jdk-24/src/hotspot/cpu/sparc/vm_version_ext_sparc.cpp
John Paul Adrian Glaubitz c2265fb70b 8203301: Linux-sparc fails to build after JDK-8199712 (Flight Recorder)
Reviewed-by: kvn, thartmann
2018-06-13 10:34:51 +02:00

196 lines
5.8 KiB
C++

/*
* Copyright (c) 2013, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "jvm.h"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "vm_version_ext_sparc.hpp"
// VM_Version_Ext statics
int VM_Version_Ext::_no_of_threads = 0;
int VM_Version_Ext::_no_of_cores = 0;
int VM_Version_Ext::_no_of_sockets = 0;
#if defined(SOLARIS)
kid_t VM_Version_Ext::_kcid = -1;
#endif
char VM_Version_Ext::_cpu_name[CPU_TYPE_DESC_BUF_SIZE] = {0};
char VM_Version_Ext::_cpu_desc[CPU_DETAILED_DESC_BUF_SIZE] = {0};
#if defined(SOLARIS)
// get cpu information. It takes into account if the kstat chain id
// has been changed and update the info if necessary.
bool VM_Version_Ext::initialize_cpu_information(void) {
int core_id = -1;
int chip_id = -1;
int len = 0;
char* src_string = NULL;
kstat_ctl_t* kc = kstat_open();
if (!kc) {
return false;
}
// check if kstat chain has been updated
kid_t kcid = kstat_chain_update(kc);
if (kcid == -1) {
kstat_close(kc);
return false;
}
bool updated = ((kcid > 0) && (kcid != _kcid)) ||
((kcid == 0) && (_kcid == -1));
if (!updated) {
kstat_close(kc);
return true;
}
// update the cached _kcid
_kcid = kcid;
// find the number of online processors
// for modern processsors, it is also known as the
// hardware threads.
_no_of_threads = sysconf(_SC_NPROCESSORS_ONLN);
if (_no_of_threads <= 0 ) {
kstat_close(kc);
return false;
}
_no_of_cores = 0;
_no_of_sockets = 0;
// loop through the kstat chain
kstat_t* ksp = NULL;
for (ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
// only interested in "cpu_info"
if (strcmp(ksp->ks_module, (char*)CPU_INFO) == 0) {
if (kstat_read(kc, ksp, NULL) == -1) {
kstat_close(kc);
return false;
}
if (ksp->ks_data != NULL) {
kstat_named_t* knm = (kstat_named_t *)ksp->ks_data;
// loop through the number of fields in each record
for (int i = 0; i < ksp->ks_ndata; i++) {
// set cpu type if it hasn't been already set
if ((strcmp((const char*)&(knm[i].name), CPU_TYPE) == 0) &&
(_cpu_name[0] == '\0')) {
if (knm[i].data_type == KSTAT_DATA_STRING) {
src_string = (char*)KSTAT_NAMED_STR_PTR(&knm[i]);
} else {
src_string = (char*)&(knm[i].value.c[0]);
}
len = strlen(src_string);
if (len < CPU_TYPE_DESC_BUF_SIZE) {
jio_snprintf(_cpu_name, CPU_TYPE_DESC_BUF_SIZE,
"%s", src_string);
}
}
// set cpu description if it hasn't been already set
if ((strcmp((const char*)&(knm[i].name), CPU_DESCRIPTION) == 0) &&
(_cpu_desc[0] == '\0')) {
if (knm[i].data_type == KSTAT_DATA_STRING) {
src_string = (char*)KSTAT_NAMED_STR_PTR(&knm[i]);
} else {
src_string = (char*)&(knm[i].value.c[0]);
}
len = strlen(src_string);
if (len < CPU_DETAILED_DESC_BUF_SIZE) {
jio_snprintf(_cpu_desc, CPU_DETAILED_DESC_BUF_SIZE,
"%s", src_string);
}
}
// count the number of sockets based on the chip id
if (strcmp((const char*)&(knm[i].name), CHIP_ID) == 0) {
if (chip_id != knm[i].value.l) {
chip_id = knm[i].value.l;
_no_of_sockets++;
}
}
// count the number of cores based on the core id
if (strcmp((const char*)&(knm[i].name), CORE_ID) == 0) {
if (core_id != knm[i].value.l) {
core_id = knm[i].value.l;
_no_of_cores++;
}
}
}
}
}
}
kstat_close(kc);
return true;
}
#elif defined(LINUX)
// get cpu information.
bool VM_Version_Ext::initialize_cpu_information(void) {
// Not yet implemented.
return false;
}
#endif
int VM_Version_Ext::number_of_threads(void) {
initialize_cpu_information();
return _no_of_threads;
}
int VM_Version_Ext::number_of_cores(void) {
initialize_cpu_information();
return _no_of_cores;
}
int VM_Version_Ext::number_of_sockets(void) {
initialize_cpu_information();
return _no_of_sockets;
}
const char* VM_Version_Ext::cpu_name(void) {
if (!initialize_cpu_information()) {
return NULL;
}
char* tmp = NEW_C_HEAP_ARRAY_RETURN_NULL(char, CPU_TYPE_DESC_BUF_SIZE, mtTracing);
if (NULL == tmp) {
return NULL;
}
strncpy(tmp, _cpu_name, CPU_TYPE_DESC_BUF_SIZE);
return tmp;
}
const char* VM_Version_Ext::cpu_description(void) {
if (!initialize_cpu_information()) {
return NULL;
}
char* tmp = NEW_C_HEAP_ARRAY_RETURN_NULL(char, CPU_DETAILED_DESC_BUF_SIZE, mtTracing);
if (NULL == tmp) {
return NULL;
}
strncpy(tmp, _cpu_desc, CPU_DETAILED_DESC_BUF_SIZE);
return tmp;
}