
|
|
|
workers()->run_task(&g1_par_task);
|
|
end_par_time_sec = os::elapsedTime();
|
|
|
|
// Closing the inner scope will execute the destructor
|
|
// for the G1RootProcessor object. We record the current
|
|
// elapsed time before closing the scope so that time
|
|
// taken for the destructor is NOT included in the
|
|
// reported parallel time.
|
|
}
|
|
|
|
double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
|
|
phase_times->record_par_time(par_time_ms);
|
|
|
|
double code_root_fixup_time_ms =
|
|
(os::elapsedTime() - end_par_time_sec) * 1000.0;
|
|
phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
|
|
}
|
|
|
|
void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
|
|
// Process any discovered reference objects - we have
|
|
// to do this _before_ we retire the GC alloc regions
|
|
// as we may have to copy some 'reachable' referent
|
|
// objects (and their reachable sub-graphs) that were
|
|
// not copied during the pause.
|
|
if (g1_policy()->should_process_references()) {
|
|
preserve_cm_referents(per_thread_states);
|
|
process_discovered_references(per_thread_states);
|
|
} else {
|
|
ref_processor_stw()->verify_no_references_recorded();
|
|
}
|
|
|
|
G1STWIsAliveClosure is_alive(this);
|
|
G1KeepAliveClosure keep_alive(this);
|
|
|
|
{
|
|
double start = os::elapsedTime();
|
|
|
|
WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
|
|
|
|
double time_ms = (os::elapsedTime() - start) * 1000.0;
|
|
g1_policy()->phase_times()->record_ref_proc_time(time_ms);
|
|
}
|
|
|
|
if (G1StringDedup::is_enabled()) {
|
|
double fixup_start = os::elapsedTime();
|
|
|
|
G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
|
|
|
|
double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
|
|
g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
|
|
}
|
|
|
|
g1_rem_set()->cleanup_after_oops_into_collection_set_do();
|
|
|
|
if (evacuation_failed()) {
|
|
restore_after_evac_failure();
|
|
|
|
// Reset the G1EvacuationFailureALot counters and flags
|
|
// Note: the values are reset only when an actual
|
|
// evacuation failure occurs.
|
|
NOT_PRODUCT(reset_evacuation_should_fail();)
|
|
}
|
|
|
|
_preserved_marks_set.assert_empty();
|
|
|
|
// Enqueue any remaining references remaining on the STW
|
|
// reference processor's discovered lists. We need to do
|
|
// this after the card table is cleaned (and verified) as
|
|
// the act of enqueueing entries on to the pending list
|
|
// will log these updates (and dirty their associated
|
|
// cards). We need these updates logged to update any
|
|
// RSets.
|
|
if (g1_policy()->should_process_references()) {
|
|
enqueue_discovered_references(per_thread_states);
|
|
} else {
|
|
g1_policy()->phase_times()->record_ref_enq_time(0);
|
|
}
|
|
|
|
_allocator->release_gc_alloc_regions(evacuation_info);
|
|
|
|
merge_per_thread_state_info(per_thread_states);
|
|
|
|
// Reset and re-enable the hot card cache.
|
|
// Note the counts for the cards in the regions in the
|
|
// collection set are reset when the collection set is freed.
|
|
_hot_card_cache->reset_hot_cache();
|
|
_hot_card_cache->set_use_cache(true);
|
|
|
|
purge_code_root_memory();
|
|
|
|
redirty_logged_cards();
|
|
#if COMPILER2_OR_JVMCI
|
|
double start = os::elapsedTime();
|
|
DerivedPointerTable::update_pointers();
|
|
g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
|
|
#endif
|
|
g1_policy()->print_age_table();
|
|
}
|
|
|
|
void G1CollectedHeap::record_obj_copy_mem_stats() {
|
|
g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
|
|
|
|
_gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
|
|
create_g1_evac_summary(&_old_evac_stats));
|
|
}
|
|
|
|
void G1CollectedHeap::free_region(HeapRegion* hr,
|
|
FreeRegionList* free_list,
|
|
bool skip_remset,
|
|
bool skip_hot_card_cache,
|
|
bool locked) {
|
|
assert(!hr->is_free(), "the region should not be free");
|
|
assert(!hr->is_empty(), "the region should not be empty");
|
|
assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
|
|
assert(free_list != NULL, "pre-condition");
|
|
|
|
if (G1VerifyBitmaps) {
|
|
MemRegion mr(hr->bottom(), hr->end());
|
|
concurrent_mark()->clear_range_in_prev_bitmap(mr);
|
|
}
|
|
|
|
// Clear the card counts for this region.
