1038fed51d
Reviewed-by: never
534 lines
20 KiB
C++
534 lines
20 KiB
C++
/*
|
|
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "interpreter/linkResolver.hpp"
|
|
#include "memory/universe.inline.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/parse.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
|
|
//=============================================================================
|
|
// Helper methods for _get* and _put* bytecodes
|
|
//=============================================================================
|
|
bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
|
|
// Could be the field_holder's <clinit> method, or <clinit> for a subklass.
|
|
// Better to check now than to Deoptimize as soon as we execute
|
|
assert( field->is_static(), "Only check if field is static");
|
|
// is_being_initialized() is too generous. It allows access to statics
|
|
// by threads that are not running the <clinit> before the <clinit> finishes.
|
|
// return field->holder()->is_being_initialized();
|
|
|
|
// The following restriction is correct but conservative.
|
|
// It is also desirable to allow compilation of methods called from <clinit>
|
|
// but this generated code will need to be made safe for execution by
|
|
// other threads, or the transition from interpreted to compiled code would
|
|
// need to be guarded.
|
|
ciInstanceKlass *field_holder = field->holder();
|
|
|
|
bool access_OK = false;
|
|
if (method->holder()->is_subclass_of(field_holder)) {
|
|
if (method->is_static()) {
|
|
if (method->name() == ciSymbol::class_initializer_name()) {
|
|
// OK to access static fields inside initializer
|
|
access_OK = true;
|
|
}
|
|
} else {
|
|
if (method->name() == ciSymbol::object_initializer_name()) {
|
|
// It's also OK to access static fields inside a constructor,
|
|
// because any thread calling the constructor must first have
|
|
// synchronized on the class by executing a '_new' bytecode.
|
|
access_OK = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return access_OK;
|
|
|
|
}
|
|
|
|
|
|
void Parse::do_field_access(bool is_get, bool is_field) {
|
|
bool will_link;
|
|
ciField* field = iter().get_field(will_link);
|
|
assert(will_link, "getfield: typeflow responsibility");
|
|
|
|
ciInstanceKlass* field_holder = field->holder();
|
|
|
|
if (is_field == field->is_static()) {
|
|
// Interpreter will throw java_lang_IncompatibleClassChangeError
|
|
// Check this before allowing <clinit> methods to access static fields
|
|
uncommon_trap(Deoptimization::Reason_unhandled,
|
|
Deoptimization::Action_none);
|
|
return;
|
|
}
|
|
|
|
if (!is_field && !field_holder->is_initialized()) {
|
|
if (!static_field_ok_in_clinit(field, method())) {
|
|
uncommon_trap(Deoptimization::Reason_uninitialized,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL, "!static_field_ok_in_clinit");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Deoptimize on putfield writes to call site target field.
|
|
if (!is_get && field->is_call_site_target()) {
|
|
uncommon_trap(Deoptimization::Reason_unhandled,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL, "put to call site target field");
|
|
return;
|
|
}
|
|
|
|
assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
|
|
|
|
// Note: We do not check for an unloaded field type here any more.
|
|
|
|
// Generate code for the object pointer.
|
|
Node* obj;
|
|
if (is_field) {
|
|
int obj_depth = is_get ? 0 : field->type()->size();
|
|
obj = do_null_check(peek(obj_depth), T_OBJECT);
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
|
|
#ifdef ASSERT
|
|
const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
|
|
assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
|
|
#endif
|
|
|
|
if (is_get) {
|
|
--_sp; // pop receiver before getting
|
|
do_get_xxx(obj, field, is_field);
|
|
} else {
|
|
do_put_xxx(obj, field, is_field);
|
|
--_sp; // pop receiver after putting
|
|
}
|
|
} else {
|
|
const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
|
|
obj = _gvn.makecon(tip);
|
|
if (is_get) {
|
|
do_get_xxx(obj, field, is_field);
|
|
} else {
|
|
do_put_xxx(obj, field, is_field);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
|
|
// Does this field have a constant value? If so, just push the value.
|
|
if (field->is_constant()) {
|
|
// final field
|
|
if (field->is_static()) {
|
|
// final static field
|
|
if (push_constant(field->constant_value()))
|
|
return;
|
|
}
|
|
else {
|
|
// final non-static field
|
|
// Treat final non-static fields of trusted classes (classes in
|
|
// java.lang.invoke and sun.invoke packages and subpackages) as
|
|
// compile time constants.
|
|
if (obj->is_Con()) {
|
|
const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
|
|
ciObject* constant_oop = oop_ptr->const_oop();
|
|
ciConstant constant = field->constant_value_of(constant_oop);
|
|
if (push_constant(constant, true))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
ciType* field_klass = field->type();
|
|
bool is_vol = field->is_volatile();
|
|
|
|
// Compute address and memory type.
