jdk-24/src/hotspot/share/gc/g1/g1ConcurrentMark.inline.hpp
2019-03-04 11:49:16 +01:00

297 lines
11 KiB
C++

/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1CONCURRENTMARK_INLINE_HPP
#define SHARE_GC_G1_G1CONCURRENTMARK_INLINE_HPP
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMark.hpp"
#include "gc/g1/g1ConcurrentMarkBitMap.inline.hpp"
#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
#include "gc/g1/g1RemSetTrackingPolicy.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "utilities/bitMap.inline.hpp"
inline bool G1CMIsAliveClosure::do_object_b(oop obj) {
return !_g1h->is_obj_ill(obj);
}
inline bool G1CMSubjectToDiscoveryClosure::do_object_b(oop obj) {
// Re-check whether the passed object is null. With ReferentBasedDiscovery the
// mutator may have changed the referent's value (i.e. cleared it) between the
// time the referent was determined to be potentially alive and calling this
// method.
if (obj == NULL) {
return false;
}
assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
return _g1h->heap_region_containing(obj)->is_old_or_humongous_or_archive();
}
inline bool G1ConcurrentMark::mark_in_next_bitmap(uint const worker_id, oop const obj) {
HeapRegion* const hr = _g1h->heap_region_containing(obj);
return mark_in_next_bitmap(worker_id, hr, obj);
}
inline bool G1ConcurrentMark::mark_in_next_bitmap(uint const worker_id, HeapRegion* const hr, oop const obj) {
assert(hr != NULL, "just checking");
assert(hr->is_in_reserved(obj), "Attempting to mark object at " PTR_FORMAT " that is not contained in the given region %u", p2i(obj), hr->hrm_index());
if (hr->obj_allocated_since_next_marking(obj)) {
return false;
}
// Some callers may have stale objects to mark above nTAMS after humongous reclaim.
// Can't assert that this is a valid object at this point, since it might be in the process of being copied by another thread.
assert(!hr->is_continues_humongous(), "Should not try to mark object " PTR_FORMAT " in Humongous continues region %u above nTAMS " PTR_FORMAT, p2i(obj), hr->hrm_index(), p2i(hr->next_top_at_mark_start()));
HeapWord* const obj_addr = (HeapWord*)obj;
bool success = _next_mark_bitmap->par_mark(obj_addr);
if (success) {
add_to_liveness(worker_id, obj, obj->size());
}
return success;
}
#ifndef PRODUCT
template<typename Fn>
inline void G1CMMarkStack::iterate(Fn fn) const {
assert_at_safepoint_on_vm_thread();
size_t num_chunks = 0;
TaskQueueEntryChunk* cur = _chunk_list;
while (cur != NULL) {
guarantee(num_chunks <= _chunks_in_chunk_list, "Found " SIZE_FORMAT " oop chunks which is more than there should be", num_chunks);
for (size_t i = 0; i < EntriesPerChunk; ++i) {
if (cur->data[i].is_null()) {
break;
}
fn(cur->data[i]);
}
cur = cur->next;
num_chunks++;
}
}
#endif
// It scans an object and visits its children.
inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry<true>(task_entry); }
inline void G1CMTask::push(G1TaskQueueEntry task_entry) {
assert(task_entry.is_array_slice() || _g1h->is_in_g1_reserved(task_entry.obj()), "invariant");
assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list(
_g1h->heap_region_containing(task_entry.obj())), "invariant");
assert(task_entry.is_array_slice() || !_g1h->is_obj_ill(task_entry.obj()), "invariant"); // FIXME!!!
assert(task_entry.is_array_slice() || _next_mark_bitmap->is_marked((HeapWord*)task_entry.obj()), "invariant");
if (!_task_queue->push(task_entry)) {
// The local task queue looks full. We need to push some entries
// to the global stack.
move_entries_to_global_stack();
// this should succeed since, even if we overflow the global
// stack, we should have definitely removed some entries from the
// local queue. So, there must be space on it.
bool success = _task_queue->push(task_entry);
assert(success, "invariant");
}
}
inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
// If obj is above the global finger, then the mark bitmap scan
// will find it later, and no push is needed. Similarly, if we have
// a current region and obj is between the local finger and the
// end of the current region, then no push is needed. The tradeoff
// of checking both vs only checking the global finger is that the
// local check will be more accurate and so result in fewer pushes,
// but may also be a little slower.
HeapWord* objAddr = (HeapWord*)obj;
if (_finger != NULL) {
// We have a current region.
// Finger and region values are all NULL or all non-NULL. We
// use _finger to check since we immediately use its value.
assert(_curr_region != NULL, "invariant");
assert(_region_limit != NULL, "invariant");
assert(_region_limit <= global_finger, "invariant");
// True if obj is less than the local finger, or is between
// the region limit and the global finger.
if (objAddr < _finger) {
return true;
} else if (objAddr < _region_limit) {
return false;
} // Else check global finger.
