85dd279283
Bump CG_BUILD_ITER_LIMIT to 20 Reviewed-by: iveresov
2765 lines
99 KiB
C++
2765 lines
99 KiB
C++
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "ci/bcEscapeAnalyzer.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "opto/c2compiler.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/escape.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
|
|
void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
|
|
uint v = (targIdx << EdgeShift) + ((uint) et);
|
|
if (_edges == NULL) {
|
|
Arena *a = Compile::current()->comp_arena();
|
|
_edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
|
|
}
|
|
_edges->append_if_missing(v);
|
|
}
|
|
|
|
void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
|
|
uint v = (targIdx << EdgeShift) + ((uint) et);
|
|
|
|
_edges->remove(v);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
static const char *node_type_names[] = {
|
|
"UnknownType",
|
|
"JavaObject",
|
|
"LocalVar",
|
|
"Field"
|
|
};
|
|
|
|
static const char *esc_names[] = {
|
|
"UnknownEscape",
|
|
"NoEscape",
|
|
"ArgEscape",
|
|
"GlobalEscape"
|
|
};
|
|
|
|
static const char *edge_type_suffix[] = {
|
|
"?", // UnknownEdge
|
|
"P", // PointsToEdge
|
|
"D", // DeferredEdge
|
|
"F" // FieldEdge
|
|
};
|
|
|
|
void PointsToNode::dump(bool print_state) const {
|
|
NodeType nt = node_type();
|
|
tty->print("%s ", node_type_names[(int) nt]);
|
|
if (print_state) {
|
|
EscapeState es = escape_state();
|
|
tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
|
|
}
|
|
tty->print("[[");
|
|
for (uint i = 0; i < edge_count(); i++) {
|
|
tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
|
|
}
|
|
tty->print("]] ");
|
|
if (_node == NULL)
|
|
tty->print_cr("<null>");
|
|
else
|
|
_node->dump();
|
|
}
|
|
#endif
|
|
|
|
ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
|
|
_nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
|
|
_processed(C->comp_arena()),
|
|
_collecting(true),
|
|
_progress(false),
|
|
_compile(C),
|
|
_igvn(igvn),
|
|
_node_map(C->comp_arena()) {
|
|
|
|
_phantom_object = C->top()->_idx,
|
|
add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
|
|
|
|
// Add ConP(#NULL) and ConN(#NULL) nodes.
|
|
Node* oop_null = igvn->zerocon(T_OBJECT);
|
|
_oop_null = oop_null->_idx;
|
|
assert(_oop_null < C->unique(), "should be created already");
|
|
add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
|
|
|
|
if (UseCompressedOops) {
|
|
Node* noop_null = igvn->zerocon(T_NARROWOOP);
|
|
_noop_null = noop_null->_idx;
|
|
assert(_noop_null < C->unique(), "should be created already");
|
|
add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
|
|
}
|
|
}
|
|
|
|
void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
|
|
PointsToNode *f = ptnode_adr(from_i);
|
|
PointsToNode *t = ptnode_adr(to_i);
|
|
|
|
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
|
|
assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
|
|
assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
|
|
add_edge(f, to_i, PointsToNode::PointsToEdge);
|
|
}
|
|
|
|
void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
|
|
PointsToNode *f = ptnode_adr(from_i);
|
|
PointsToNode *t = ptnode_adr(to_i);
|
|
|
|
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
|
|
assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
|
|
assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
|
|
// don't add a self-referential edge, this can occur during removal of
|
|
// deferred edges
|
|
if (from_i != to_i)
|
|
add_edge(f, to_i, PointsToNode::DeferredEdge);
|
|
}
|
|
|
|
int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
|
|
const Type *adr_type = phase->type(adr);
|
|
if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
|
|
adr->in(AddPNode::Address)->is_Proj() &&
|
|
adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
|
|
// We are computing a raw address for a store captured by an Initialize
|
|
// compute an appropriate address type. AddP cases #3 and #5 (see below).
|
|
int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot ||
|
|
adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
|
|
"offset must be a constant or it is initialization of array");
|
|
return offs;
|
|
}
|
|
const TypePtr *t_ptr = adr_type->isa_ptr();
|
|
assert(t_ptr != NULL, "must be a pointer type");
|
|
return t_ptr->offset();
|
|
}
|
|
|
|
void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
|
|
PointsToNode *f = ptnode_adr(from_i);
|
|
PointsToNode *t = ptnode_adr(to_i);
|
|
|
|
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
|
|
assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
|
|
assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
|
|
assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
|
|
t->set_offset(offset);
|
|
|
|
add_edge(f, to_i, PointsToNode::FieldEdge);
|
|
}
|
|
|
|
void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
|
|
PointsToNode *npt = ptnode_adr(ni);
|
|
PointsToNode::EscapeState old_es = npt->escape_state();
|
|
if (es > old_es)
|
|
npt->set_escape_state(es);
|
|
}
|
|
|
|
void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
|
|
PointsToNode::EscapeState es, bool done) {
|
|
PointsToNode* ptadr = ptnode_adr(n->_idx);
|
|
ptadr->_node = n;
|
|
ptadr->set_node_type(nt);
|
|
|
|
// inline set_escape_state(idx, es);
|
|
PointsToNode::EscapeState old_es = ptadr->escape_state();
|
|
if (es > old_es)
|
|
ptadr->set_escape_state(es);
|
|
|
|
if (done)
|
|
_processed.set(n->_idx);
|
|
}
|
|
|
|
PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
|
|
uint idx = n->_idx;
|
|
PointsToNode::EscapeState es;
|
|
|
|
// If we are still collecting or there were no non-escaping allocations
|
|
// we don't know the answer yet
|
|
if (_collecting)
|
|
return PointsToNode::UnknownEscape;
|
|
|
|
// if the node was created after the escape computation, return
|
|
// UnknownEscape
|
|
if (idx >= nodes_size())
|
|
return PointsToNode::UnknownEscape;
|
|
|
|
es = ptnode_adr(idx)->escape_state();
|
|
|
|
// if we have already computed a value, return it
|
|
if (es != PointsToNode::UnknownEscape &&
|
|
ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
|
|
return es;
|
|
|
|
// PointsTo() calls n->uncast() which can return a new ideal node.
|
|
if (n->uncast()->_idx >= nodes_size())
|
|
return PointsToNode::UnknownEscape;
|
|
|
|
PointsToNode::EscapeState orig_es = es;
|
|
|
|
// compute max escape state of anything this node could point to
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
PointsTo(ptset, n);
|
|
for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
|
|
uint pt = i.elem;
|
|
PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
|
|
if (pes > es)
|
|
es = pes;
|
|
}
|
|
if (orig_es != es) {
|
|
// cache the computed escape state
|
|
assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
|
|
ptnode_adr(idx)->set_escape_state(es);
|
|
} // orig_es could be PointsToNode::UnknownEscape
|
|
return es;
|
|
}
|
|
|
|
void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
|
|
VectorSet visited(Thread::current()->resource_area());
|
|
GrowableArray<uint> worklist;
|
|
|
|
#ifdef ASSERT
|
|
Node *orig_n = n;
|
|
#endif
|
|
|
|
n = n->uncast();
|
|
PointsToNode* npt = ptnode_adr(n->_idx);
|
|
|
|
// If we have a JavaObject, return just that object
|
|
if (npt->node_type() == PointsToNode::JavaObject) {
|
|
ptset.set(n->_idx);
|
|
return;
|
|
}
|
|
#ifdef ASSERT
|
|
if (npt->_node == NULL) {
|
|
if (orig_n != n)
|
|
orig_n->dump();
|
|
n->dump();
|
|
assert(npt->_node != NULL, "unregistered node");
|
|
}
|
|
#endif
|
|
worklist.push(n->_idx);
|
|
while(worklist.length() > 0) {
|
|
int ni = worklist.pop();
|
|
if (visited.test_set(ni))
|
|
continue;
|
|
|
|
PointsToNode* pn = ptnode_adr(ni);
|
|
// ensure that all inputs of a Phi have been processed
|
|
assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
|
|
|
|
int edges_processed = 0;
|
|
uint e_cnt = pn->edge_count();
|
|
for (uint e = 0; e < e_cnt; e++) {
|
|
uint etgt = pn->edge_target(e);
|
|
PointsToNode::EdgeType et = pn->edge_type(e);
|
|
if (et == PointsToNode::PointsToEdge) {
|
|
ptset.set(etgt);
|
|
edges_processed++;
|
|
} else if (et == PointsToNode::DeferredEdge) {
|
|
worklist.push(etgt);
|
|
edges_processed++;
|
|
} else {
|
|
assert(false,"neither PointsToEdge or DeferredEdge");
|
|
}
|
|
}
|
|
if (edges_processed == 0) {
|
|
// no deferred or pointsto edges found. Assume the value was set
|
|
// outside this method. Add the phantom object to the pointsto set.
|
|
ptset.set(_phantom_object);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
|
|
// This method is most expensive during ConnectionGraph construction.
|
|
// Reuse vectorSet and an additional growable array for deferred edges.
|
|
deferred_edges->clear();
|
|
visited->Clear();
|
|
|
|
visited->set(ni);
|
|
PointsToNode *ptn = ptnode_adr(ni);
|
|
|
|
// Mark current edges as visited and move deferred edges to separate array.
|
|
for (uint i = 0; i < ptn->edge_count(); ) {
|
|
uint t = ptn->edge_target(i);
|
|
#ifdef ASSERT
|
|
assert(!visited->test_set(t), "expecting no duplications");
|
|
#else
|
|
visited->set(t);
|
|
#endif
|
|
if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
|
|
ptn->remove_edge(t, PointsToNode::DeferredEdge);
|
|
deferred_edges->append(t);
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
for (int next = 0; next < deferred_edges->length(); ++next) {
|
|
uint t = deferred_edges->at(next);
|
|
PointsToNode *ptt = ptnode_adr(t);
|
|
uint e_cnt = ptt->edge_count();
|
|
for (uint e = 0; e < e_cnt; e++) {
|
|
uint etgt = ptt->edge_target(e);
|
|
if (visited->test_set(etgt))
|
|
continue;
|
|
|
|
PointsToNode::EdgeType et = ptt->edge_type(e);
|
|
if (et == PointsToNode::PointsToEdge) {
|
|
add_pointsto_edge(ni, etgt);
|
|
if(etgt == _phantom_object) {
|
|
// Special case - field set outside (globally escaping).
|
|
ptn->set_escape_state(PointsToNode::GlobalEscape);
|
|
}
|
|
} else if (et == PointsToNode::DeferredEdge) {
|
|
deferred_edges->append(etgt);
|
|
} else {
|
|
assert(false,"invalid connection graph");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Add an edge to node given by "to_i" from any field of adr_i whose offset
|
|
// matches "offset" A deferred edge is added if to_i is a LocalVar, and
|
|
// a pointsto edge is added if it is a JavaObject
|
|
|
|
void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
|
|
PointsToNode* an = ptnode_adr(adr_i);
|
|
PointsToNode* to = ptnode_adr(to_i);
|
|
bool deferred = (to->node_type() == PointsToNode::LocalVar);
|
|
|
|
for (uint fe = 0; fe < an->edge_count(); fe++) {
|
|
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
|
|
int fi = an->edge_target(fe);
|
|
PointsToNode* pf = ptnode_adr(fi);
|
|
int po = pf->offset();
|
|
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
|
|
if (deferred)
|
|
add_deferred_edge(fi, to_i);
|
|
else
|
|
add_pointsto_edge(fi, to_i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add a deferred edge from node given by "from_i" to any field of adr_i
|
|
// whose offset matches "offset".