|
|
int offset = field->offset_in_bytes();
|
|
const TypePtr* adr_type = C->alias_type(field)->adr_type();
|
|
Node *adr = basic_plus_adr(obj, obj, offset);
|
|
BasicType bt = field->layout_type();
|
|
|
|
// Build the resultant type of the load
|
|
const Type *type;
|
|
|
|
bool must_assert_null = false;
|
|
|
|
if( bt == T_OBJECT ) {
|
|
if (!field->type()->is_loaded()) {
|
|
type = TypeInstPtr::BOTTOM;
|
|
must_assert_null = true;
|
|
} else if (field->is_constant() && field->is_static()) {
|
|
// This can happen if the constant oop is non-perm.
|
|
ciObject* con = field->constant_value().as_object();
|
|
// Do not "join" in the previous type; it doesn't add value,
|
|
// and may yield a vacuous result if the field is of interface type.
|
|
type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
|
|
assert(type != NULL, "field singleton type must be consistent");
|
|
} else {
|
|
type = TypeOopPtr::make_from_klass(field_klass->as_klass());
|
|
}
|
|
} else {
|
|
type = Type::get_const_basic_type(bt);
|
|
}
|
|
// Build the load.
|
|
Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
|
|
|
|
// Adjust Java stack
|
|
if (type2size[bt] == 1)
|
|
push(ld);
|
|
else
|
|
push_pair(ld);
|
|
|
|
if (must_assert_null) {
|
|
// Do not take a trap here. It's possible that the program
|
|
// will never load the field's class, and will happily see
|
|
// null values in this field forever. Don't stumble into a
|
|
// trap for such a program, or we might get a long series
|
|
// of useless recompilations. (Or, we might load a class
|
|
// which should not be loaded.) If we ever see a non-null
|
|
// value, we will then trap and recompile. (The trap will
|
|
// not need to mention the class index, since the class will
|
|
// already have been loaded if we ever see a non-null value.)
|
|
// uncommon_trap(iter().get_field_signature_index());
|
|
#ifndef PRODUCT
|
|
if (PrintOpto && (Verbose || WizardMode)) {
|
|
method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
|
|
}
|
|
#endif
|
|
if (C->log() != NULL) {
|
|
C->log()->elem("assert_null reason='field' klass='%d'",
|
|
C->log()->identify(field->type()));
|
|
}
|
|
// If there is going to be a trap, put it at the next bytecode:
|
|
set_bci(iter().next_bci());
|
|
do_null_assert(peek(), T_OBJECT);
|
|
set_bci(iter().cur_bci()); // put it back
|
|
}
|
|
|
|
// If reference is volatile, prevent following memory ops from
|
|
// floating up past the volatile read. Also prevents commoning
|
|
// another volatile read.
|
|
if (field->is_volatile()) {
|
|
// Memory barrier includes bogus read of value to force load BEFORE membar
|
|
insert_mem_bar(Op_MemBarAcquire, ld);
|
|
}
|
|
}
|
|
|
|
void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
|
|
bool is_vol = field->is_volatile();
|
|
// If reference is volatile, prevent following memory ops from
|
|
// floating down past the volatile write. Also prevents commoning
|
|
// another volatile read.
|
|
if (is_vol) insert_mem_bar(Op_MemBarRelease);
|
|
|
|
// Compute address and memory type.
|
|
int offset = field->offset_in_bytes();
|
|
const TypePtr* adr_type = C->alias_type(field)->adr_type();
|
|
Node* adr = basic_plus_adr(obj, obj, offset);
|
|
BasicType bt = field->layout_type();
|
|
// Value to be stored
|
|
Node* val = type2size[bt] == 1 ? pop() : pop_pair();
|
|
// Round doubles before storing
|
|
if (bt == T_DOUBLE) val = dstore_rounding(val);
|
|
|
|
// Store the value.
|
|
Node* store;
|
|
if (bt == T_OBJECT) {
|
|
const TypeOopPtr* field_type;
|
|
if (!field->type()->is_loaded()) {
|
|
field_type = TypeInstPtr::BOTTOM;
|
|
} else {
|
|
field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
|
|
}
|
|
store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
|
|
} else {
|
|
store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
|
|
}
|
|
|
|
// If reference is volatile, prevent following volatiles ops from
|
|
// floating up before the volatile write.
|
|
if (is_vol) {
|
|
// First place the specific membar for THIS volatile index. This first
|
|
// membar is dependent on the store, keeping any other membars generated
|
|
// below from floating up past the store.