}
// Check global finger.
return objAddr < global_finger;
}
template<bool scan>
inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) {
assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray");
assert(task_entry.is_array_slice() || _next_mark_bitmap->is_marked((HeapWord*)task_entry.obj()),
"Any stolen object should be a slice or marked");
if (scan) {
if (task_entry.is_array_slice()) {
_words_scanned += _objArray_processor.process_slice(task_entry.slice());
} else {
oop obj = task_entry.obj();
if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
_words_scanned += _objArray_processor.process_obj(obj);
} else {
_words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
}
}
}
check_limits();
}
inline size_t G1CMTask::scan_objArray(objArrayOop obj, MemRegion mr) {
obj->oop_iterate(_cm_oop_closure, mr);
return mr.word_size();
}
inline HeapWord* G1ConcurrentMark::top_at_rebuild_start(uint region) const {
assert(region < _g1h->max_regions(), "Tried to access TARS for region %u out of bounds", region);
return _top_at_rebuild_starts[region];
}
inline void G1ConcurrentMark::update_top_at_rebuild_start(HeapRegion* r) {
uint const region = r->hrm_index();
assert(region < _g1h->max_regions(), "Tried to access TARS for region %u out of bounds", region);
assert(_top_at_rebuild_starts[region] == NULL,
"TARS for region %u has already been set to " PTR_FORMAT " should be NULL",
region, p2i(_top_at_rebuild_starts[region]));
G1RemSetTrackingPolicy* tracker = _g1h->policy()->remset_tracker();
if (tracker->needs_scan_for_rebuild(r)) {
_top_at_rebuild_starts[region] = r->top();
} else {
// Leave TARS at NULL.
}
}
inline void G1CMTask::update_liveness(oop const obj, const size_t obj_size) {
_mark_stats_cache.add_live_words(_g1h->addr_to_region((HeapWord*)obj), obj_size);
}
inline void G1ConcurrentMark::add_to_liveness(uint worker_id, oop const obj, size_t size) {
task(worker_id)->update_liveness(obj, size);
}
inline void G1CMTask::abort_marking_if_regular_check_fail() {
if (!regular_clock_call()) {
set_has_aborted();
}
}
inline bool G1CMTask::make_reference_grey(oop obj) {
if (!_cm->mark_in_next_bitmap(_worker_id, obj)) {
return false;
}
// No OrderAccess:store_load() is needed. It is implicit in the
// CAS done in G1CMBitMap::parMark() call in the routine above.
HeapWord* global_finger = _cm->finger();
// We only need to push a newly grey object on the mark
// stack if it is in a section of memory the mark bitmap
// scan has already examined. Mark bitmap scanning
// maintains progress "fingers" for determining that.
//
// Notice that the global finger might be moving forward
// concurrently. This is not a problem. In the worst case, we
// mark the object while it is above the global finger and, by
// the time we read the global finger, it has moved forward
// past this object. In this case, the object will probably
// be visited when a task is scanning the region and will also
// be pushed on the stack. So, some duplicate work, but no
// correctness problems.
if (is_below_finger(obj, global_finger)) {
G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj);
if (obj->is_typeArray()) {
// Immediately process arrays of primitive types, rather
// than pushing on the mark stack. This keeps us from
// adding humongous objects to the mark stack that might
// be reclaimed before the entry is processed - see
// selection of candidates for eager reclaim of humongous
// objects. The cost of the additional type test is
// mitigated by avoiding a trip through the mark stack,
// by only doing a bookkeeping update and avoiding the
// actual scan of the object - a typeArray contains no
// references, and the metadata is built-in.
process_grey_task_entry<false>(entry);
} else {
push(entry);
}
}
return true;
}
template <class T>
inline bool G1CMTask::deal_with_reference(T* p) {
increment_refs_reached();
oop const obj = RawAccess<MO_VOLATILE>::oop_load(p);
if (obj == NULL) {
return false;
}
return make_reference_grey(obj);
}
inline void G1ConcurrentMark::mark_in_prev_bitmap(oop p) {
assert(!_prev_mark_bitmap->is_marked((HeapWord*) p), "sanity");
_prev_mark_bitmap->mark((HeapWord*) p);
}
bool G1ConcurrentMark::is_marked_in_prev_bitmap(oop p) const {
assert(p != NULL && oopDesc::is_oop(p), "expected an oop");
return _prev_mark_bitmap->is_marked((HeapWord*)p);
}
bool G1ConcurrentMark::is_marked_in_next_bitmap(oop p) const {
assert(p != NULL && oopDesc::is_oop(p), "expected an oop");
return _next_mark_bitmap->is_marked((HeapWord*)p);
}
inline bool G1ConcurrentMark::do_yield_check() {
if (SuspendibleThreadSet::should_yield()) {
SuspendibleThreadSet::yield();
return true;
} else {
return false;
}
}
#endif // SHARE_GC_G1_G1CONCURRENTMARK_INLINE_HPP