|
|
void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
|
|
PointsToNode* an = ptnode_adr(adr_i);
|
|
for (uint fe = 0; fe < an->edge_count(); fe++) {
|
|
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
|
|
int fi = an->edge_target(fe);
|
|
PointsToNode* pf = ptnode_adr(fi);
|
|
int po = pf->offset();
|
|
if (pf->edge_count() == 0) {
|
|
// we have not seen any stores to this field, assume it was set outside this method
|
|
add_pointsto_edge(fi, _phantom_object);
|
|
}
|
|
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
|
|
add_deferred_edge(from_i, fi);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper functions
|
|
|
|
static Node* get_addp_base(Node *addp) {
|
|
assert(addp->is_AddP(), "must be AddP");
|
|
//
|
|
// AddP cases for Base and Address inputs:
|
|
// case #1. Direct object's field reference:
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// |
|
|
// CheckCastPP (cast to instance type)
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #2. Indirect object's field reference:
|
|
// Phi
|
|
// |
|
|
// CastPP (cast to instance type)
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #3. Raw object's field reference for Initialize node:
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// top |
|
|
// \ |
|
|
// AddP ( base == top )
|
|
//
|
|
// case #4. Array's element reference:
|
|
// {CheckCastPP | CastPP}
|
|
// | | |
|
|
// | AddP ( array's element offset )
|
|
// | |
|
|
// AddP ( array's offset )
|
|
//
|
|
// case #5. Raw object's field reference for arraycopy stub call:
|
|
// The inline_native_clone() case when the arraycopy stub is called
|
|
// after the allocation before Initialize and CheckCastPP nodes.
|
|
// Allocate
|
|
// |
|
|
// Proj #5 ( oop result )
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #6. Constant Pool, ThreadLocal, CastX2P or
|
|
// Raw object's field reference:
|
|
// {ConP, ThreadLocal, CastX2P, raw Load}
|
|
// top |
|
|
// \ |
|
|
// AddP ( base == top )
|
|
//
|
|
// case #7. Klass's field reference.
|
|
// LoadKlass
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
// case #8. narrow Klass's field reference.
|
|
// LoadNKlass
|
|
// |
|
|
// DecodeN
|
|
// | |
|
|
// AddP ( base == address )
|
|
//
|
|
Node *base = addp->in(AddPNode::Base)->uncast();
|
|
if (base->is_top()) { // The AddP case #3 and #6.
|
|
base = addp->in(AddPNode::Address)->uncast();
|
|
while (base->is_AddP()) {
|
|
// Case #6 (unsafe access) may have several chained AddP nodes.
|
|
assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
|
|
base = base->in(AddPNode::Address)->uncast();
|
|
}
|
|
assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
|
|
base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
|
|
(base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
|
|
(base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
|
|
}
|
|
return base;
|
|
}
|
|
|
|
static Node* find_second_addp(Node* addp, Node* n) {
|
|
assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
|
|
|
|
Node* addp2 = addp->raw_out(0);
|
|
if (addp->outcnt() == 1 && addp2->is_AddP() &&
|
|
addp2->in(AddPNode::Base) == n &&
|
|
addp2->in(AddPNode::Address) == addp) {
|
|
|
|
assert(addp->in(AddPNode::Base) == n, "expecting the same base");
|
|
//
|
|
// Find array's offset to push it on worklist first and
|
|
// as result process an array's element offset first (pushed second)
|
|
// to avoid CastPP for the array's offset.
|
|
// Otherwise the inserted CastPP (LocalVar) will point to what
|
|
// the AddP (Field) points to. Which would be wrong since
|
|
// the algorithm expects the CastPP has the same point as
|
|
// as AddP's base CheckCastPP (LocalVar).
|
|
//
|
|
// ArrayAllocation
|
|
// |
|
|
// CheckCastPP
|
|
// |
|
|
// memProj (from ArrayAllocation CheckCastPP)
|
|
// | ||
|
|
// | || Int (element index)
|
|
// | || | ConI (log(element size))
|
|
// | || | /
|
|
// | || LShift
|
|
// | || /
|
|
// | AddP (array's element offset)
|
|
// | |
|
|
// | | ConI (array's offset: #12(32-bits) or #24(64-bits))
|
|
// | / /
|
|
// AddP (array's offset)
|
|
// |
|
|
// Load/Store (memory operation on array's element)
|
|
//
|
|
return addp2;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Adjust the type and inputs of an AddP which computes the
|
|
// address of a field of an instance
|
|
//
|
|
bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
|
|
const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
|
|
assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
|
|
const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
|
|
if (t == NULL) {
|
|
// We are computing a raw address for a store captured by an Initialize
|
|
// compute an appropriate address type (cases #3 and #5).
|
|
assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
|
|
assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
|
|
intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot, "offset must be a constant");
|
|
t = base_t->add_offset(offs)->is_oopptr();
|
|
}
|
|
int inst_id = base_t->instance_id();
|
|
assert(!t->is_known_instance() || t->instance_id() == inst_id,
|
|
"old type must be non-instance or match new type");
|
|
|
|
// The type 't' could be subclass of 'base_t'.
|
|
// As result t->offset() could be large then base_t's size and it will
|
|
// cause the failure in add_offset() with narrow oops since TypeOopPtr()
|
|
// constructor verifies correctness of the offset.
|
|
//
|
|
// It could happened on subclass's branch (from the type profiling
|
|
// inlining) which was not eliminated during parsing since the exactness
|
|
// of the allocation type was not propagated to the subclass type check.
|
|
//
|
|
// Or the type 't' could be not related to 'base_t' at all.
|
|
// It could happened when CHA type is different from MDO type on a dead path
|
|
// (for example, from instanceof check) which is not collapsed during parsing.
|
|
//
|
|
// Do nothing for such AddP node and don't process its users since
|
|
// this code branch will go away.
|
|
//
|
|
if (!t->is_known_instance() &&
|
|
!base_t->klass()->is_subtype_of(t->klass())) {
|
|
return false; // bail out
|
|
}
|
|
|
|
const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
|
|
// Do NOT remove the next line: ensure a new alias index is allocated
|
|
// for the instance type. Note: C++ will not remove it since the call
|
|
// has side effect.
|
|
int alias_idx = _compile->get_alias_index(tinst);
|
|
igvn->set_type(addp, tinst);
|
|
// record the allocation in the node map
|
|
assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
|
|
set_map(addp->_idx, get_map(base->_idx));
|
|
|
|
// Set addp's Base and Address to 'base'.
|
|
Node *abase = addp->in(AddPNode::Base);
|
|
Node *adr = addp->in(AddPNode::Address);
|
|
if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
|
|
adr->in(0)->_idx == (uint)inst_id) {
|
|
// Skip AddP cases #3 and #5.
|
|
} else {
|
|
assert(!abase->is_top(), "sanity"); // AddP case #3
|
|
if (abase != base) {
|
|
igvn->hash_delete(addp);
|
|
addp->set_req(AddPNode::Base, base);
|
|
if (abase == adr) {
|
|
addp->set_req(AddPNode::Address, base);
|
|
} else {
|
|
// AddP case #4 (adr is array's element offset AddP node)
|
|
#ifdef ASSERT
|
|
const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
|
|
assert(adr->is_AddP() && atype != NULL &&
|
|
atype->instance_id() == inst_id, "array's element offset should be processed first");
|
|
#endif
|
|
}
|
|
igvn->hash_insert(addp);
|
|
}
|
|
}
|
|
// Put on IGVN worklist since at least addp's type was changed above.
|
|
record_for_optimizer(addp);
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Create a new version of orig_phi if necessary. Returns either the newly
|
|
// created phi or an existing phi. Sets create_new to indicate wheter a new
|
|
// phi was created. Cache the last newly created phi in the node map.
|
|
//
|
|
PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
|
|
Compile *C = _compile;
|
|
new_created = false;
|
|
int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
|
|
// nothing to do if orig_phi is bottom memory or matches alias_idx
|
|
if (phi_alias_idx == alias_idx) {
|
|
return orig_phi;
|
|
}
|
|
// Have we recently created a Phi for this alias index?
|
|
PhiNode *result = get_map_phi(orig_phi->_idx);
|
|
if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
|
|
return result;
|
|
}
|
|
// Previous check may fail when the same wide memory Phi was split into Phis
|
|
// for different memory slices. Search all Phis for this region.
|
|
if (result != NULL) {
|
|
Node* region = orig_phi->in(0);
|
|
for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
|
|
Node* phi = region->fast_out(i);
|
|
if (phi->is_Phi() &&
|
|
C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
|
|
assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
|
|
return phi->as_Phi();
|
|
}
|
|
}
|
|
}
|
|
if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
|
|
if (C->do_escape_analysis() == true && !C->failing()) {
|
|
// Retry compilation without escape analysis.
|
|
// If this is the first failure, the sentinel string will "stick"
|
|
// to the Compile object, and the C2Compiler will see it and retry.
|
|
C->record_failure(C2Compiler::retry_no_escape_analysis());
|
|
}
|
|
return NULL;
|
|
}
|
|
orig_phi_worklist.append_if_missing(orig_phi);
|
|
const TypePtr *atype = C->get_adr_type(alias_idx);
|
|
result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
|
|
C->copy_node_notes_to(result, orig_phi);
|
|
igvn->set_type(result, result->bottom_type());
|
|
record_for_optimizer(result);
|
|
|
|
debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
|
|
assert(pn == NULL || pn == orig_phi, "wrong node");
|
|
set_map(orig_phi->_idx, result);
|
|
ptnode_adr(orig_phi->_idx)->_node = orig_phi;
|
|
|
|
new_created = true;
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Return a new version of Memory Phi "orig_phi" with the inputs having the
|
|
// specified alias index.
|
|
//
|
|
PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
|
|
|
|
assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
|
|
Compile *C = _compile;
|
|
bool new_phi_created;
|
|
PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
|
|
if (!new_phi_created) {
|
|
return result;
|
|
}
|
|
|
|
GrowableArray<PhiNode *> phi_list;
|
|
GrowableArray<uint> cur_input;
|
|
|
|
PhiNode *phi = orig_phi;
|
|
uint idx = 1;
|
|
bool finished = false;
|
|
while(!finished) {
|
|
while (idx < phi->req()) {
|
|
Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
|
|
if (mem != NULL && mem->is_Phi()) {
|
|
PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
|
|
if (new_phi_created) {
|
|
// found an phi for which we created a new split, push current one on worklist and begin
|
|
// processing new one
|
|
phi_list.push(phi);
|
|
cur_input.push(idx);
|
|
phi = mem->as_Phi();
|
|
result = newphi;
|
|
idx = 1;
|
|
continue;
|
|
} else {
|
|
mem = newphi;
|
|
}
|
|
}
|
|
if (C->failing()) {
|
|
return NULL;
|
|
}
|
|
result->set_req(idx++, mem);
|
|
}
|
|
#ifdef ASSERT
|
|
// verify that the new Phi has an input for each input of the original
|
|
assert( phi->req() == result->req(), "must have same number of inputs.");
|
|
assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
|
|
#endif
|
|
// Check if all new phi's inputs have specified alias index.
|
|
// Otherwise use old phi.
|
|
for (uint i = 1; i < phi->req(); i++) {
|
|
Node* in = result->in(i);
|
|
assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
|
|
}
|
|
// we have finished processing a Phi, see if there are any more to do
|
|
finished = (phi_list.length() == 0 );
|
|
if (!finished) {
|
|
phi = phi_list.pop();
|
|
idx = cur_input.pop();
|
|
PhiNode *prev_result = get_map_phi(phi->_idx);
|
|
prev_result->set_req(idx++, result);
|
|
result = prev_result;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
//
|
|
// The next methods are derived from methods in MemNode.
|
|
//
|
|
static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
|
|
Node *mem = mmem;
|
|
// TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
|
|
// means an array I have not precisely typed yet. Do not do any
|
|
// alias stuff with it any time soon.
|
|
if( toop->base() != Type::AnyPtr &&
|
|
!(toop->klass() != NULL &&
|
|
toop->klass()->is_java_lang_Object() &&
|
|
toop->offset() == Type::OffsetBot) ) {
|
|
mem = mmem->memory_at(alias_idx);
|
|
// Update input if it is progress over what we have now
|
|
}
|
|
return mem;
|
|
}
|
|
|
|
//
|
|
// Move memory users to their memory slices.