|
|
// Note: we only need to do this if the region is not young
|
|
// (since we don't refine cards in young regions).
|
|
if (!skip_hot_card_cache && !hr->is_young()) {
|
|
_hot_card_cache->reset_card_counts(hr);
|
|
}
|
|
hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
|
|
free_list->add_ordered(hr);
|
|
}
|
|
|
|
void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
|
|
FreeRegionList* free_list,
|
|
bool skip_remset) {
|
|
assert(hr->is_humongous(), "this is only for humongous regions");
|
|
assert(free_list != NULL, "pre-condition");
|
|
hr->clear_humongous();
|
|
free_region(hr, free_list, skip_remset);
|
|
}
|
|
|
|
void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
|
|
const uint humongous_regions_removed) {
|
|
if (old_regions_removed > 0 || humongous_regions_removed > 0) {
|
|
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
|
|
_old_set.bulk_remove(old_regions_removed);
|
|
_humongous_set.bulk_remove(humongous_regions_removed);
|
|
}
|
|
|
|
}
|
|
|
|
void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
|
|
assert(list != NULL, "list can't be null");
|
|
if (!list->is_empty()) {
|
|
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
_hrm.insert_list_into_free_list(list);
|
|
}
|
|
}
|
|
|
|
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
|
|
decrease_used(bytes);
|
|
}
|
|
|
|
class G1ParScrubRemSetTask: public AbstractGangTask {
|
|
protected:
|
|
G1RemSet* _g1rs;
|
|
HeapRegionClaimer _hrclaimer;
|
|
|
|
public:
|
|
G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
|
|
AbstractGangTask("G1 ScrubRS"),
|
|
_g1rs(g1_rs),
|
|
_hrclaimer(num_workers) {
|
|
}
|
|
|
|
void work(uint worker_id) {
|
|
_g1rs->scrub(worker_id, &_hrclaimer);
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::scrub_rem_set() {
|
|
uint num_workers = workers()->active_workers();
|
|
G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
|
|
workers()->run_task(&g1_par_scrub_rs_task);
|
|
}
|
|
|
|
class G1FreeCollectionSetTask : public AbstractGangTask {
|
|
private:
|
|
|
|
// Closure applied to all regions in the collection set to do work that needs to
|
|
// be done serially in a single thread.
|
|
class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
|
|
private:
|
|
EvacuationInfo* _evacuation_info;
|
|
const size_t* _surviving_young_words;
|
|
|
|
// Bytes used in successfully evacuated regions before the evacuation.
|
|
size_t _before_used_bytes;
|
|
// Bytes used in unsucessfully evacuated regions before the evacuation
|
|
size_t _after_used_bytes;
|
|
|
|
size_t _bytes_allocated_in_old_since_last_gc;
|
|
|
|
size_t _failure_used_words;
|
|
size_t _failure_waste_words;
|
|
|
|
FreeRegionList _local_free_list;
|
|
public:
|
|
G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
|
|
HeapRegionClosure(),
|
|
_evacuation_info(evacuation_info),
|
|
_surviving_young_words(surviving_young_words),
|
|
_before_used_bytes(0),
|
|
_after_used_bytes(0),
|
|
_bytes_allocated_in_old_since_last_gc(0),
|
|
_failure_used_words(0),
|
|
_failure_waste_words(0),
|
|
_local_free_list("Local Region List for CSet Freeing") {
|
|
}
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
|
|
g1h->clear_in_cset(r);
|
|
|
|
if (r->is_young()) {
|
|
assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
|
|
"Young index %d is wrong for region %u of type %s with %u young regions",
|
|
r->young_index_in_cset(),
|
|
r->hrm_index(),
|
|
r->get_type_str(),
|
|
g1h->collection_set()->young_region_length());
|
|
size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
|
|
r->record_surv_words_in_group(words_survived);
|
|
}
|
|
|
|
if (!r->evacuation_failed()) {
|
|
assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
|
|
_before_used_bytes += r->used();
|
|
g1h->free_region(r,
|
|
&_local_free_list,
|
|
true, /* skip_remset */
|
|
true, /* skip_hot_card_cache */
|
|
true /* locked */);
|
|
} else {
|
|
r->uninstall_surv_rate_group();
|
|
r->set_young_index_in_cset(-1);
|
|
r->set_evacuation_failed(false);
|
|
// When moving a young gen region to old gen, we "allocate" that whole region
|
|
// there. This is in addition to any already evacuated objects. Notify the
|
|
// policy about that.