|
|
int adr_idx = C->get_alias_index(adr_type);
|
|
insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
|
|
|
|
// Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
|
|
// volatile alias indices. Skip this if the membar is redundant.
|
|
if (adr_idx != Compile::AliasIdxBot) {
|
|
insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
|
|
}
|
|
|
|
// Finally, place alias-index-specific membars for each volatile index
|
|
// that isn't the adr_idx membar. Typically there's only 1 or 2.
|
|
for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
|
|
if (i != adr_idx && C->alias_type(i)->is_volatile()) {
|
|
insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the field is final, the rules of Java say we are in <init> or <clinit>.
|
|
// Note the presence of writes to final non-static fields, so that we
|
|
// can insert a memory barrier later on to keep the writes from floating
|
|
// out of the constructor.
|
|
if (is_field && field->is_final()) {
|
|
set_wrote_final(true);
|
|
}
|
|
}
|
|
|
|
|
|
bool Parse::push_constant(ciConstant constant, bool require_constant) {
|
|
switch (constant.basic_type()) {
|
|
case T_BOOLEAN: push( intcon(constant.as_boolean()) ); break;
|
|
case T_INT: push( intcon(constant.as_int()) ); break;
|
|
case T_CHAR: push( intcon(constant.as_char()) ); break;
|
|
case T_BYTE: push( intcon(constant.as_byte()) ); break;
|
|
case T_SHORT: push( intcon(constant.as_short()) ); break;
|
|
case T_FLOAT: push( makecon(TypeF::make(constant.as_float())) ); break;
|
|
case T_DOUBLE: push_pair( makecon(TypeD::make(constant.as_double())) ); break;
|
|
case T_LONG: push_pair( longcon(constant.as_long()) ); break;
|
|
case T_ARRAY:
|
|
case T_OBJECT: {
|
|
// cases:
|
|
// can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
|
|
// should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
|
|
// An oop is not scavengable if it is in the perm gen.
|
|
ciObject* oop_constant = constant.as_object();
|
|
if (oop_constant->is_null_object()) {
|
|
push( zerocon(T_OBJECT) );
|
|
break;
|
|
} else if (require_constant || oop_constant->should_be_constant()) {
|
|
push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant)) );
|
|
break;
|
|
} else {
|
|
// we cannot inline the oop, but we can use it later to narrow a type
|
|
return false;
|
|
}
|
|
}
|
|
case T_ILLEGAL: {
|
|
// Invalid ciConstant returned due to OutOfMemoryError in the CI
|
|
assert(C->env()->failing(), "otherwise should not see this");
|
|
// These always occur because of object types; we are going to
|
|
// bail out anyway, so make the stack depths match up
|
|
push( zerocon(T_OBJECT) );
|
|
return false;
|
|
}
|
|
default:
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
// success
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//=============================================================================
|
|
void Parse::do_anewarray() {
|
|
bool will_link;
|
|
ciKlass* klass = iter().get_klass(will_link);
|
|
|
|
// Uncommon Trap when class that array contains is not loaded
|
|
// we need the loaded class for the rest of graph; do not
|
|
// initialize the container class (see Java spec)!!!
|
|
assert(will_link, "anewarray: typeflow responsibility");
|
|
|
|
ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
|
|
// Check that array_klass object is loaded
|
|
if (!array_klass->is_loaded()) {
|
|
// Generate uncommon_trap for unloaded array_class
|
|
uncommon_trap(Deoptimization::Reason_unloaded,
|
|
Deoptimization::Action_reinterpret,
|
|
array_klass);
|
|
return;
|
|
}
|
|
|
|
kill_dead_locals();
|
|
|
|
const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
|
|
Node* count_val = pop();
|
|
Node* obj = new_array(makecon(array_klass_type), count_val, 1);
|
|
push(obj);
|
|
}
|
|
|
|
|
|
void Parse::do_newarray(BasicType elem_type) {
|
|
kill_dead_locals();
|
|
|
|
Node* count_val = pop();
|
|
const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
|
|
Node* obj = new_array(makecon(array_klass), count_val, 1);
|
|
// Push resultant oop onto stack
|
|
push(obj);
|
|
}
|
|
|
|
// Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
|
|
// Also handle the degenerate 1-dimensional case of anewarray.