|
|
//
|
|
void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
|
|
Compile* C = _compile;
|
|
|
|
const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int alias_idx = C->get_alias_index(tp);
|
|
int general_idx = C->get_general_index(alias_idx);
|
|
|
|
// Move users first
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* use = n->fast_out(i);
|
|
if (use->is_MergeMem()) {
|
|
MergeMemNode* mmem = use->as_MergeMem();
|
|
assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
|
|
if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
|
|
continue; // Nothing to do
|
|
}
|
|
// Replace previous general reference to mem node.
|
|
uint orig_uniq = C->unique();
|
|
Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
|
|
assert(orig_uniq == C->unique(), "no new nodes");
|
|
mmem->set_memory_at(general_idx, m);
|
|
--imax;
|
|
--i;
|
|
} else if (use->is_MemBar()) {
|
|
assert(!use->is_Initialize(), "initializing stores should not be moved");
|
|
if (use->req() > MemBarNode::Precedent &&
|
|
use->in(MemBarNode::Precedent) == n) {
|
|
// Don't move related membars.
|
|
record_for_optimizer(use);
|
|
continue;
|
|
}
|
|
tp = use->as_MemBar()->adr_type()->isa_ptr();
|
|
if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
|
|
alias_idx == general_idx) {
|
|
continue; // Nothing to do
|
|
}
|
|
// Move to general memory slice.
|
|
uint orig_uniq = C->unique();
|
|
Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
|
|
assert(orig_uniq == C->unique(), "no new nodes");
|
|
igvn->hash_delete(use);
|
|
imax -= use->replace_edge(n, m);
|
|
igvn->hash_insert(use);
|
|
record_for_optimizer(use);
|
|
--i;
|
|
#ifdef ASSERT
|
|
} else if (use->is_Mem()) {
|
|
if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
|
|
// Don't move related cardmark.
|
|
continue;
|
|
}
|
|
// Memory nodes should have new memory input.
|
|
tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int idx = C->get_alias_index(tp);
|
|
assert(get_map(use->_idx) != NULL || idx == alias_idx,
|
|
"Following memory nodes should have new memory input or be on the same memory slice");
|
|
} else if (use->is_Phi()) {
|
|
// Phi nodes should be split and moved already.
|
|
tp = use->as_Phi()->adr_type()->isa_ptr();
|
|
assert(tp != NULL, "ptr type");
|
|
int idx = C->get_alias_index(tp);
|
|
assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
|
|
} else {
|
|
use->dump();
|
|
assert(false, "should not be here");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Search memory chain of "mem" to find a MemNode whose address
|
|
// is the specified alias index.
|
|
//
|
|
Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
|
|
if (orig_mem == NULL)
|
|
return orig_mem;
|
|
Compile* C = phase->C;
|
|
const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
|
|
bool is_instance = (toop != NULL) && toop->is_known_instance();
|
|
Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
|
|
Node *prev = NULL;
|
|
Node *result = orig_mem;
|
|
while (prev != result) {
|
|
prev = result;
|
|
if (result == start_mem)
|
|
break; // hit one of our sentinels
|
|
if (result->is_Mem()) {
|
|
const Type *at = phase->type(result->in(MemNode::Address));
|
|
if (at != Type::TOP) {
|
|
assert (at->isa_ptr() != NULL, "pointer type required.");
|
|
int idx = C->get_alias_index(at->is_ptr());
|
|
if (idx == alias_idx)
|
|
break;
|
|
}
|
|
result = result->in(MemNode::Memory);
|
|
}
|
|
if (!is_instance)
|
|
continue; // don't search further for non-instance types
|
|
// skip over a call which does not affect this memory slice
|
|
if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
|
|
Node *proj_in = result->in(0);
|
|
if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
|
|
break; // hit one of our sentinels
|
|
} else if (proj_in->is_Call()) {
|
|
CallNode *call = proj_in->as_Call();
|
|
if (!call->may_modify(toop, phase)) {
|
|
result = call->in(TypeFunc::Memory);
|
|
}
|
|
} else if (proj_in->is_Initialize()) {
|
|
AllocateNode* alloc = proj_in->as_Initialize()->allocation();
|
|
// Stop if this is the initialization for the object instance which
|
|
// which contains this memory slice, otherwise skip over it.
|
|
if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
|
|
result = proj_in->in(TypeFunc::Memory);
|
|
}
|
|
} else if (proj_in->is_MemBar()) {
|
|
result = proj_in->in(TypeFunc::Memory);
|
|
}
|
|
} else if (result->is_MergeMem()) {
|
|
MergeMemNode *mmem = result->as_MergeMem();
|
|
result = step_through_mergemem(mmem, alias_idx, toop);
|
|
if (result == mmem->base_memory()) {
|
|
// Didn't find instance memory, search through general slice recursively.
|
|
result = mmem->memory_at(C->get_general_index(alias_idx));
|
|
result = find_inst_mem(result, alias_idx, orig_phis, phase);
|
|
if (C->failing()) {
|
|
return NULL;
|
|
}
|
|
mmem->set_memory_at(alias_idx, result);
|
|
}
|
|
} else if (result->is_Phi() &&
|
|
C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
|
|
Node *un = result->as_Phi()->unique_input(phase);
|
|
if (un != NULL) {
|
|
orig_phis.append_if_missing(result->as_Phi());
|
|
result = un;
|
|
} else {
|
|
break;
|
|
}
|
|
} else if (result->is_ClearArray()) {
|
|
if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
|
|
// Can not bypass initialization of the instance
|
|
// we are looking for.
|
|
break;
|
|
}
|
|
// Otherwise skip it (the call updated 'result' value).
|
|
} else if (result->Opcode() == Op_SCMemProj) {
|
|
assert(result->in(0)->is_LoadStore(), "sanity");
|
|
const Type *at = phase->type(result->in(0)->in(MemNode::Address));
|
|
if (at != Type::TOP) {
|
|
assert (at->isa_ptr() != NULL, "pointer type required.");
|
|
int idx = C->get_alias_index(at->is_ptr());
|
|
assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
|
|
break;
|
|
}
|
|
result = result->in(0)->in(MemNode::Memory);
|
|
}
|
|
}
|
|
if (result->is_Phi()) {
|
|
PhiNode *mphi = result->as_Phi();
|
|
assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
|
|
const TypePtr *t = mphi->adr_type();
|
|
if (C->get_alias_index(t) != alias_idx) {
|
|
// Create a new Phi with the specified alias index type.
|
|
result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
|
|
} else if (!is_instance) {
|
|
// Push all non-instance Phis on the orig_phis worklist to update inputs
|
|
// during Phase 4 if needed.
|
|
orig_phis.append_if_missing(mphi);
|
|
}
|
|
}
|
|
// the result is either MemNode, PhiNode, InitializeNode.
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// Convert the types of unescaped object to instance types where possible,
|
|
// propagate the new type information through the graph, and update memory
|
|
// edges and MergeMem inputs to reflect the new type.
|
|
//
|
|
// We start with allocations (and calls which may be allocations) on alloc_worklist.
|
|
// The processing is done in 4 phases:
|
|
//
|
|
// Phase 1: Process possible allocations from alloc_worklist. Create instance
|
|
// types for the CheckCastPP for allocations where possible.
|
|
// Propagate the the new types through users as follows:
|
|
// casts and Phi: push users on alloc_worklist
|
|
// AddP: cast Base and Address inputs to the instance type
|
|
// push any AddP users on alloc_worklist and push any memnode
|
|
// users onto memnode_worklist.
|
|
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
|
|
// search the Memory chain for a store with the appropriate type
|
|
// address type. If a Phi is found, create a new version with
|
|
// the appropriate memory slices from each of the Phi inputs.
|
|
// For stores, process the users as follows:
|
|
// MemNode: push on memnode_worklist
|
|
// MergeMem: push on mergemem_worklist
|
|
// Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
|
|
// moving the first node encountered of each instance type to the
|
|
// the input corresponding to its alias index.
|
|
// appropriate memory slice.
|
|
// Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
|
|
//
|
|
// In the following example, the CheckCastPP nodes are the cast of allocation
|
|
// results and the allocation of node 29 is unescaped and eligible to be an
|
|
// instance type.
|
|
//
|
|
// We start with:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo"
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=4
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 40 30 ... alias_index=4
|
|
// 60 StoreP 45 50 20 ... alias_index=4
|
|
// 70 LoadP _ 60 30 ... alias_index=4
|
|
// 80 Phi 75 50 60 Memory alias_index=4
|
|
// 90 LoadP _ 80 30 ... alias_index=4
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
//
|
|
// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
|
|
// and creating a new alias index for node 30. This gives:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo" iid=24
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 40 30 ... alias_index=6
|
|
// 60 StoreP 45 50 20 ... alias_index=4
|
|
// 70 LoadP _ 60 30 ... alias_index=6
|
|
// 80 Phi 75 50 60 Memory alias_index=4
|
|
// 90 LoadP _ 80 30 ... alias_index=6
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
// In phase 2, new memory inputs are computed for the loads and stores,
|
|
// And a new version of the phi is created. In phase 4, the inputs to
|
|
// node 80 are updated and then the memory nodes are updated with the
|
|
// values computed in phase 2. This results in:
|
|
//
|
|
// 7 Parm #memory
|
|
// 10 ConI "12"
|
|
// 19 CheckCastPP "Foo"
|
|
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
|
|
// 29 CheckCastPP "Foo" iid=24
|
|
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
|
|
//
|
|
// 40 StoreP 25 7 20 ... alias_index=4
|
|
// 50 StoreP 35 7 30 ... alias_index=6
|
|
// 60 StoreP 45 40 20 ... alias_index=4
|
|
// 70 LoadP _ 50 30 ... alias_index=6
|
|
// 80 Phi 75 40 60 Memory alias_index=4
|
|
// 120 Phi 75 50 50 Memory alias_index=6
|
|
// 90 LoadP _ 120 30 ... alias_index=6
|
|
// 100 LoadP _ 80 20 ... alias_index=4
|
|
//
|
|
void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
|
|
GrowableArray<Node *> memnode_worklist;
|
|
GrowableArray<PhiNode *> orig_phis;
|
|
|
|
PhaseIterGVN *igvn = _igvn;
|
|
uint new_index_start = (uint) _compile->num_alias_types();
|
|
Arena* arena = Thread::current()->resource_area();
|
|
VectorSet visited(arena);
|
|
VectorSet ptset(arena);
|
|
|
|
|
|
// Phase 1: Process possible allocations from alloc_worklist.
|
|
// Create instance types for the CheckCastPP for allocations where possible.
|
|
//
|
|
// (Note: don't forget to change the order of the second AddP node on
|
|
// the alloc_worklist if the order of the worklist processing is changed,
|
|
// see the comment in find_second_addp().)
|
|
//
|
|
while (alloc_worklist.length() != 0) {
|
|
Node *n = alloc_worklist.pop();
|
|
uint ni = n->_idx;
|
|
const TypeOopPtr* tinst = NULL;
|
|
if (n->is_Call()) {
|
|
CallNode *alloc = n->as_Call();
|
|
// copy escape information to call node
|
|
PointsToNode* ptn = ptnode_adr(alloc->_idx);
|
|
PointsToNode::EscapeState es = escape_state(alloc);
|
|
// We have an allocation or call which returns a Java object,
|
|
// see if it is unescaped.
|
|
if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
|
|
continue;
|
|
|
|
// Find CheckCastPP for the allocate or for the return value of a call
|
|
n = alloc->result_cast();
|
|
if (n == NULL) { // No uses except Initialize node
|
|
if (alloc->is_Allocate()) {
|
|
// Set the scalar_replaceable flag for allocation
|
|
// so it could be eliminated if it has no uses.
|
|
alloc->as_Allocate()->_is_scalar_replaceable = true;
|
|
}
|
|
continue;
|
|
}
|
|
if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
|
|
assert(!alloc->is_Allocate(), "allocation should have unique type");
|
|
continue;
|
|
}
|
|
|
|
// The inline code for Object.clone() casts the allocation result to
|
|
// java.lang.Object and then to the actual type of the allocated
|
|
// object. Detect this case and use the second cast.
|
|
// Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
|
|
// the allocation result is cast to java.lang.Object and then
|
|
// to the actual Array type.
