Igor Veresov 8c764e214c 6484957: G1: parallel concurrent refinement
6826318: G1: remove traversal-based refinement code

Removed traversal-based refinement code as it's no longer used. Made the concurrent refinement (queue-based) parallel.

Reviewed-by: tonyp
2009-05-11 16:30:56 -07:00

309 lines
10 KiB
C++

/*
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_dirtyCardQueue.cpp.incl"
bool DirtyCardQueue::apply_closure(CardTableEntryClosure* cl,
bool consume,
size_t worker_i) {
bool res = true;
if (_buf != NULL) {
res = apply_closure_to_buffer(cl, _buf, _index, _sz,
consume,
(int) worker_i);
if (res && consume) _index = _sz;
}
return res;
}
bool DirtyCardQueue::apply_closure_to_buffer(CardTableEntryClosure* cl,
void** buf,
size_t index, size_t sz,
bool consume,
int worker_i) {
if (cl == NULL) return true;
for (size_t i = index; i < sz; i += oopSize) {
int ind = byte_index_to_index((int)i);
jbyte* card_ptr = (jbyte*)buf[ind];
if (card_ptr != NULL) {
// Set the entry to null, so we don't do it again (via the test
// above) if we reconsider this buffer.
if (consume) buf[ind] = NULL;
if (!cl->do_card_ptr(card_ptr, worker_i)) return false;
}
}
return true;
}
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER
DirtyCardQueueSet::DirtyCardQueueSet() :
PtrQueueSet(true /*notify_when_complete*/),
_closure(NULL),
_shared_dirty_card_queue(this, true /*perm*/),
_free_ids(NULL),
_processed_buffers_mut(0), _processed_buffers_rs_thread(0)
{
_all_active = true;
}
size_t DirtyCardQueueSet::num_par_ids() {
return MAX2(ParallelGCThreads, (size_t)2);
}
void DirtyCardQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock,
int max_completed_queue,
Mutex* lock, PtrQueueSet* fl_owner) {
PtrQueueSet::initialize(cbl_mon, fl_lock, max_completed_queue, fl_owner);
set_buffer_size(DCQBarrierQueueBufferSize);
set_process_completed_threshold(DCQBarrierProcessCompletedThreshold);
_shared_dirty_card_queue.set_lock(lock);
_free_ids = new FreeIdSet((int) num_par_ids(), _cbl_mon);
bool b = _free_ids->claim_perm_id(0);
guarantee(b, "Must reserve id zero for concurrent refinement thread.");
}
void DirtyCardQueueSet::handle_zero_index_for_thread(JavaThread* t) {
t->dirty_card_queue().handle_zero_index();
}
void DirtyCardQueueSet::set_closure(CardTableEntryClosure* closure) {
_closure = closure;
}
void DirtyCardQueueSet::iterate_closure_all_threads(bool consume,
size_t worker_i) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
for(JavaThread* t = Threads::first(); t; t = t->next()) {
bool b = t->dirty_card_queue().apply_closure(_closure, consume);
guarantee(b, "Should not be interrupted.");
}
bool b = shared_dirty_card_queue()->apply_closure(_closure,
consume,
worker_i);
guarantee(b, "Should not be interrupted.");
}
bool DirtyCardQueueSet::mut_process_buffer(void** buf) {
// Used to determine if we had already claimed a par_id
// before entering this method.
bool already_claimed = false;
// We grab the current JavaThread.
JavaThread* thread = JavaThread::current();
// We get the the number of any par_id that this thread
// might have already claimed.
int worker_i = thread->get_claimed_par_id();
// If worker_i is not -1 then the thread has already claimed
// a par_id. We make note of it using the already_claimed value
if (worker_i != -1) {
already_claimed = true;
} else {
// Otherwise we need to claim a par id
worker_i = _free_ids->claim_par_id();
// And store the par_id value in the thread
thread->set_claimed_par_id(worker_i);
}
bool b = false;
if (worker_i != -1) {
b = DirtyCardQueue::apply_closure_to_buffer(_closure, buf, 0,
_sz, true, worker_i);
if (b) Atomic::inc(&_processed_buffers_mut);
// If we had not claimed an id before entering the method
// then we must release the id.
if (!already_claimed) {
// we release the id
_free_ids->release_par_id(worker_i);
// and set the claimed_id in the thread to -1
thread->set_claimed_par_id(-1);
}
}
return b;
}
DirtyCardQueueSet::CompletedBufferNode*
DirtyCardQueueSet::get_completed_buffer_lock(int stop_at) {