|
|
// Old gen regions do not cause an additional allocation: both the objects
|
|
// still in the region and the ones already moved are accounted for elsewhere.
|
|
if (r->is_young()) {
|
|
_bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
|
|
}
|
|
// The region is now considered to be old.
|
|
r->set_old();
|
|
// Do some allocation statistics accounting. Regions that failed evacuation
|
|
// are always made old, so there is no need to update anything in the young
|
|
// gen statistics, but we need to update old gen statistics.
|
|
size_t used_words = r->marked_bytes() / HeapWordSize;
|
|
|
|
_failure_used_words += used_words;
|
|
_failure_waste_words += HeapRegion::GrainWords - used_words;
|
|
|
|
g1h->old_set_add(r);
|
|
_after_used_bytes += r->used();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void complete_work() {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
_evacuation_info->set_regions_freed(_local_free_list.length());
|
|
_evacuation_info->increment_collectionset_used_after(_after_used_bytes);
|
|
|
|
g1h->prepend_to_freelist(&_local_free_list);
|
|
g1h->decrement_summary_bytes(_before_used_bytes);
|
|
|
|
G1Policy* policy = g1h->g1_policy();
|
|
policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
|
|
|
|
g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
|
|
}
|
|
};
|
|
|
|
G1CollectionSet* _collection_set;
|
|
G1SerialFreeCollectionSetClosure _cl;
|
|
const size_t* _surviving_young_words;
|
|
|
|
size_t _rs_lengths;
|
|
|
|
volatile jint _serial_work_claim;
|
|
|
|
struct WorkItem {
|
|
uint region_idx;
|
|
bool is_young;
|
|
bool evacuation_failed;
|
|
|
|
WorkItem(HeapRegion* r) {
|
|
region_idx = r->hrm_index();
|
|
is_young = r->is_young();
|
|
evacuation_failed = r->evacuation_failed();
|
|
}
|
|
};
|
|
|
|
volatile size_t _parallel_work_claim;
|
|
size_t _num_work_items;
|
|
WorkItem* _work_items;
|
|
|
|
void do_serial_work() {
|
|
// Need to grab the lock to be allowed to modify the old region list.
|
|
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
|
|
_collection_set->iterate(&_cl);
|
|
}
|
|
|
|
void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
HeapRegion* r = g1h->region_at(region_idx);
|
|
assert(!g1h->is_on_master_free_list(r), "sanity");
|
|
|
|
Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
|
|
|
|
if (!is_young) {
|
|
g1h->_hot_card_cache->reset_card_counts(r);
|
|
}
|
|
|
|
if (!evacuation_failed) {
|
|
r->rem_set()->clear_locked();
|
|
}
|
|
}
|
|
|
|
class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
|
|
private:
|
|
size_t _cur_idx;
|
|
WorkItem* _work_items;
|
|
public:
|
|
G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
_work_items[_cur_idx++] = WorkItem(r);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void prepare_work() {
|
|
G1PrepareFreeCollectionSetClosure cl(_work_items);
|
|
_collection_set->iterate(&cl);
|
|
}
|
|
|
|
void complete_work() {
|
|
_cl.complete_work();
|
|
|
|
G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
|
|
policy->record_max_rs_lengths(_rs_lengths);
|
|
policy->cset_regions_freed();
|
|
}
|
|
public:
|
|
G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
|
|
AbstractGangTask("G1 Free Collection Set"),
|
|
_cl(evacuation_info, surviving_young_words),
|
|
_collection_set(collection_set),
|
|
_surviving_young_words(surviving_young_words),
|
|
_serial_work_claim(0),
|
|
_rs_lengths(0),
|
|
_parallel_work_claim(0),
|
|
_num_work_items(collection_set->region_length()),
|
|
_work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
|
|
prepare_work();
|
|
}
|
|
|
|
~G1FreeCollectionSetTask() {
|
|
complete_work();
|
|
FREE_C_HEAP_ARRAY(WorkItem, _work_items);
|
|
}
|
|
|
|
// Chunk size for work distribution. The chosen value has been determined experimentally
|
|
// to be a good tradeoff between overhead and achievable parallelism.