|
|
if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
|
|
&& (alloc->is_AllocateArray() ||
|
|
igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
|
|
Node *cast2 = NULL;
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->is_CheckCastPP()) {
|
|
cast2 = use;
|
|
break;
|
|
}
|
|
}
|
|
if (cast2 != NULL) {
|
|
n = cast2;
|
|
} else {
|
|
// Non-scalar replaceable if the allocation type is unknown statically
|
|
// (reflection allocation), the object can't be restored during
|
|
// deoptimization without precise type.
|
|
continue;
|
|
}
|
|
}
|
|
if (alloc->is_Allocate()) {
|
|
// Set the scalar_replaceable flag for allocation
|
|
// so it could be eliminated.
|
|
alloc->as_Allocate()->_is_scalar_replaceable = true;
|
|
}
|
|
set_escape_state(n->_idx, es);
|
|
// in order for an object to be scalar-replaceable, it must be:
|
|
// - a direct allocation (not a call returning an object)
|
|
// - non-escaping
|
|
// - eligible to be a unique type
|
|
// - not determined to be ineligible by escape analysis
|
|
assert(ptnode_adr(alloc->_idx)->_node != NULL &&
|
|
ptnode_adr(n->_idx)->_node != NULL, "should be registered");
|
|
set_map(alloc->_idx, n);
|
|
set_map(n->_idx, alloc);
|
|
const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
|
|
if (t == NULL)
|
|
continue; // not a TypeInstPtr
|
|
tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
|
|
igvn->hash_delete(n);
|
|
igvn->set_type(n, tinst);
|
|
n->raise_bottom_type(tinst);
|
|
igvn->hash_insert(n);
|
|
record_for_optimizer(n);
|
|
if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
|
|
(t->isa_instptr() || t->isa_aryptr())) {
|
|
|
|
// First, put on the worklist all Field edges from Connection Graph
|
|
// which is more accurate then putting immediate users from Ideal Graph.
|
|
for (uint e = 0; e < ptn->edge_count(); e++) {
|
|
Node *use = ptnode_adr(ptn->edge_target(e))->_node;
|
|
assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
|
|
"only AddP nodes are Field edges in CG");
|
|
if (use->outcnt() > 0) { // Don't process dead nodes
|
|
Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
|
|
if (addp2 != NULL) {
|
|
assert(alloc->is_AllocateArray(),"array allocation was expected");
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
}
|
|
}
|
|
|
|
// An allocation may have an Initialize which has raw stores. Scan
|
|
// the users of the raw allocation result and push AddP users
|
|
// on alloc_worklist.
|
|
Node *raw_result = alloc->proj_out(TypeFunc::Parms);
|
|
assert (raw_result != NULL, "must have an allocation result");
|
|
for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
|
|
Node *use = raw_result->fast_out(i);
|
|
if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
|
|
Node* addp2 = find_second_addp(use, raw_result);
|
|
if (addp2 != NULL) {
|
|
assert(alloc->is_AllocateArray(),"array allocation was expected");
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
}
|
|
}
|
|
}
|
|
} else if (n->is_AddP()) {
|
|
ptset.Clear();
|
|
PointsTo(ptset, get_addp_base(n));
|
|
assert(ptset.Size() == 1, "AddP address is unique");
|
|
uint elem = ptset.getelem(); // Allocation node's index
|
|
if (elem == _phantom_object) {
|
|
assert(false, "escaped allocation");
|
|
continue; // Assume the value was set outside this method.
|
|
}
|
|
Node *base = get_map(elem); // CheckCastPP node
|
|
if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
|
|
tinst = igvn->type(base)->isa_oopptr();
|
|
} else if (n->is_Phi() ||
|
|
n->is_CheckCastPP() ||
|
|
n->is_EncodeP() ||
|
|
n->is_DecodeN() ||
|
|
(n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
|
|
if (visited.test_set(n->_idx)) {
|
|
assert(n->is_Phi(), "loops only through Phi's");
|
|
continue; // already processed
|
|
}
|
|
ptset.Clear();
|
|
PointsTo(ptset, n);
|
|
if (ptset.Size() == 1) {
|
|
uint elem = ptset.getelem(); // Allocation node's index
|
|
if (elem == _phantom_object) {
|
|
assert(false, "escaped allocation");
|
|
continue; // Assume the value was set outside this method.
|
|
}
|
|
Node *val = get_map(elem); // CheckCastPP node
|
|
TypeNode *tn = n->as_Type();
|
|
tinst = igvn->type(val)->isa_oopptr();
|
|
assert(tinst != NULL && tinst->is_known_instance() &&
|
|
(uint)tinst->instance_id() == elem , "instance type expected.");
|
|
|
|
const Type *tn_type = igvn->type(tn);
|
|
const TypeOopPtr *tn_t;
|
|
if (tn_type->isa_narrowoop()) {
|
|
tn_t = tn_type->make_ptr()->isa_oopptr();
|
|
} else {
|
|
tn_t = tn_type->isa_oopptr();
|
|
}
|
|
|
|
if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
|
|
if (tn_type->isa_narrowoop()) {
|
|
tn_type = tinst->make_narrowoop();
|
|
} else {
|
|
tn_type = tinst;
|
|
}
|
|
igvn->hash_delete(tn);
|
|
igvn->set_type(tn, tn_type);
|
|
tn->set_type(tn_type);
|
|
igvn->hash_insert(tn);
|
|
record_for_optimizer(n);
|
|
} else {
|
|
assert(tn_type == TypePtr::NULL_PTR ||
|
|
tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
|
|
"unexpected type");
|
|
continue; // Skip dead path with different type
|
|
}
|
|
}
|
|
} else {
|
|
debug_only(n->dump();)
|
|
assert(false, "EA: unexpected node");
|
|
continue;
|
|
}
|
|
// push allocation's users on appropriate worklist
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if(use->is_Mem() && use->in(MemNode::Address) == n) {
|
|
// Load/store to instance's field
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
|
|
Node* addp2 = find_second_addp(use, n);
|
|
if (addp2 != NULL) {
|
|
alloc_worklist.append_if_missing(addp2);
|
|
}
|
|
alloc_worklist.append_if_missing(use);
|
|
} else if (use->is_Phi() ||
|
|
use->is_CheckCastPP() ||
|
|
use->is_EncodeP() ||
|
|
use->is_DecodeN() ||
|
|
(use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
|
|
alloc_worklist.append_if_missing(use);
|
|
#ifdef ASSERT
|
|
} else if (use->is_Mem()) {
|
|
assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
|
|
} else if (use->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
} else if (use->is_SafePoint()) {
|
|
// Look for MergeMem nodes for calls which reference unique allocation
|
|
// (through CheckCastPP nodes) even for debug info.
|
|
Node* m = use->in(TypeFunc::Memory);
|
|
if (m->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
}
|
|
} else {
|
|
uint op = use->Opcode();
|
|
if (!(op == Op_CmpP || op == Op_Conv2B ||
|
|
op == Op_CastP2X || op == Op_StoreCM ||
|
|
op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
|
|
op == Op_StrEquals || op == Op_StrIndexOf)) {
|
|
n->dump();
|
|
use->dump();
|
|
assert(false, "EA: missing allocation reference path");
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
// New alias types were created in split_AddP().
|
|
uint new_index_end = (uint) _compile->num_alias_types();
|
|
|
|
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
|
|
// compute new values for Memory inputs (the Memory inputs are not
|
|
// actually updated until phase 4.)
|
|
if (memnode_worklist.length() == 0)
|
|
return; // nothing to do
|
|
|
|
while (memnode_worklist.length() != 0) {
|
|
Node *n = memnode_worklist.pop();
|
|
if (visited.test_set(n->_idx))
|
|
continue;
|
|
if (n->is_Phi() || n->is_ClearArray()) {
|
|
// we don't need to do anything, but the users must be pushed
|
|
} else if (n->is_MemBar()) { // Initialize, MemBar nodes
|
|
// we don't need to do anything, but the users must be pushed
|
|
n = n->as_MemBar()->proj_out(TypeFunc::Memory);
|
|
if (n == NULL)
|
|
continue;
|
|
} else {
|
|
assert(n->is_Mem(), "memory node required.");
|
|
Node *addr = n->in(MemNode::Address);
|
|
const Type *addr_t = igvn->type(addr);
|
|
if (addr_t == Type::TOP)
|
|
continue;
|
|
assert (addr_t->isa_ptr() != NULL, "pointer type required.");
|
|
int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
|
|
assert ((uint)alias_idx < new_index_end, "wrong alias index");
|
|
Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
if (mem != n->in(MemNode::Memory)) {
|
|
// We delay the memory edge update since we need old one in
|
|
// MergeMem code below when instances memory slices are separated.
|
|
debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
|
|
assert(pn == NULL || pn == n, "wrong node");
|
|
set_map(n->_idx, mem);
|
|
ptnode_adr(n->_idx)->_node = n;
|
|
}
|
|
if (n->is_Load()) {
|
|
continue; // don't push users
|
|
} else if (n->is_LoadStore()) {
|
|
// get the memory projection
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->Opcode() == Op_SCMemProj) {
|
|
n = use;
|
|
break;
|
|
}
|
|
}
|
|
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
|
|
}
|
|
}
|
|
// push user on appropriate worklist
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->is_Phi() || use->is_ClearArray()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
|
|
if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
|
|
continue;
|
|
memnode_worklist.append_if_missing(use);
|
|
} else if (use->is_MemBar()) {
|
|
memnode_worklist.append_if_missing(use);
|
|
#ifdef ASSERT
|
|
} else if(use->is_Mem()) {
|
|
assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
|
|
} else if (use->is_MergeMem()) {
|
|
assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
|
|
} else {
|
|
uint op = use->Opcode();
|
|
if (!(op == Op_StoreCM ||
|
|
(op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
|
|
strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
|
|
op == Op_AryEq || op == Op_StrComp ||
|
|
op == Op_StrEquals || op == Op_StrIndexOf)) {
|
|
n->dump();
|
|
use->dump();
|
|
assert(false, "EA: missing memory path");
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// Phase 3: Process MergeMem nodes from mergemem_worklist.
|
|
// Walk each memory slice moving the first node encountered of each
|
|
// instance type to the the input corresponding to its alias index.
|
|
uint length = _mergemem_worklist.length();
|
|
for( uint next = 0; next < length; ++next ) {
|
|
MergeMemNode* nmm = _mergemem_worklist.at(next);
|
|
assert(!visited.test_set(nmm->_idx), "should not be visited before");
|
|
// Note: we don't want to use MergeMemStream here because we only want to
|
|
// scan inputs which exist at the start, not ones we add during processing.
|
|
// Note 2: MergeMem may already contains instance memory slices added
|
|
// during find_inst_mem() call when memory nodes were processed above.
|
|
igvn->hash_delete(nmm);
|
|
uint nslices = nmm->req();
|
|
for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
|
|
Node* mem = nmm->in(i);
|
|
Node* cur = NULL;
|
|
if (mem == NULL || mem->is_top())
|
|
continue;
|
|
// First, update mergemem by moving memory nodes to corresponding slices
|
|
// if their type became more precise since this mergemem was created.
|
|
while (mem->is_Mem()) {
|
|
const Type *at = igvn->type(mem->in(MemNode::Address));
|
|
if (at != Type::TOP) {
|
|
assert (at->isa_ptr() != NULL, "pointer type required.");
|
|
uint idx = (uint)_compile->get_alias_index(at->is_ptr());
|
|
if (idx == i) {
|
|
if (cur == NULL)
|
|
cur = mem;
|
|
} else {
|
|
if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
|
|
nmm->set_memory_at(idx, mem);
|
|
}
|
|
}
|
|
}
|
|
mem = mem->in(MemNode::Memory);
|
|
}
|
|
nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
|
|
// Find any instance of the current type if we haven't encountered
|
|
// already a memory slice of the instance along the memory chain.
|
|
for (uint ni = new_index_start; ni < new_index_end; ni++) {
|
|
if((uint)_compile->get_general_index(ni) == i) {
|
|
Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
|
|
if (nmm->is_empty_memory(m)) {
|
|
Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
nmm->set_memory_at(ni, result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Find the rest of instances values
|
|
for (uint ni = new_index_start; ni < new_index_end; ni++) {
|
|
const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
|
|
Node* result = step_through_mergemem(nmm, ni, tinst);
|
|
if (result == nmm->base_memory()) {
|
|
// Didn't find instance memory, search through general slice recursively.