CompletedBufferNode* nd = NULL;
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if ((int)_n_completed_buffers <= stop_at) {
_process_completed = false;
return NULL;
}
if (_completed_buffers_head != NULL) {
nd = _completed_buffers_head;
_completed_buffers_head = nd->next;
if (_completed_buffers_head == NULL)
_completed_buffers_tail = NULL;
_n_completed_buffers--;
}
debug_only(assert_completed_buffer_list_len_correct_locked());
return nd;
}
// We only do this in contexts where there is no concurrent enqueueing.
DirtyCardQueueSet::CompletedBufferNode*
DirtyCardQueueSet::get_completed_buffer_CAS() {
CompletedBufferNode* nd = _completed_buffers_head;
while (nd != NULL) {
CompletedBufferNode* next = nd->next;
CompletedBufferNode* result =
(CompletedBufferNode*)Atomic::cmpxchg_ptr(next,
&_completed_buffers_head,
nd);
if (result == nd) {
return result;
} else {
nd = _completed_buffers_head;
}
}
assert(_completed_buffers_head == NULL, "Loop post");
_completed_buffers_tail = NULL;
return NULL;
}
bool DirtyCardQueueSet::
apply_closure_to_completed_buffer_helper(int worker_i,
CompletedBufferNode* nd) {
if (nd != NULL) {
bool b =
DirtyCardQueue::apply_closure_to_buffer(_closure, nd->buf,
nd->index, _sz,
true, worker_i);
void** buf = nd->buf;
size_t index = nd->index;
delete nd;
if (b) {
deallocate_buffer(buf);
return true; // In normal case, go on to next buffer.
} else {
enqueue_complete_buffer(buf, index, true);
return false;
}
} else {
return false;
}
}
bool DirtyCardQueueSet::apply_closure_to_completed_buffer(int worker_i,
int stop_at,
bool with_CAS)
{
CompletedBufferNode* nd = NULL;
if (with_CAS) {
guarantee(stop_at == 0, "Precondition");
nd = get_completed_buffer_CAS();
} else {
nd = get_completed_buffer_lock(stop_at);
}
bool res = apply_closure_to_completed_buffer_helper(worker_i, nd);
if (res) Atomic::inc(&_processed_buffers_rs_thread);
return res;
}
void DirtyCardQueueSet::apply_closure_to_all_completed_buffers() {
CompletedBufferNode* nd = _completed_buffers_head;
while (nd != NULL) {
bool b =
DirtyCardQueue::apply_closure_to_buffer(_closure, nd->buf, 0, _sz,
false);
guarantee(b, "Should not stop early.");
nd = nd->next;
}
}
void DirtyCardQueueSet::abandon_logs() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
CompletedBufferNode* buffers_to_delete = NULL;
{
MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
while (_completed_buffers_head != NULL) {
CompletedBufferNode* nd = _completed_buffers_head;
_completed_buffers_head = nd->next;
nd->next = buffers_to_delete;
buffers_to_delete = nd;
}
_n_completed_buffers = 0;
_completed_buffers_tail = NULL;
debug_only(assert_completed_buffer_list_len_correct_locked());
}
while (buffers_to_delete != NULL) {
CompletedBufferNode* nd = buffers_to_delete;
buffers_to_delete = nd->next;
deallocate_buffer(nd->buf);
delete nd;
}
// Since abandon is done only at safepoints, we can safely manipulate
// these queues.
for (JavaThread* t = Threads::first(); t; t = t->next()) {
t->dirty_card_queue().reset();
}
shared_dirty_card_queue()->reset();
}
void DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
int save_max_completed_queue = _max_completed_queue;
_max_completed_queue = max_jint;
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
for (JavaThread* t = Threads::first(); t; t = t->next()) {
DirtyCardQueue& dcq = t->dirty_card_queue();
if (dcq.size() != 0) {
void **buf = t->dirty_card_queue().get_buf();
// We must NULL out the unused entries, then enqueue.
for (size_t i = 0; i < t->dirty_card_queue().get_index(); i += oopSize) {
buf[PtrQueue::byte_index_to_index((int)i)] = NULL;
}
enqueue_complete_buffer(dcq.get_buf(), dcq.get_index());
dcq.reinitialize();
}
}
if (_shared_dirty_card_queue.size() != 0) {
enqueue_complete_buffer(_shared_dirty_card_queue.get_buf(),
_shared_dirty_card_queue.get_index());
_shared_dirty_card_queue.reinitialize();
}
// Restore the completed buffer queue limit.
_max_completed_queue = save_max_completed_queue;
}