|
|
static uint chunk_size() { return 32; }
|
|
|
|
virtual void work(uint worker_id) {
|
|
G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
|
|
|
|
// Claim serial work.
|
|
if (_serial_work_claim == 0) {
|
|
jint value = Atomic::add(1, &_serial_work_claim) - 1;
|
|
if (value == 0) {
|
|
double serial_time = os::elapsedTime();
|
|
do_serial_work();
|
|
timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
|
|
}
|
|
}
|
|
|
|
// Start parallel work.
|
|
double young_time = 0.0;
|
|
bool has_young_time = false;
|
|
double non_young_time = 0.0;
|
|
bool has_non_young_time = false;
|
|
|
|
while (true) {
|
|
size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
|
|
size_t cur = end - chunk_size();
|
|
|
|
if (cur >= _num_work_items) {
|
|
break;
|
|
}
|
|
|
|
double start_time = os::elapsedTime();
|
|
|
|
end = MIN2(end, _num_work_items);
|
|
|
|
for (; cur < end; cur++) {
|
|
bool is_young = _work_items[cur].is_young;
|
|
|
|
do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
|
|
|
|
double end_time = os::elapsedTime();
|
|
double time_taken = end_time - start_time;
|
|
if (is_young) {
|
|
young_time += time_taken;
|
|
has_young_time = true;
|
|
} else {
|
|
non_young_time += time_taken;
|
|
has_non_young_time = true;
|
|
}
|
|
start_time = end_time;
|
|
}
|
|
}
|
|
|
|
if (has_young_time) {
|
|
timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
|
|
}
|
|
if (has_non_young_time) {
|
|
timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
|
|
}
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
|
|
_eden.clear();
|
|
|
|
double free_cset_start_time = os::elapsedTime();
|
|
|
|
{
|
|
uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
|
|
uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
|
|
|
|
G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
|
|
|
|
log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
|
|
cl.name(),
|
|
num_workers,
|
|
_collection_set.region_length());
|
|
workers()->run_task(&cl, num_workers);
|
|
}
|
|
g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
|
|
|
|
collection_set->clear();
|
|
}
|
|
|
|
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
|
|
private:
|
|
FreeRegionList* _free_region_list;
|
|
HeapRegionSet* _proxy_set;
|
|
uint _humongous_objects_reclaimed;
|
|
uint _humongous_regions_reclaimed;
|
|
size_t _freed_bytes;
|
|
public:
|
|
|
|
G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
|
|
_free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
|
|
}
|
|
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
if (!r->is_starts_humongous()) {
|
|
return false;
|
|
}
|
|
|
|
G1CollectedHeap* g1h = G1CollectedHeap::heap();
|
|
|
|
oop obj = (oop)r->bottom();
|
|
G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
|
|
|
|
// The following checks whether the humongous object is live are sufficient.
|
|
// The main additional check (in addition to having a reference from the roots
|
|
// or the young gen) is whether the humongous object has a remembered set entry.
|
|
//
|
|
// A humongous object cannot be live if there is no remembered set for it
|
|
// because:
|
|
// - there can be no references from within humongous starts regions referencing
|
|
// the object because we never allocate other objects into them.
|
|
// (I.e. there are no intra-region references that may be missed by the
|
|
// remembered set)
|
|
// - as soon there is a remembered set entry to the humongous starts region
|
|
// (i.e. it has "escaped" to an old object) this remembered set entry will stay
|
|
// until the end of a concurrent mark.
|
|
//
|
|
// It is not required to check whether the object has been found dead by marking
|
|
// or not, in fact it would prevent reclamation within a concurrent cycle, as
|
|
// all objects allocated during that time are considered live.
|
|
// SATB marking is even more conservative than the remembered set.
|
|
// So if at this point in the collection there is no remembered set entry,
|
|
// nobody has a reference to it.
|
|
// At the start of collection we flush all refinement logs, and remembered sets
|
|
// are completely up-to-date wrt to references to the humongous object.
|
|
//
|
|
// Other implementation considerations:
|
|
// - never consider object arrays at this time because they would pose
|
|
// considerable effort for cleaning up the the remembered sets. This is
|
|
// required because stale remembered sets might reference locations that
|
|
// are currently allocated into.