|
|
result = nmm->memory_at(_compile->get_general_index(ni));
|
|
result = find_inst_mem(result, ni, orig_phis, igvn);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
nmm->set_memory_at(ni, result);
|
|
}
|
|
}
|
|
igvn->hash_insert(nmm);
|
|
record_for_optimizer(nmm);
|
|
}
|
|
|
|
// Phase 4: Update the inputs of non-instance memory Phis and
|
|
// the Memory input of memnodes
|
|
// First update the inputs of any non-instance Phi's from
|
|
// which we split out an instance Phi. Note we don't have
|
|
// to recursively process Phi's encounted on the input memory
|
|
// chains as is done in split_memory_phi() since they will
|
|
// also be processed here.
|
|
for (int j = 0; j < orig_phis.length(); j++) {
|
|
PhiNode *phi = orig_phis.at(j);
|
|
int alias_idx = _compile->get_alias_index(phi->adr_type());
|
|
igvn->hash_delete(phi);
|
|
for (uint i = 1; i < phi->req(); i++) {
|
|
Node *mem = phi->in(i);
|
|
Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
|
|
if (_compile->failing()) {
|
|
return;
|
|
}
|
|
if (mem != new_mem) {
|
|
phi->set_req(i, new_mem);
|
|
}
|
|
}
|
|
igvn->hash_insert(phi);
|
|
record_for_optimizer(phi);
|
|
}
|
|
|
|
// Update the memory inputs of MemNodes with the value we computed
|
|
// in Phase 2 and move stores memory users to corresponding memory slices.
|
|
#ifdef ASSERT
|
|
visited.Clear();
|
|
Node_Stack old_mems(arena, _compile->unique() >> 2);
|
|
#endif
|
|
for (uint i = 0; i < nodes_size(); i++) {
|
|
Node *nmem = get_map(i);
|
|
if (nmem != NULL) {
|
|
Node *n = ptnode_adr(i)->_node;
|
|
assert(n != NULL, "sanity");
|
|
if (n->is_Mem()) {
|
|
#ifdef ASSERT
|
|
Node* old_mem = n->in(MemNode::Memory);
|
|
if (!visited.test_set(old_mem->_idx)) {
|
|
old_mems.push(old_mem, old_mem->outcnt());
|
|
}
|
|
#endif
|
|
assert(n->in(MemNode::Memory) != nmem, "sanity");
|
|
if (!n->is_Load()) {
|
|
// Move memory users of a store first.
|
|
move_inst_mem(n, orig_phis, igvn);
|
|
}
|
|
// Now update memory input
|
|
igvn->hash_delete(n);
|
|
n->set_req(MemNode::Memory, nmem);
|
|
igvn->hash_insert(n);
|
|
record_for_optimizer(n);
|
|
} else {
|
|
assert(n->is_Allocate() || n->is_CheckCastPP() ||
|
|
n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
|
|
}
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
// Verify that memory was split correctly
|
|
while (old_mems.is_nonempty()) {
|
|
Node* old_mem = old_mems.node();
|
|
uint old_cnt = old_mems.index();
|
|
old_mems.pop();
|
|
assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool ConnectionGraph::has_candidates(Compile *C) {
|
|
// EA brings benefits only when the code has allocations and/or locks which
|
|
// are represented by ideal Macro nodes.
|
|
int cnt = C->macro_count();
|
|
for( int i=0; i < cnt; i++ ) {
|
|
Node *n = C->macro_node(i);
|
|
if ( n->is_Allocate() )
|
|
return true;
|
|
if( n->is_Lock() ) {
|
|
Node* obj = n->as_Lock()->obj_node()->uncast();
|
|
if( !(obj->is_Parm() || obj->is_Con()) )
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
|
|
// Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
|
|
// to create space for them in ConnectionGraph::_nodes[].
|
|
Node* oop_null = igvn->zerocon(T_OBJECT);
|
|
Node* noop_null = igvn->zerocon(T_NARROWOOP);
|
|
|
|
ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
|
|
// Perform escape analysis
|
|
if (congraph->compute_escape()) {
|
|
// There are non escaping objects.
|
|
C->set_congraph(congraph);
|
|
}
|
|
|
|
// Cleanup.
|
|
if (oop_null->outcnt() == 0)
|
|
igvn->hash_delete(oop_null);
|
|
if (noop_null->outcnt() == 0)
|
|
igvn->hash_delete(noop_null);
|
|
}
|
|
|
|
bool ConnectionGraph::compute_escape() {
|
|
Compile* C = _compile;
|
|
|
|
// 1. Populate Connection Graph (CG) with Ideal nodes.
|
|
|
|
Unique_Node_List worklist_init;
|
|
worklist_init.map(C->unique(), NULL); // preallocate space
|
|
|
|
// Initialize worklist
|
|
if (C->root() != NULL) {
|
|
worklist_init.push(C->root());
|
|
}
|
|
|
|
GrowableArray<int> cg_worklist;
|
|
PhaseGVN* igvn = _igvn;
|
|
bool has_allocations = false;
|
|
|
|
// Push all useful nodes onto CG list and set their type.
|
|
for( uint next = 0; next < worklist_init.size(); ++next ) {
|
|
Node* n = worklist_init.at(next);
|
|
record_for_escape_analysis(n, igvn);
|
|
// Only allocations and java static calls results are checked
|
|
// for an escape status. See process_call_result() below.
|
|
if (n->is_Allocate() || n->is_CallStaticJava() &&
|
|
ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
|
|
has_allocations = true;
|
|
}
|
|
if(n->is_AddP()) {
|
|
// Collect address nodes. Use them during stage 3 below
|
|
// to build initial connection graph field edges.
|
|
cg_worklist.append(n->_idx);
|
|
} else if (n->is_MergeMem()) {
|
|
// Collect all MergeMem nodes to add memory slices for
|
|
// scalar replaceable objects in split_unique_types().
|
|
_mergemem_worklist.append(n->as_MergeMem());
|
|
}
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* m = n->fast_out(i); // Get user
|
|
worklist_init.push(m);
|
|
}
|
|
}
|
|
|
|
if (!has_allocations) {
|
|
_collecting = false;
|
|
return false; // Nothing to do.
|
|
}
|
|
|
|
// 2. First pass to create simple CG edges (doesn't require to walk CG).
|
|
uint delayed_size = _delayed_worklist.size();
|
|
for( uint next = 0; next < delayed_size; ++next ) {
|
|
Node* n = _delayed_worklist.at(next);
|
|
build_connection_graph(n, igvn);
|
|
}
|
|
|
|
// 3. Pass to create initial fields edges (JavaObject -F-> AddP)
|
|
// to reduce number of iterations during stage 4 below.
|
|
uint cg_length = cg_worklist.length();
|
|
for( uint next = 0; next < cg_length; ++next ) {
|
|
int ni = cg_worklist.at(next);
|
|
Node* n = ptnode_adr(ni)->_node;
|
|
Node* base = get_addp_base(n);
|
|
if (base->is_Proj())
|
|
base = base->in(0);
|
|
PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
|
|
if (nt == PointsToNode::JavaObject) {
|
|
build_connection_graph(n, igvn);
|
|
}
|
|
}
|
|
|
|
cg_worklist.clear();
|
|
cg_worklist.append(_phantom_object);
|
|
GrowableArray<uint> worklist;
|
|
|
|
// 4. Build Connection Graph which need
|
|
// to walk the connection graph.
|
|
_progress = false;
|
|
for (uint ni = 0; ni < nodes_size(); ni++) {
|
|
PointsToNode* ptn = ptnode_adr(ni);
|
|
Node *n = ptn->_node;
|
|
if (n != NULL) { // Call, AddP, LoadP, StoreP
|
|
build_connection_graph(n, igvn);
|
|
if (ptn->node_type() != PointsToNode::UnknownType)
|
|
cg_worklist.append(n->_idx); // Collect CG nodes
|
|
if (!_processed.test(n->_idx))
|
|
worklist.append(n->_idx); // Collect C/A/L/S nodes
|
|
}
|
|
}
|
|
|
|
// After IGVN user nodes may have smaller _idx than
|
|
// their inputs so they will be processed first in
|
|
// previous loop. Because of that not all Graph
|
|
// edges will be created. Walk over interesting
|
|
// nodes again until no new edges are created.
|
|
//
|
|
// Normally only 1-3 passes needed to build
|
|
// Connection Graph depending on graph complexity.
|
|
// Observed 8 passes in jvm2008 compiler.compiler.
|
|
// Set limit to 20 to catch situation when something
|
|
// did go wrong and recompile the method without EA.
|
|
|
|
#define CG_BUILD_ITER_LIMIT 20
|
|
|
|
uint length = worklist.length();
|
|
int iterations = 0;
|
|
while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
|
|
_progress = false;
|
|
for( uint next = 0; next < length; ++next ) {
|
|
int ni = worklist.at(next);
|
|
PointsToNode* ptn = ptnode_adr(ni);
|
|
Node* n = ptn->_node;
|
|
assert(n != NULL, "should be known node");
|
|
build_connection_graph(n, igvn);
|
|
}
|
|
}
|
|
if (iterations >= CG_BUILD_ITER_LIMIT) {
|
|
assert(iterations < CG_BUILD_ITER_LIMIT,
|
|
err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
|
|
nodes_size(), length));
|
|
// Possible infinite build_connection_graph loop,
|
|
// retry compilation without escape analysis.
|
|
C->record_failure(C2Compiler::retry_no_escape_analysis());
|
|
_collecting = false;
|
|
return false;
|
|
}
|
|
#undef CG_BUILD_ITER_LIMIT
|
|
|
|
Arena* arena = Thread::current()->resource_area();
|
|
VectorSet ptset(arena);
|
|
VectorSet visited(arena);
|
|
worklist.clear();
|
|
|
|
// 5. Remove deferred edges from the graph and adjust
|
|
// escape state of nonescaping objects.
|
|
cg_length = cg_worklist.length();
|
|
for( uint next = 0; next < cg_length; ++next ) {
|
|
int ni = cg_worklist.at(next);
|
|
PointsToNode* ptn = ptnode_adr(ni);
|
|
PointsToNode::NodeType nt = ptn->node_type();
|
|
if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
|
|
remove_deferred(ni, &worklist, &visited);
|
|
Node *n = ptn->_node;
|
|
if (n->is_AddP()) {
|
|
// Search for objects which are not scalar replaceable
|
|
// and adjust their escape state.
|
|
verify_escape_state(ni, ptset, igvn);
|
|
}
|
|
}
|
|
}
|
|
|
|
// 6. Propagate escape states.