|
|
Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
|
|
Node* length = lengths[0];
|
|
assert(length != NULL, "");
|
|
Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
|
|
if (ndimensions > 1) {
|
|
jint length_con = find_int_con(length, -1);
|
|
guarantee(length_con >= 0, "non-constant multianewarray");
|
|
ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
|
|
const TypePtr* adr_type = TypeAryPtr::OOPS;
|
|
const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
|
|
const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
|
|
for (jint i = 0; i < length_con; i++) {
|
|
Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
|
|
intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
|
|
Node* eaddr = basic_plus_adr(array, offset);
|
|
store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
|
|
}
|
|
}
|
|
return array;
|
|
}
|
|
|
|
void Parse::do_multianewarray() {
|
|
int ndimensions = iter().get_dimensions();
|
|
|
|
// the m-dimensional array
|
|
bool will_link;
|
|
ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
|
|
assert(will_link, "multianewarray: typeflow responsibility");
|
|
|
|
// Note: Array classes are always initialized; no is_initialized check.
|
|
|
|
kill_dead_locals();
|
|
|
|
// get the lengths from the stack (first dimension is on top)
|
|
Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
|
|
length[ndimensions] = NULL; // terminating null for make_runtime_call
|
|
int j;
|
|
for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
|
|
|
|
// The original expression was of this form: new T[length0][length1]...
|
|
// It is often the case that the lengths are small (except the last).
|
|
// If that happens, use the fast 1-d creator a constant number of times.
|
|
const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
|
|
jint expand_count = 1; // count of allocations in the expansion
|
|
jint expand_fanout = 1; // running total fanout
|
|
for (j = 0; j < ndimensions-1; j++) {
|
|
jint dim_con = find_int_con(length[j], -1);
|
|
expand_fanout *= dim_con;
|
|
expand_count += expand_fanout; // count the level-J sub-arrays
|
|
if (dim_con <= 0
|
|
|| dim_con > expand_limit
|
|
|| expand_count > expand_limit) {
|
|
expand_count = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Can use multianewarray instead of [a]newarray if only one dimension,
|
|
// or if all non-final dimensions are small constants.
|
|
if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
|
|
Node* obj = NULL;
|
|
// Set the original stack and the reexecute bit for the interpreter
|
|
// to reexecute the multianewarray bytecode if deoptimization happens.
|
|
// Do it unconditionally even for one dimension multianewarray.
|
|
// Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
|
|
// when AllocateArray node for newarray is created.
|
|
{ PreserveReexecuteState preexecs(this);
|
|
_sp += ndimensions;
|
|
// Pass 0 as nargs since uncommon trap code does not need to restore stack.
|
|
obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
|
|
} //original reexecute and sp are set back here
|
|
push(obj);
|
|
return;
|
|
}
|
|
|
|
address fun = NULL;
|
|
switch (ndimensions) {
|
|
case 1: ShouldNotReachHere(); break;
|
|
case 2: fun = OptoRuntime::multianewarray2_Java(); break;
|
|
case 3: fun = OptoRuntime::multianewarray3_Java(); break;
|
|
case 4: fun = OptoRuntime::multianewarray4_Java(); break;
|
|
case 5: fun = OptoRuntime::multianewarray5_Java(); break;
|
|
};
|
|
Node* c = NULL;
|
|
|
|
if (fun != NULL) {
|
|
c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
|
|
OptoRuntime::multianewarray_Type(ndimensions),
|
|
fun, NULL, TypeRawPtr::BOTTOM,
|
|
makecon(TypeKlassPtr::make(array_klass)),
|
|
length[0], length[1], length[2],
|
|
length[3], length[4]);
|
|
} else {
|
|
// Create a java array for dimension sizes
|
|
Node* dims = NULL;
|
|
{ PreserveReexecuteState preexecs(this);
|
|
_sp += ndimensions;
|
|
Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
|
|
dims = new_array(dims_array_klass, intcon(ndimensions), 0);
|
|
|
|
// Fill-in it with values
|
|
for (j = 0; j < ndimensions; j++) {
|
|
Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
|
|
store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS);
|
|
}
|
|
}
|
|
|
|
c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
|
|
OptoRuntime::multianewarrayN_Type(),
|
|
OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
|
|
makecon(TypeKlassPtr::make(array_klass)),
|
|
dims);
|
|
}
|
|
|
|
Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
|
|
|
|
const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
|
|
|
|
// Improve the type: We know it's not null, exact, and of a given length.
|
|
type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
|
|
type = type->is_aryptr()->cast_to_exactness(true);
|
|
|
|
const TypeInt* ltype = _gvn.find_int_type(length[0]);
|
|
if (ltype != NULL)
|
|
type = type->is_aryptr()->cast_to_size(ltype);
|
|
|
|
// We cannot sharpen the nested sub-arrays, since the top level is mutable.
|
|
|
|
Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
|
|
push(cast);
|
|
|
|
// Possible improvements:
|
|
// - Make a fast path for small multi-arrays. (W/ implicit init. loops.)
|
|
// - Issue CastII against length[*] values, to TypeInt::POS.
|
|
}
|