|
|
uint region_idx = r->hrm_index();
|
|
if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
|
|
!r->rem_set()->is_empty()) {
|
|
log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
|
|
region_idx,
|
|
(size_t)obj->size() * HeapWordSize,
|
|
p2i(r->bottom()),
|
|
r->rem_set()->occupied(),
|
|
r->rem_set()->strong_code_roots_list_length(),
|
|
next_bitmap->is_marked(r->bottom()),
|
|
g1h->is_humongous_reclaim_candidate(region_idx),
|
|
obj->is_typeArray()
|
|
);
|
|
return false;
|
|
}
|
|
|
|
guarantee(obj->is_typeArray(),
|
|
"Only eagerly reclaiming type arrays is supported, but the object "
|
|
PTR_FORMAT " is not.", p2i(r->bottom()));
|
|
|
|
log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
|
|
region_idx,
|
|
(size_t)obj->size() * HeapWordSize,
|
|
p2i(r->bottom()),
|
|
r->rem_set()->occupied(),
|
|
r->rem_set()->strong_code_roots_list_length(),
|
|
next_bitmap->is_marked(r->bottom()),
|
|
g1h->is_humongous_reclaim_candidate(region_idx),
|
|
obj->is_typeArray()
|
|
);
|
|
|
|
// Need to clear mark bit of the humongous object if already set.
|
|
if (next_bitmap->is_marked(r->bottom())) {
|
|
next_bitmap->clear(r->bottom());
|
|
}
|
|
_humongous_objects_reclaimed++;
|
|
do {
|
|
HeapRegion* next = g1h->next_region_in_humongous(r);
|
|
_freed_bytes += r->used();
|
|
r->set_containing_set(NULL);
|
|
_humongous_regions_reclaimed++;
|
|
g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
|
|
r = next;
|
|
} while (r != NULL);
|
|
|
|
return false;
|
|
}
|
|
|
|
uint humongous_objects_reclaimed() {
|
|
return _humongous_objects_reclaimed;
|
|
}
|
|
|
|
uint humongous_regions_reclaimed() {
|
|
return _humongous_regions_reclaimed;
|
|
}
|
|
|
|
size_t bytes_freed() const {
|
|
return _freed_bytes;
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
|
|
assert_at_safepoint(true);
|
|
|
|
if (!G1EagerReclaimHumongousObjects ||
|
|
(!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
|
|
g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
|
|
return;
|
|
}
|
|
|
|
double start_time = os::elapsedTime();
|
|
|
|
FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
|
|
|
|
G1FreeHumongousRegionClosure cl(&local_cleanup_list);
|
|
heap_region_iterate(&cl);
|
|
|
|
remove_from_old_sets(0, cl.humongous_regions_reclaimed());
|
|
|
|
G1HRPrinter* hrp = hr_printer();
|
|
if (hrp->is_active()) {
|
|
FreeRegionListIterator iter(&local_cleanup_list);
|
|
while (iter.more_available()) {
|
|
HeapRegion* hr = iter.get_next();
|
|
hrp->cleanup(hr);
|
|
}
|
|
}
|
|
|
|
prepend_to_freelist(&local_cleanup_list);
|
|
decrement_summary_bytes(cl.bytes_freed());
|
|
|
|
g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
|
|
cl.humongous_objects_reclaimed());
|
|
}
|
|
|
|
class G1AbandonCollectionSetClosure : public HeapRegionClosure {
|
|
public:
|
|
virtual bool do_heap_region(HeapRegion* r) {
|
|
assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
|
|
G1CollectedHeap::heap()->clear_in_cset(r);
|
|
r->set_young_index_in_cset(-1);
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
|
|
G1AbandonCollectionSetClosure cl;
|
|
collection_set->iterate(&cl);
|
|
|
|
collection_set->clear();
|
|
collection_set->stop_incremental_building();
|
|
}
|
|
|
|
void G1CollectedHeap::set_free_regions_coming() {
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
|
|
|
|
assert(!free_regions_coming(), "pre-condition");
|
|
_free_regions_coming = true;
|
|
}
|
|
|
|
void G1CollectedHeap::reset_free_regions_coming() {
|
|
assert(free_regions_coming(), "pre-condition");
|
|
|
|
{
|
|
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
_free_regions_coming = false;
|
|
SecondaryFreeList_lock->notify_all();
|
|
}
|
|
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
|
|
}
|
|
|
|
void G1CollectedHeap::wait_while_free_regions_coming() {
|
|
// Most of the time we won't have to wait, so let's do a quick test
|
|
// first before we take the lock.