|
|
worklist.clear();
|
|
bool has_non_escaping_obj = false;
|
|
|
|
// push all GlobalEscape nodes on the worklist
|
|
for( uint next = 0; next < cg_length; ++next ) {
|
|
int nk = cg_worklist.at(next);
|
|
if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
|
|
worklist.push(nk);
|
|
}
|
|
// mark all nodes reachable from GlobalEscape nodes
|
|
while(worklist.length() > 0) {
|
|
PointsToNode* ptn = ptnode_adr(worklist.pop());
|
|
uint e_cnt = ptn->edge_count();
|
|
for (uint ei = 0; ei < e_cnt; ei++) {
|
|
uint npi = ptn->edge_target(ei);
|
|
PointsToNode *np = ptnode_adr(npi);
|
|
if (np->escape_state() < PointsToNode::GlobalEscape) {
|
|
np->set_escape_state(PointsToNode::GlobalEscape);
|
|
worklist.push(npi);
|
|
}
|
|
}
|
|
}
|
|
|
|
// push all ArgEscape nodes on the worklist
|
|
for( uint next = 0; next < cg_length; ++next ) {
|
|
int nk = cg_worklist.at(next);
|
|
if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
|
|
worklist.push(nk);
|
|
}
|
|
// mark all nodes reachable from ArgEscape nodes
|
|
while(worklist.length() > 0) {
|
|
PointsToNode* ptn = ptnode_adr(worklist.pop());
|
|
if (ptn->node_type() == PointsToNode::JavaObject)
|
|
has_non_escaping_obj = true; // Non GlobalEscape
|
|
uint e_cnt = ptn->edge_count();
|
|
for (uint ei = 0; ei < e_cnt; ei++) {
|
|
uint npi = ptn->edge_target(ei);
|
|
PointsToNode *np = ptnode_adr(npi);
|
|
if (np->escape_state() < PointsToNode::ArgEscape) {
|
|
np->set_escape_state(PointsToNode::ArgEscape);
|
|
worklist.push(npi);
|
|
}
|
|
}
|
|
}
|
|
|
|
GrowableArray<Node*> alloc_worklist;
|
|
|
|
// push all NoEscape nodes on the worklist
|
|
for( uint next = 0; next < cg_length; ++next ) {
|
|
int nk = cg_worklist.at(next);
|
|
if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
|
|
worklist.push(nk);
|
|
}
|
|
// mark all nodes reachable from NoEscape nodes
|
|
while(worklist.length() > 0) {
|
|
PointsToNode* ptn = ptnode_adr(worklist.pop());
|
|
if (ptn->node_type() == PointsToNode::JavaObject)
|
|
has_non_escaping_obj = true; // Non GlobalEscape
|
|
Node* n = ptn->_node;
|
|
if (n->is_Allocate() && ptn->_scalar_replaceable ) {
|
|
// Push scalar replaceable allocations on alloc_worklist
|
|
// for processing in split_unique_types().
|
|
alloc_worklist.append(n);
|
|
}
|
|
uint e_cnt = ptn->edge_count();
|
|
for (uint ei = 0; ei < e_cnt; ei++) {
|
|
uint npi = ptn->edge_target(ei);
|
|
PointsToNode *np = ptnode_adr(npi);
|
|
if (np->escape_state() < PointsToNode::NoEscape) {
|
|
np->set_escape_state(PointsToNode::NoEscape);
|
|
worklist.push(npi);
|
|
}
|
|
}
|
|
}
|
|
|
|
_collecting = false;
|
|
assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEscapeAnalysis) {
|
|
dump(); // Dump ConnectionGraph
|
|
}
|
|
#endif
|
|
|
|
bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
|
|
if ( has_scalar_replaceable_candidates &&
|
|
C->AliasLevel() >= 3 && EliminateAllocations ) {
|
|
|
|
// Now use the escape information to create unique types for
|
|
// scalar replaceable objects.
|
|
split_unique_types(alloc_worklist);
|
|
|
|
if (C->failing()) return false;
|
|
|
|
C->print_method("After Escape Analysis", 2);
|
|
|
|
#ifdef ASSERT
|
|
} else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
|
|
tty->print("=== No allocations eliminated for ");
|
|
C->method()->print_short_name();
|
|
if(!EliminateAllocations) {
|
|
tty->print(" since EliminateAllocations is off ===");
|
|
} else if(!has_scalar_replaceable_candidates) {
|
|
tty->print(" since there are no scalar replaceable candidates ===");
|
|
} else if(C->AliasLevel() < 3) {
|
|
tty->print(" since AliasLevel < 3 ===");
|
|
}
|
|
tty->cr();
|
|
#endif
|
|
}
|
|
return has_non_escaping_obj;
|
|
}
|
|
|
|
// Search for objects which are not scalar replaceable.
|
|
void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
|
|
PointsToNode* ptn = ptnode_adr(nidx);
|
|
Node* n = ptn->_node;
|
|
assert(n->is_AddP(), "Should be called for AddP nodes only");
|
|
// Search for objects which are not scalar replaceable.
|
|
// Mark their escape state as ArgEscape to propagate the state
|
|
// to referenced objects.
|
|
// Note: currently there are no difference in compiler optimizations
|
|
// for ArgEscape objects and NoEscape objects which are not
|
|
// scalar replaceable.
|
|
|
|
Compile* C = _compile;
|
|
|
|
int offset = ptn->offset();
|
|
Node* base = get_addp_base(n);
|
|
ptset.Clear();
|
|
PointsTo(ptset, base);
|
|
int ptset_size = ptset.Size();
|
|
|
|
// Check if a oop field's initializing value is recorded and add
|
|
// a corresponding NULL field's value if it is not recorded.
|
|
// Connection Graph does not record a default initialization by NULL
|
|
// captured by Initialize node.
|
|
//
|
|
// Note: it will disable scalar replacement in some cases:
|
|
//
|
|
// Point p[] = new Point[1];
|
|
// p[0] = new Point(); // Will be not scalar replaced
|
|
//
|
|
// but it will save us from incorrect optimizations in next cases:
|
|
//
|
|
// Point p[] = new Point[1];
|
|
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
|
|
//
|
|
// Do a simple control flow analysis to distinguish above cases.
|
|
//
|
|
if (offset != Type::OffsetBot && ptset_size == 1) {
|
|
uint elem = ptset.getelem(); // Allocation node's index
|
|
// It does not matter if it is not Allocation node since
|
|
// only non-escaping allocations are scalar replaced.
|
|
if (ptnode_adr(elem)->_node->is_Allocate() &&
|
|
ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
|
|
AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
|
|
InitializeNode* ini = alloc->initialization();
|
|
|
|
// Check only oop fields.
|
|
const Type* adr_type = n->as_AddP()->bottom_type();
|
|
BasicType basic_field_type = T_INT;
|
|
if (adr_type->isa_instptr()) {
|
|
ciField* field = C->alias_type(adr_type->isa_instptr())->field();
|
|
if (field != NULL) {
|
|
basic_field_type = field->layout_type();
|
|
} else {
|
|
// Ignore non field load (for example, klass load)
|
|
}
|
|
} else if (adr_type->isa_aryptr()) {
|
|
const Type* elemtype = adr_type->isa_aryptr()->elem();
|
|
basic_field_type = elemtype->array_element_basic_type();
|
|
} else {
|
|
// Raw pointers are used for initializing stores so skip it.
|
|
assert(adr_type->isa_rawptr() && base->is_Proj() &&
|
|
(base->in(0) == alloc),"unexpected pointer type");
|
|
}
|
|
if (basic_field_type == T_OBJECT ||
|
|
basic_field_type == T_NARROWOOP ||
|
|
basic_field_type == T_ARRAY) {
|
|
Node* value = NULL;
|
|
if (ini != NULL) {
|
|
BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
|
|
Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
|
|
if (store != NULL && store->is_Store()) {
|
|
value = store->in(MemNode::ValueIn);
|
|
} else if (ptn->edge_count() > 0) { // Are there oop stores?
|
|
// Check for a store which follows allocation without branches.
|
|
// For example, a volatile field store is not collected
|
|
// by Initialize node. TODO: it would be nice to use idom() here.
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
store = n->fast_out(i);
|
|
if (store->is_Store() && store->in(0) != NULL) {
|
|
Node* ctrl = store->in(0);
|
|
while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
|
|
ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
|
|
ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
|
|
ctrl = ctrl->in(0);
|
|
}
|
|
if (ctrl == ini || ctrl == alloc) {
|
|
value = store->in(MemNode::ValueIn);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
|
|
// A field's initializing value was not recorded. Add NULL.
|
|
uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
|
|
add_pointsto_edge(nidx, null_idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// An object is not scalar replaceable if the field which may point
|
|
// to it has unknown offset (unknown element of an array of objects).
|
|
//
|
|
if (offset == Type::OffsetBot) {
|
|
uint e_cnt = ptn->edge_count();
|
|
for (uint ei = 0; ei < e_cnt; ei++) {
|
|
uint npi = ptn->edge_target(ei);
|
|
set_escape_state(npi, PointsToNode::ArgEscape);
|
|
ptnode_adr(npi)->_scalar_replaceable = false;
|
|
}
|
|
}
|
|
|
|
// Currently an object is not scalar replaceable if a LoadStore node
|
|
// access its field since the field value is unknown after it.
|
|
//
|
|
bool has_LoadStore = false;
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node *use = n->fast_out(i);
|
|
if (use->is_LoadStore()) {
|
|
has_LoadStore = true;
|
|
break;
|
|
}
|
|
}
|
|
// An object is not scalar replaceable if the address points
|
|
// to unknown field (unknown element for arrays, offset is OffsetBot).
|
|
//
|
|
// Or the address may point to more then one object. This may produce
|
|
// the false positive result (set scalar_replaceable to false)
|
|
// since the flow-insensitive escape analysis can't separate
|
|
// the case when stores overwrite the field's value from the case
|
|
// when stores happened on different control branches.
|
|
//
|
|
if (ptset_size > 1 || ptset_size != 0 &&
|
|
(has_LoadStore || offset == Type::OffsetBot)) {
|
|
for( VectorSetI j(&ptset); j.test(); ++j ) {
|
|
set_escape_state(j.elem, PointsToNode::ArgEscape);
|
|
ptnode_adr(j.elem)->_scalar_replaceable = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
|
|
|
|
switch (call->Opcode()) {
|
|
#ifdef ASSERT
|
|
case Op_Allocate:
|
|
case Op_AllocateArray:
|
|
case Op_Lock:
|
|
case Op_Unlock:
|
|
assert(false, "should be done already");
|
|
break;
|
|
#endif
|
|
case Op_CallLeaf:
|
|
case Op_CallLeafNoFP:
|
|
{
|
|
// Stub calls, objects do not escape but they are not scale replaceable.
|
|
// Adjust escape state for outgoing arguments.
|
|
const TypeTuple * d = call->tf()->domain();
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
Node *arg = call->in(i)->uncast();
|
|
const Type *aat = phase->type(arg);
|
|
if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
|
|
ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
|
|
|
|
assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
|
|
aat->isa_ptr() != NULL, "expecting an Ptr");
|
|
#ifdef ASSERT
|
|
if (!(call->Opcode() == Op_CallLeafNoFP &&
|
|
call->as_CallLeaf()->_name != NULL &&
|
|
(strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
|
|
call->as_CallLeaf()->_name != NULL &&
|
|
(strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
|
|
strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
|
|
) {
|
|
call->dump();
|
|
assert(false, "EA: unexpected CallLeaf");
|
|
}
|
|
#endif
|
|
set_escape_state(arg->_idx, PointsToNode::ArgEscape);
|
|
if (arg->is_AddP()) {
|
|
//
|
|
// The inline_native_clone() case when the arraycopy stub is called
|
|
// after the allocation before Initialize and CheckCastPP nodes.
|
|
//
|
|
// Set AddP's base (Allocate) as not scalar replaceable since
|
|
// pointer to the base (with offset) is passed as argument.
|
|
//
|
|
arg = get_addp_base(arg);
|
|
}
|
|
ptset.Clear();
|
|
PointsTo(ptset, arg);
|
|
for( VectorSetI j(&ptset); j.test(); ++j ) {
|
|
uint pt = j.elem;
|
|
set_escape_state(pt, PointsToNode::ArgEscape);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Op_CallStaticJava:
|
|
// For a static call, we know exactly what method is being called.
|
|
// Use bytecode estimator to record the call's escape affects
|
|
{
|
|
ciMethod *meth = call->as_CallJava()->method();
|
|
BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
|
|
// fall-through if not a Java method or no analyzer information
|
|
if (call_analyzer != NULL) {
|
|
const TypeTuple * d = call->tf()->domain();
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
bool copy_dependencies = false;
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
int k = i - TypeFunc::Parms;
|
|
Node *arg = call->in(i)->uncast();
|
|
|
|
if (at->isa_oopptr() != NULL &&
|
|
ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
|
|
|
|
bool global_escapes = false;
|
|
bool fields_escapes = false;
|
|
if (!call_analyzer->is_arg_stack(k)) {
|
|
// The argument global escapes, mark everything it could point to
|
|
set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
|
|
global_escapes = true;
|
|
} else {
|
|
if (!call_analyzer->is_arg_local(k)) {
|
|
// The argument itself doesn't escape, but any fields might
|
|
fields_escapes = true;
|
|
}
|
|
set_escape_state(arg->_idx, PointsToNode::ArgEscape);
|
|
copy_dependencies = true;
|
|
}
|
|
|
|
ptset.Clear();
|
|
PointsTo(ptset, arg);
|
|
for( VectorSetI j(&ptset); j.test(); ++j ) {
|
|
uint pt = j.elem;
|
|
if (global_escapes) {
|
|
//The argument global escapes, mark everything it could point to
|
|
set_escape_state(pt, PointsToNode::GlobalEscape);
|
|
} else {
|
|
if (fields_escapes) {
|
|
// The argument itself doesn't escape, but any fields might
|
|
add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
|
|
}
|
|
set_escape_state(pt, PointsToNode::ArgEscape);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (copy_dependencies)
|
|
call_analyzer->copy_dependencies(_compile->dependencies());
|
|
break;
|
|
}
|
|
}
|
|
|
|
default:
|
|
// Fall-through here if not a Java method or no analyzer information
|
|
// or some other type of call, assume the worst case: all arguments
|
|
// globally escape.
|
|
{
|
|
// adjust escape state for outgoing arguments
|
|
const TypeTuple * d = call->tf()->domain();
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
if (at->isa_oopptr() != NULL) {
|
|
Node *arg = call->in(i)->uncast();
|
|
set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
|
|
ptset.Clear();
|
|
PointsTo(ptset, arg);
|
|
for( VectorSetI j(&ptset); j.test(); ++j ) {
|
|
uint pt = j.elem;
|
|
set_escape_state(pt, PointsToNode::GlobalEscape);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
|
|
CallNode *call = resproj->in(0)->as_Call();
|
|
uint call_idx = call->_idx;
|
|
uint resproj_idx = resproj->_idx;
|
|
|
|
switch (call->Opcode()) {
|
|
case Op_Allocate:
|
|
{
|
|
Node *k = call->in(AllocateNode::KlassNode);
|
|
const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
|
|
assert(kt != NULL, "TypeKlassPtr required.");
|
|
ciKlass* cik = kt->klass();
|
|
|
|
PointsToNode::EscapeState es;
|
|
uint edge_to;
|
|
if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
|
|
!cik->is_instance_klass() || // StressReflectiveCode
|
|
cik->as_instance_klass()->has_finalizer()) {
|
|
es = PointsToNode::GlobalEscape;
|
|
edge_to = _phantom_object; // Could not be worse
|
|
} else {
|
|
es = PointsToNode::NoEscape;
|
|
edge_to = call_idx;
|
|
}
|
|
set_escape_state(call_idx, es);
|
|
add_pointsto_edge(resproj_idx, edge_to);
|
|
_processed.set(resproj_idx);
|
|
break;
|
|
}
|
|
|
|
case Op_AllocateArray:
|
|
{
|
|
|
|
Node *k = call->in(AllocateNode::KlassNode);
|
|
const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
|
|
assert(kt != NULL, "TypeKlassPtr required.");
|
|
ciKlass* cik = kt->klass();
|
|
|
|
PointsToNode::EscapeState es;
|
|
uint edge_to;
|
|
if (!cik->is_array_klass()) { // StressReflectiveCode
|
|
es = PointsToNode::GlobalEscape;
|
|
edge_to = _phantom_object;
|
|
} else {
|
|
es = PointsToNode::NoEscape;
|
|
edge_to = call_idx;
|
|
int length = call->in(AllocateNode::ALength)->find_int_con(-1);
|
|
if (length < 0 || length > EliminateAllocationArraySizeLimit) {
|
|
// Not scalar replaceable if the length is not constant or too big.
|
|
ptnode_adr(call_idx)->_scalar_replaceable = false;
|
|
}
|
|
}
|
|
set_escape_state(call_idx, es);
|
|
add_pointsto_edge(resproj_idx, edge_to);
|
|
_processed.set(resproj_idx);
|
|
break;
|
|
}
|
|
|
|
case Op_CallStaticJava:
|
|
// For a static call, we know exactly what method is being called.
|
|
// Use bytecode estimator to record whether the call's return value escapes
|
|
{
|
|
bool done = true;
|
|
const TypeTuple *r = call->tf()->range();
|
|
const Type* ret_type = NULL;
|
|
|
|
if (r->cnt() > TypeFunc::Parms)
|
|
ret_type = r->field_at(TypeFunc::Parms);
|
|
|
|
// Note: we use isa_ptr() instead of isa_oopptr() here because the
|
|
// _multianewarray functions return a TypeRawPtr.
|
|
if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
|
|
_processed.set(resproj_idx);
|
|
break; // doesn't return a pointer type
|
|
}
|
|
ciMethod *meth = call->as_CallJava()->method();
|
|
const TypeTuple * d = call->tf()->domain();
|
|
if (meth == NULL) {
|
|
// not a Java method, assume global escape
|
|
set_escape_state(call_idx, PointsToNode::GlobalEscape);
|
|
add_pointsto_edge(resproj_idx, _phantom_object);
|
|
} else {
|
|
BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
|
|
bool copy_dependencies = false;
|
|
|
|
if (call_analyzer->is_return_allocated()) {
|
|
// Returns a newly allocated unescaped object, simply
|
|
// update dependency information.
|
|
// Mark it as NoEscape so that objects referenced by
|
|
// it's fields will be marked as NoEscape at least.
|
|
set_escape_state(call_idx, PointsToNode::NoEscape);
|
|
add_pointsto_edge(resproj_idx, call_idx);
|
|
copy_dependencies = true;
|
|
} else if (call_analyzer->is_return_local()) {
|
|
// determine whether any arguments are returned
|
|
set_escape_state(call_idx, PointsToNode::NoEscape);
|
|
bool ret_arg = false;
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
|
|
if (at->isa_oopptr() != NULL) {
|
|
Node *arg = call->in(i)->uncast();
|
|
|
|
if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
|
|
ret_arg = true;
|
|
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
|
|
if (arg_esp->node_type() == PointsToNode::UnknownType)
|
|
done = false;
|
|
else if (arg_esp->node_type() == PointsToNode::JavaObject)
|
|
add_pointsto_edge(resproj_idx, arg->_idx);
|
|
else
|
|
add_deferred_edge(resproj_idx, arg->_idx);
|
|
arg_esp->_hidden_alias = true;
|
|
}
|
|
}
|
|
}
|
|
if (done && !ret_arg) {
|
|
// Returns unknown object.
|
|
set_escape_state(call_idx, PointsToNode::GlobalEscape);
|
|
add_pointsto_edge(resproj_idx, _phantom_object);
|
|
}
|
|
copy_dependencies = true;
|
|
} else {
|
|
set_escape_state(call_idx, PointsToNode::GlobalEscape);
|
|
add_pointsto_edge(resproj_idx, _phantom_object);
|
|
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
|
|
const Type* at = d->field_at(i);
|
|
if (at->isa_oopptr() != NULL) {
|
|
Node *arg = call->in(i)->uncast();
|
|
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
|
|
arg_esp->_hidden_alias = true;
|
|
}
|
|
}
|
|
}
|
|
if (copy_dependencies)
|
|
call_analyzer->copy_dependencies(_compile->dependencies());
|
|
}
|
|
if (done)
|
|
_processed.set(resproj_idx);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Some other type of call, assume the worst case that the
|
|
// returned value, if any, globally escapes.
|
|
{
|
|
const TypeTuple *r = call->tf()->range();
|
|
if (r->cnt() > TypeFunc::Parms) {
|
|
const Type* ret_type = r->field_at(TypeFunc::Parms);
|
|
|
|
// Note: we use isa_ptr() instead of isa_oopptr() here because the
|
|
// _multianewarray functions return a TypeRawPtr.
|
|
if (ret_type->isa_ptr() != NULL) {
|
|
set_escape_state(call_idx, PointsToNode::GlobalEscape);
|
|
add_pointsto_edge(resproj_idx, _phantom_object);
|
|
}
|
|
}
|
|
_processed.set(resproj_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Populate Connection Graph with Ideal nodes and create simple
|
|
// connection graph edges (do not need to check the node_type of inputs
|
|
// or to call PointsTo() to walk the connection graph).
|
|
void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
|
|
if (_processed.test(n->_idx))
|
|
return; // No need to redefine node's state.
|
|
|
|
if (n->is_Call()) {
|
|
// Arguments to allocation and locking don't escape.
|
|
if (n->is_Allocate()) {
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
|
|
record_for_optimizer(n);
|
|
} else if (n->is_Lock() || n->is_Unlock()) {
|
|
// Put Lock and Unlock nodes on IGVN worklist to process them during
|
|
// the first IGVN optimization when escape information is still available.
|
|
record_for_optimizer(n);
|
|
_processed.set(n->_idx);
|
|
} else {
|
|
// Don't mark as processed since call's arguments have to be processed.
|
|
PointsToNode::NodeType nt = PointsToNode::UnknownType;
|
|
PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
|
|
|
|
// Check if a call returns an object.
|
|
const TypeTuple *r = n->as_Call()->tf()->range();
|
|
if (r->cnt() > TypeFunc::Parms &&
|
|
r->field_at(TypeFunc::Parms)->isa_ptr() &&
|
|
n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
|
|
nt = PointsToNode::JavaObject;
|
|
if (!n->is_CallStaticJava()) {
|
|
// Since the called mathod is statically unknown assume
|
|
// the worst case that the returned value globally escapes.
|
|
es = PointsToNode::GlobalEscape;
|
|
}
|
|
}
|
|
add_node(n, nt, es, false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
|
|
// ThreadLocal has RawPrt type.
|
|
switch (n->Opcode()) {
|
|
case Op_AddP:
|
|
{
|
|
add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
|
|
break;
|
|
}
|
|
case Op_CastX2P:
|
|
{ // "Unsafe" memory access.
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
case Op_CheckCastPP:
|
|
case Op_EncodeP:
|
|
case Op_DecodeN:
|
|
{
|
|
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
|
|
int ti = n->in(1)->_idx;
|
|
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
|
|
if (nt == PointsToNode::UnknownType) {
|
|
_delayed_worklist.push(n); // Process it later.
|
|
break;
|
|
} else if (nt == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n->_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n->_idx, ti);
|
|
}
|
|
_processed.set(n->_idx);
|
|
break;
|
|
}
|
|
case Op_ConP:
|
|
{
|
|
// assume all pointer constants globally escape except for null
|
|
PointsToNode::EscapeState es;
|
|
if (phase->type(n) == TypePtr::NULL_PTR)
|
|
es = PointsToNode::NoEscape;
|
|
else
|
|
es = PointsToNode::GlobalEscape;
|
|
|
|
add_node(n, PointsToNode::JavaObject, es, true);
|
|
break;
|
|
}
|
|
case Op_ConN:
|
|
{
|
|
// assume all narrow oop constants globally escape except for null
|
|
PointsToNode::EscapeState es;
|
|
if (phase->type(n) == TypeNarrowOop::NULL_PTR)
|
|
es = PointsToNode::NoEscape;
|
|
else
|
|
es = PointsToNode::GlobalEscape;
|
|
|
|
add_node(n, PointsToNode::JavaObject, es, true);
|
|
break;
|
|
}
|
|
case Op_CreateEx:
|
|
{
|
|
// assume that all exception objects globally escape
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
|
|
break;
|
|
}
|
|
case Op_LoadKlass:
|
|
case Op_LoadNKlass:
|
|
{
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
|
|
break;
|
|
}
|
|
case Op_LoadP:
|
|
case Op_LoadN:
|
|
{
|
|
const Type *t = phase->type(n);
|
|
if (t->make_ptr() == NULL) {
|
|
_processed.set(n->_idx);
|
|
return;
|
|
}
|
|
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
|
|
break;
|
|
}
|
|
case Op_Parm:
|
|
{
|
|
_processed.set(n->_idx); // No need to redefine it state.
|
|
uint con = n->as_Proj()->_con;
|
|
if (con < TypeFunc::Parms)
|
|
return;
|
|
const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
|
|
if (t->isa_ptr() == NULL)
|
|
return;
|
|
// We have to assume all input parameters globally escape
|
|
// (Note: passing 'false' since _processed is already set).