|
|
if (!free_regions_coming()) {
|
|
return;
|
|
}
|
|
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
|
|
|
|
{
|
|
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
|
|
while (free_regions_coming()) {
|
|
SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
|
|
}
|
|
}
|
|
|
|
log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
|
|
}
|
|
|
|
bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
|
|
return _allocator->is_retained_old_region(hr);
|
|
}
|
|
|
|
void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
|
|
_eden.add(hr);
|
|
_g1_policy->set_region_eden(hr);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
|
|
class NoYoungRegionsClosure: public HeapRegionClosure {
|
|
private:
|
|
bool _success;
|
|
public:
|
|
NoYoungRegionsClosure() : _success(true) { }
|
|
bool do_heap_region(HeapRegion* r) {
|
|
if (r->is_young()) {
|
|
log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
|
|
p2i(r->bottom()), p2i(r->end()));
|
|
_success = false;
|
|
}
|
|
return false;
|
|
}
|
|
bool success() { return _success; }
|
|
};
|
|
|
|
bool G1CollectedHeap::check_young_list_empty() {
|
|
bool ret = (young_regions_count() == 0);
|
|
|
|
NoYoungRegionsClosure closure;
|
|
heap_region_iterate(&closure);
|
|
ret = ret && closure.success();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif // ASSERT
|
|
|
|
class TearDownRegionSetsClosure : public HeapRegionClosure {
|
|
private:
|
|
HeapRegionSet *_old_set;
|
|
|
|
public:
|
|
TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
|
|
|
|
bool do_heap_region(HeapRegion* r) {
|
|
if (r->is_old()) {
|
|
_old_set->remove(r);
|
|
} else if(r->is_young()) {
|
|
r->uninstall_surv_rate_group();
|
|
} else {
|
|
// We ignore free regions, we'll empty the free list afterwards.
|
|
// We ignore humongous regions, we're not tearing down the
|
|
// humongous regions set.
|
|
assert(r->is_free() || r->is_humongous(),
|
|
"it cannot be another type");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
~TearDownRegionSetsClosure() {
|
|
assert(_old_set->is_empty(), "post-condition");
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
if (!free_list_only) {
|
|
TearDownRegionSetsClosure cl(&_old_set);
|
|
heap_region_iterate(&cl);
|
|
|
|
// Note that emptying the _young_list is postponed and instead done as
|
|
// the first step when rebuilding the regions sets again. The reason for
|
|
// this is that during a full GC string deduplication needs to know if
|
|
// a collected region was young or old when the full GC was initiated.
|
|
}
|
|
_hrm.remove_all_free_regions();
|
|
}
|
|
|
|
void G1CollectedHeap::increase_used(size_t bytes) {
|
|
_summary_bytes_used += bytes;
|
|
}
|
|
|
|
void G1CollectedHeap::decrease_used(size_t bytes) {
|
|
assert(_summary_bytes_used >= bytes,
|
|
"invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
|
|
_summary_bytes_used, bytes);
|
|
_summary_bytes_used -= bytes;
|
|
}
|
|
|
|
void G1CollectedHeap::set_used(size_t bytes) {
|
|
_summary_bytes_used = bytes;
|
|
}
|
|
|
|
class RebuildRegionSetsClosure : public HeapRegionClosure {
|
|
private:
|
|
bool _free_list_only;
|
|
HeapRegionSet* _old_set;
|
|
HeapRegionManager* _hrm;
|
|
size_t _total_used;
|
|
|
|
public:
|
|
RebuildRegionSetsClosure(bool free_list_only,
|
|
HeapRegionSet* old_set, HeapRegionManager* hrm) :
|
|
_free_list_only(free_list_only),
|
|
_old_set(old_set), _hrm(hrm), _total_used(0) {
|
|
assert(_hrm->num_free_regions() == 0, "pre-condition");
|
|
if (!free_list_only) {
|
|
assert(_old_set->is_empty(), "pre-condition");
|
|
}
|
|
}
|
|
|
|
bool do_heap_region(HeapRegion* r) {
|
|
if (r->is_empty()) {
|
|
// Add free regions to the free list
|
|
r->set_free();
|
|
r->set_allocation_context(AllocationContext::system());
|
|
_hrm->insert_into_free_list(r);
|
|
} else if (!_free_list_only) {
|
|
|
|
if (r->is_humongous()) {
|
|
// We ignore humongous regions. We left the humongous set unchanged.