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
|
|
break;
|
|
}
|
|
case Op_Phi:
|
|
{
|
|
const Type *t = n->as_Phi()->type();
|
|
if (t->make_ptr() == NULL) {
|
|
// nothing to do if not an oop or narrow oop
|
|
_processed.set(n->_idx);
|
|
return;
|
|
}
|
|
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
|
|
uint i;
|
|
for (i = 1; i < n->req() ; i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL)
|
|
continue; // ignore NULL
|
|
in = in->uncast();
|
|
if (in->is_top() || in == n)
|
|
continue; // ignore top or inputs which go back this node
|
|
int ti = in->_idx;
|
|
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
|
|
if (nt == PointsToNode::UnknownType) {
|
|
break;
|
|
} else if (nt == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n->_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n->_idx, ti);
|
|
}
|
|
}
|
|
if (i >= n->req())
|
|
_processed.set(n->_idx);
|
|
else
|
|
_delayed_worklist.push(n);
|
|
break;
|
|
}
|
|
case Op_Proj:
|
|
{
|
|
// we are only interested in the oop result projection from a call
|
|
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
|
|
const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
|
|
assert(r->cnt() > TypeFunc::Parms, "sanity");
|
|
if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
|
|
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
|
|
int ti = n->in(0)->_idx;
|
|
// The call may not be registered yet (since not all its inputs are registered)
|
|
// if this is the projection from backbranch edge of Phi.
|
|
if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
|
|
process_call_result(n->as_Proj(), phase);
|
|
}
|
|
if (!_processed.test(n->_idx)) {
|
|
// The call's result may need to be processed later if the call
|
|
// returns it's argument and the argument is not processed yet.
|
|
_delayed_worklist.push(n);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
_processed.set(n->_idx);
|
|
break;
|
|
}
|
|
case Op_Return:
|
|
{
|
|
if( n->req() > TypeFunc::Parms &&
|
|
phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
|
|
// Treat Return value as LocalVar with GlobalEscape escape state.
|
|
add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
|
|
int ti = n->in(TypeFunc::Parms)->_idx;
|
|
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
|
|
if (nt == PointsToNode::UnknownType) {
|
|
_delayed_worklist.push(n); // Process it later.
|
|
break;
|
|
} else if (nt == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n->_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n->_idx, ti);
|
|
}
|
|
}
|
|
_processed.set(n->_idx);
|
|
break;
|
|
}
|
|
case Op_StoreP:
|
|
case Op_StoreN:
|
|
{
|
|
const Type *adr_type = phase->type(n->in(MemNode::Address));
|
|
adr_type = adr_type->make_ptr();
|
|
if (adr_type->isa_oopptr()) {
|
|
add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
|
|
} else {
|
|
Node* adr = n->in(MemNode::Address);
|
|
if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
|
|
adr->in(AddPNode::Address)->is_Proj() &&
|
|
adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
|
|
add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
|
|
// We are computing a raw address for a store captured
|
|
// by an Initialize compute an appropriate address type.
|
|
int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
|
|
assert(offs != Type::OffsetBot, "offset must be a constant");
|
|
} else {
|
|
_processed.set(n->_idx);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Op_StorePConditional:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN:
|
|
{
|
|
const Type *adr_type = phase->type(n->in(MemNode::Address));
|
|
adr_type = adr_type->make_ptr();
|
|
if (adr_type->isa_oopptr()) {
|
|
add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
|
|
} else {
|
|
_processed.set(n->_idx);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Op_AryEq:
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
{
|
|
// char[] arrays passed to string intrinsics are not scalar replaceable.
|
|
add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
|
|
break;
|
|
}
|
|
case Op_ThreadLocal:
|
|
{
|
|
add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
|
|
break;
|
|
}
|
|
default:
|
|
;
|
|
// nothing to do
|
|
}
|
|
return;
|
|
}
|
|
|
|
void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
|
|
uint n_idx = n->_idx;
|
|
assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
|
|
|
|
// Don't set processed bit for AddP, LoadP, StoreP since
|
|
// they may need more then one pass to process.
|
|
// Also don't mark as processed Call nodes since their
|
|
// arguments may need more then one pass to process.
|
|
if (_processed.test(n_idx))
|
|
return; // No need to redefine node's state.
|
|
|
|
if (n->is_Call()) {
|
|
CallNode *call = n->as_Call();
|
|
process_call_arguments(call, phase);
|
|
return;
|
|
}
|
|
|
|
switch (n->Opcode()) {
|
|
case Op_AddP:
|
|
{
|
|
Node *base = get_addp_base(n);
|
|
// Create a field edge to this node from everything base could point to.
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
PointsTo(ptset, base);
|
|
for( VectorSetI i(&ptset); i.test(); ++i ) {
|
|
uint pt = i.elem;
|
|
add_field_edge(pt, n_idx, address_offset(n, phase));
|
|
}
|
|
break;
|
|
}
|
|
case Op_CastX2P:
|
|
{
|
|
assert(false, "Op_CastX2P");
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
case Op_CheckCastPP:
|
|
case Op_EncodeP:
|
|
case Op_DecodeN:
|
|
{
|
|
int ti = n->in(1)->_idx;
|
|
assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
|
|
if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n_idx, ti);
|
|
}
|
|
_processed.set(n_idx);
|
|
break;
|
|
}
|
|
case Op_ConP:
|
|
{
|
|
assert(false, "Op_ConP");
|
|
break;
|
|
}
|
|
case Op_ConN:
|
|
{
|
|
assert(false, "Op_ConN");
|
|
break;
|
|
}
|
|
case Op_CreateEx:
|
|
{
|
|
assert(false, "Op_CreateEx");
|
|
break;
|
|
}
|
|
case Op_LoadKlass:
|
|
case Op_LoadNKlass:
|
|
{
|
|
assert(false, "Op_LoadKlass");
|
|
break;
|
|
}
|
|
case Op_LoadP:
|
|
case Op_LoadN:
|
|
{
|
|
const Type *t = phase->type(n);
|
|
#ifdef ASSERT
|
|
if (t->make_ptr() == NULL)
|
|
assert(false, "Op_LoadP");
|
|
#endif
|
|
|
|
Node* adr = n->in(MemNode::Address)->uncast();
|
|
Node* adr_base;
|
|
if (adr->is_AddP()) {
|
|
adr_base = get_addp_base(adr);
|
|
} else {
|
|
adr_base = adr;
|
|
}
|
|
|
|
// For everything "adr_base" could point to, create a deferred edge from
|
|
// this node to each field with the same offset.
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
PointsTo(ptset, adr_base);
|
|
int offset = address_offset(adr, phase);
|
|
for( VectorSetI i(&ptset); i.test(); ++i ) {
|
|
uint pt = i.elem;
|
|
add_deferred_edge_to_fields(n_idx, pt, offset);
|
|
}
|
|
break;
|
|
}
|
|
case Op_Parm:
|
|
{
|
|
assert(false, "Op_Parm");
|
|
break;
|
|
}
|
|
case Op_Phi:
|
|
{
|
|
#ifdef ASSERT
|
|
const Type *t = n->as_Phi()->type();
|
|
if (t->make_ptr() == NULL)
|
|
assert(false, "Op_Phi");
|
|
#endif
|
|
for (uint i = 1; i < n->req() ; i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL)
|
|
continue; // ignore NULL
|
|
in = in->uncast();
|
|
if (in->is_top() || in == n)
|
|
continue; // ignore top or inputs which go back this node
|
|
int ti = in->_idx;
|
|
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
|
|
assert(nt != PointsToNode::UnknownType, "all nodes should be known");
|
|
if (nt == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n_idx, ti);
|
|
}
|
|
}
|
|
_processed.set(n_idx);
|
|
break;
|
|
}
|
|
case Op_Proj:
|
|
{
|
|
// we are only interested in the oop result projection from a call
|
|
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
|
|
assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
|
|
"all nodes should be registered");
|
|
const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
|
|
assert(r->cnt() > TypeFunc::Parms, "sanity");
|
|
if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
|
|
process_call_result(n->as_Proj(), phase);
|
|
assert(_processed.test(n_idx), "all call results should be processed");
|
|
break;
|
|
}
|
|
}
|
|
assert(false, "Op_Proj");
|
|
break;
|
|
}
|
|
case Op_Return:
|
|
{
|
|
#ifdef ASSERT
|
|
if( n->req() <= TypeFunc::Parms ||
|
|
!phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
|
|
assert(false, "Op_Return");
|
|
}
|
|
#endif
|
|
int ti = n->in(TypeFunc::Parms)->_idx;
|
|
assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
|
|
if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
|
|
add_pointsto_edge(n_idx, ti);
|
|
} else {
|
|
add_deferred_edge(n_idx, ti);
|
|
}
|
|
_processed.set(n_idx);
|
|
break;
|
|
}
|
|
case Op_StoreP:
|
|
case Op_StoreN:
|
|
case Op_StorePConditional:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN:
|
|
{
|
|
Node *adr = n->in(MemNode::Address);
|
|
const Type *adr_type = phase->type(adr)->make_ptr();
|
|
#ifdef ASSERT
|
|
if (!adr_type->isa_oopptr())
|
|
assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
|
|
#endif
|
|
|
|
assert(adr->is_AddP(), "expecting an AddP");
|
|
Node *adr_base = get_addp_base(adr);
|
|
Node *val = n->in(MemNode::ValueIn)->uncast();
|
|
// For everything "adr_base" could point to, create a deferred edge
|
|
// to "val" from each field with the same offset.
|
|
VectorSet ptset(Thread::current()->resource_area());
|
|
PointsTo(ptset, adr_base);
|
|
for( VectorSetI i(&ptset); i.test(); ++i ) {
|
|
uint pt = i.elem;
|
|
add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
|
|
}
|
|
break;
|
|
}
|
|
case Op_AryEq:
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
{
|
|
// char[] arrays passed to string intrinsic do not escape but
|
|
// they are not scalar replaceable. Adjust escape state for them.
|
|
// Start from in(2) edge since in(1) is memory edge.
|
|
for (uint i = 2; i < n->req(); i++) {
|
|
Node* adr = n->in(i)->uncast();
|
|
const Type *at = phase->type(adr);
|
|
if (!adr->is_top() && at->isa_ptr()) {
|
|
assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
|
|
at->isa_ptr() != NULL, "expecting an Ptr");
|
|
if (adr->is_AddP()) {
|
|
adr = get_addp_base(adr);
|
|
}
|
|
// Mark as ArgEscape everything "adr" could point to.
|
|
set_escape_state(adr->_idx, PointsToNode::ArgEscape);
|
|
}
|
|
}
|
|
_processed.set(n_idx);
|
|
break;
|
|
}
|
|
case Op_ThreadLocal:
|
|
{
|
|
assert(false, "Op_ThreadLocal");
|
|
break;
|
|
}
|
|
default:
|
|
// This method should be called only for EA specific nodes.
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void ConnectionGraph::dump() {
|
|
bool first = true;
|
|
|
|
uint size = nodes_size();
|
|
for (uint ni = 0; ni < size; ni++) {
|
|
PointsToNode *ptn = ptnode_adr(ni);
|
|
PointsToNode::NodeType ptn_type = ptn->node_type();
|
|
|
|
if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
|
|
continue;
|
|
PointsToNode::EscapeState es = escape_state(ptn->_node);
|
|
if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
|
|
if (first) {
|
|
tty->cr();
|
|
tty->print("======== Connection graph for ");
|
|
_compile->method()->print_short_name();
|
|
tty->cr();
|
|
first = false;
|
|
}
|
|
tty->print("%6d ", ni);
|
|
ptn->dump();
|
|
// Print all locals which reference this allocation
|
|
for (uint li = ni; li < size; li++) {
|
|
PointsToNode *ptn_loc = ptnode_adr(li);
|
|
PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
|
|
if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
|
|
ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
|
|
ptnode_adr(li)->dump(false);
|
|
}
|
|
}
|
|
if (Verbose) {
|
|
// Print all fields which reference this allocation
|
|
for (uint i = 0; i < ptn->edge_count(); i++) {
|
|
uint ei = ptn->edge_target(i);
|
|
ptnode_adr(ei)->dump(false);
|
|
}
|
|
}
|
|
tty->cr();
|
|
}
|
|
}
|
|
}
|
|
#endif
|