|
|
} else {
|
|
assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
|
|
// We now move all (non-humongous, non-old) regions to old gen, and register them as such.
|
|
r->move_to_old();
|
|
_old_set->add(r);
|
|
}
|
|
_total_used += r->used();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
size_t total_used() {
|
|
return _total_used;
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
|
|
assert_at_safepoint(true /* should_be_vm_thread */);
|
|
|
|
if (!free_list_only) {
|
|
_eden.clear();
|
|
_survivor.clear();
|
|
}
|
|
|
|
RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
|
|
heap_region_iterate(&cl);
|
|
|
|
if (!free_list_only) {
|
|
set_used(cl.total_used());
|
|
if (_archive_allocator != NULL) {
|
|
_archive_allocator->clear_used();
|
|
}
|
|
}
|
|
assert(used_unlocked() == recalculate_used(),
|
|
"inconsistent used_unlocked(), "
|
|
"value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
|
|
used_unlocked(), recalculate_used());
|
|
}
|
|
|
|
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
|
|
HeapRegion* hr = heap_region_containing(p);
|
|
return hr->is_in(p);
|
|
}
|
|
|
|
// Methods for the mutator alloc region
|
|
|
|
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
|
|
bool force) {
|
|
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
|
|
bool should_allocate = g1_policy()->should_allocate_mutator_region();
|
|
if (force || should_allocate) {
|
|
HeapRegion* new_alloc_region = new_region(word_size,
|
|
false /* is_old */,
|
|
false /* do_expand */);
|
|
if (new_alloc_region != NULL) {
|
|
set_region_short_lived_locked(new_alloc_region);
|
|
_hr_printer.alloc(new_alloc_region, !should_allocate);
|
|
_verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
|
|
return new_alloc_region;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes) {
|
|
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
|
|
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
|
|
|
|
collection_set()->add_eden_region(alloc_region);
|
|
increase_used(allocated_bytes);
|
|
_hr_printer.retire(alloc_region);
|
|
// We update the eden sizes here, when the region is retired,
|
|
// instead of when it's allocated, since this is the point that its
|
|
// used space has been recored in _summary_bytes_used.
|
|
g1mm()->update_eden_size();
|
|
}
|
|
|
|
// Methods for the GC alloc regions
|
|
|
|
bool G1CollectedHeap::has_more_regions(InCSetState dest) {
|
|
if (dest.is_old()) {
|
|
return true;
|
|
} else {
|
|
return survivor_regions_count() < g1_policy()->max_survivor_regions();
|
|
}
|
|
}
|
|
|
|
HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
|
|
assert(FreeList_lock->owned_by_self(), "pre-condition");
|
|
|
|
if (!has_more_regions(dest)) {
|
|
return NULL;
|
|
}
|
|
|
|
const bool is_survivor = dest.is_young();
|
|
|
|
HeapRegion* new_alloc_region = new_region(word_size,
|
|
!is_survivor,
|
|
true /* do_expand */);
|
|
if (new_alloc_region != NULL) {
|
|
// We really only need to do this for old regions given that we
|
|
// should never scan survivors. But it doesn't hurt to do it
|
|
// for survivors too.
|
|
new_alloc_region->record_timestamp();
|
|
if (is_survivor) {
|
|
new_alloc_region->set_survivor();
|
|
_survivor.add(new_alloc_region);
|
|
_verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
|
|
} else {
|
|
new_alloc_region->set_old();
|
|
_verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
|
|
}
|
|
_hr_printer.alloc(new_alloc_region);
|
|
bool during_im = collector_state()->during_initial_mark_pause();
|
|
new_alloc_region->note_start_of_copying(during_im);
|
|
return new_alloc_region;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
|
|
size_t allocated_bytes,
|
|
InCSetState dest) {
|
|
bool during_im = collector_state()->during_initial_mark_pause();
|
|
alloc_region->note_end_of_copying(during_im);
|
|
g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
|
|
if (dest.is_old()) {
|
|
_old_set.add(alloc_region);
|
|
}
|
|
_hr_printer.retire(alloc_region);
|
|
}
|
|
|
|
HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
|
|
bool expanded = false;
|
|
uint index = _hrm.find_highest_free(&expanded);
|
|
|
|
if (index != G1_NO_HRM_INDEX) {
|
|
if (expanded) {
|
|
log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
|
|
HeapRegion::GrainWords * HeapWordSize);
|
|
}
|
|
_hrm.allocate_free_regions_starting_at(index, 1);
|
|
return region_at(index);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Optimized nmethod scanning
|
|
|
|
class RegisterNMethodOopClosure: public OopClosure {
|
|
G1CollectedHeap* _g1h;
|
|
nmethod* _nm;
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
T heap_oop = oopDesc::load_heap_oop(p);
|
|
if (!oopDesc::is_null(heap_oop)) {
|
|
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
|
|
HeapRegion* hr = _g1h->heap_region_containing(obj);
|
|
assert(!hr->is_continues_humongous(),
|
|
"trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
|
|
" starting at " HR_FORMAT,
|
|
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
|
|
|
|
// HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
|
|
hr->add_strong_code_root_locked(_nm);
|
|
}
|
|
}
|
|
|
|
public:
|
|
RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
|
|
_g1h(g1h), _nm(nm) {}
|
|
|
|
void do_oop(oop* p) { do_oop_work(p); }
|
|
void do_oop(narrowOop* p) { do_oop_work(p); }
|
|
};
|
|
|
|
class UnregisterNMethodOopClosure: public OopClosure {
|
|
G1CollectedHeap* _g1h;
|
|
nmethod* _nm;
|
|
|
|
template <class T> void do_oop_work(T* p) {
|
|
T heap_oop = oopDesc::load_heap_oop(p);
|
|
if (!oopDesc::is_null(heap_oop)) {
|
|
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
|
|
HeapRegion* hr = _g1h->heap_region_containing(obj);
|
|
assert(!hr->is_continues_humongous(),
|
|
"trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
|
|
" starting at " HR_FORMAT,
|
|
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
|
|
|
|
hr->remove_strong_code_root(_nm);
|
|
}
|
|
}
|
|
|
|
public:
|
|
UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
|
|
_g1h(g1h), _nm(nm) {}
|
|
|
|
void do_oop(oop* p) { do_oop_work(p); }
|
|
void do_oop(narrowOop* p) { do_oop_work(p); }
|
|
};
|
|
|
|
// Returns true if the reference points to an object that
|
|
// can move in an incremental collection.
|
|
bool G1CollectedHeap::is_scavengable(oop obj) {
|
|
HeapRegion* hr = heap_region_containing(obj);
|
|
return !hr->is_pinned();
|
|
}
|
|
|
|
void G1CollectedHeap::register_nmethod(nmethod* nm) {
|
|
guarantee(nm != NULL, "sanity");
|
|
RegisterNMethodOopClosure reg_cl(this, nm);
|
|
nm->oops_do(®_cl);
|
|
}
|
|
|
|
void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
|
|
guarantee(nm != NULL, "sanity");
|
|
UnregisterNMethodOopClosure reg_cl(this, nm);
|
|
nm->oops_do(®_cl, true);
|
|
}
|
|
|
|
void G1CollectedHeap::purge_code_root_memory() {
|
|
double purge_start = os::elapsedTime();
|
|
G1CodeRootSet::purge();
|
|
double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
|
|
g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
|
|
}
|
|
|
|
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
|
|
G1CollectedHeap* _g1h;
|
|
|
|
public:
|
|
RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
|
|
_g1h(g1h) {}
|
|
|
|
void do_code_blob(CodeBlob* cb) {
|
|
nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
|
|
if (nm == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (ScavengeRootsInCode) {
|
|
_g1h->register_nmethod(nm);
|
|
}
|
|
}
|
|
};
|
|
|
|
void G1CollectedHeap::rebuild_strong_code_roots() {
|
|
RebuildStrongCodeRootClosure blob_cl(this);
|
|
CodeCache::blobs_do(&blob_cl);
|
|
}
|
|
|
|
GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
|
|
GrowableArray<GCMemoryManager*> memory_managers(2);
|
|
memory_managers.append(&_memory_manager);
|
|
memory_managers.append(&_full_gc_memory_manager);
|
|
return memory_managers;
|
|
}
|
|
|
|
GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
|
|
GrowableArray<MemoryPool*> memory_pools(3);
|
|
memory_pools.append(_eden_pool);
|
|
memory_pools.append(_survivor_pool);
|
|
memory_pools.append(_old_pool);
|
|
return memory_pools;
|
|
}
|