jdk-24/hotspot/src/cpu/x86/vm/vm_version_x86.hpp
Vladimir Kozlov b93ca70b9b Merge
2012-01-06 20:09:20 -08:00

660 lines
22 KiB
C++

/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_VM_VERSION_X86_HPP
#define CPU_X86_VM_VM_VERSION_X86_HPP
#include "runtime/globals_extension.hpp"
#include "runtime/vm_version.hpp"
class VM_Version : public Abstract_VM_Version {
public:
// cpuid result register layouts. These are all unions of a uint32_t
// (in case anyone wants access to the register as a whole) and a bitfield.
union StdCpuid1Eax {
uint32_t value;
struct {
uint32_t stepping : 4,
model : 4,
family : 4,
proc_type : 2,
: 2,
ext_model : 4,
ext_family : 8,
: 4;
} bits;
};
union StdCpuid1Ebx { // example, unused
uint32_t value;
struct {
uint32_t brand_id : 8,
clflush_size : 8,
threads_per_cpu : 8,
apic_id : 8;
} bits;
};
union StdCpuid1Ecx {
uint32_t value;
struct {
uint32_t sse3 : 1,
: 2,
monitor : 1,
: 1,
vmx : 1,
: 1,
est : 1,
: 1,
ssse3 : 1,
cid : 1,
: 2,
cmpxchg16: 1,
: 4,
dca : 1,
sse4_1 : 1,
sse4_2 : 1,
: 2,
popcnt : 1,
: 3,
osxsave : 1,
avx : 1,
: 3;
} bits;
};
union StdCpuid1Edx {
uint32_t value;
struct {
uint32_t : 4,
tsc : 1,
: 3,
cmpxchg8 : 1,
: 6,
cmov : 1,
: 3,
clflush : 1,
: 3,
mmx : 1,
fxsr : 1,
sse : 1,
sse2 : 1,
: 1,
ht : 1,
: 3;
} bits;
};
union DcpCpuid4Eax {
uint32_t value;
struct {
uint32_t cache_type : 5,
: 21,
cores_per_cpu : 6;
} bits;
};
union DcpCpuid4Ebx {
uint32_t value;
struct {
uint32_t L1_line_size : 12,
partitions : 10,
associativity : 10;
} bits;
};
union TplCpuidBEbx {
uint32_t value;
struct {
uint32_t logical_cpus : 16,
: 16;
} bits;
};
union ExtCpuid1Ecx {
uint32_t value;
struct {
uint32_t LahfSahf : 1,
CmpLegacy : 1,
: 4,
lzcnt : 1,
sse4a : 1,
misalignsse : 1,
prefetchw : 1,
: 22;
} bits;
};
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex {
uint32_t value;
struct {
uint32_t L1_line_size : 8,
L1_tag_lines : 8,
L1_assoc : 8,
L1_size : 8;
} bits;
};
union ExtCpuid7Edx {
uint32_t value;
struct {
uint32_t : 8,
tsc_invariance : 1,
: 23;
} bits;
};
union ExtCpuid8Ecx {
uint32_t value;
struct {
uint32_t cores_per_cpu : 8,
: 24;
} bits;
};
union SefCpuid7Eax {
uint32_t value;
};
union SefCpuid7Ebx {
uint32_t value;
struct {
uint32_t fsgsbase : 1,
: 2,
bmi1 : 1,
: 1,
avx2 : 1,
: 2,
bmi2 : 1,
: 23;
} bits;
};
union XemXcr0Eax {
uint32_t value;
struct {
uint32_t x87 : 1,
sse : 1,
ymm : 1,
: 29;
} bits;
};
protected:
static int _cpu;
static int _model;
static int _stepping;
static int _cpuFeatures; // features returned by the "cpuid" instruction
// 0 if this instruction is not available
static const char* _features_str;
enum {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1),
CPU_FXSR = (1 << 2),
CPU_HT = (1 << 3),
CPU_MMX = (1 << 4),
CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
// may not necessarily support other 3dnow instructions
CPU_SSE = (1 << 6),
CPU_SSE2 = (1 << 7),
CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
CPU_SSSE3 = (1 << 9),
CPU_SSE4A = (1 << 10),
CPU_SSE4_1 = (1 << 11),
CPU_SSE4_2 = (1 << 12),
CPU_POPCNT = (1 << 13),
CPU_LZCNT = (1 << 14),
CPU_TSC = (1 << 15),
CPU_TSCINV = (1 << 16),
CPU_AVX = (1 << 17),
CPU_AVX2 = (1 << 18)
} cpuFeatureFlags;
enum {
// AMD
CPU_FAMILY_AMD_11H = 17,
// Intel
CPU_FAMILY_INTEL_CORE = 6,
CPU_MODEL_NEHALEM_EP = 26,
CPU_MODEL_WESTMERE_EP = 44,
// CPU_MODEL_IVYBRIDGE_EP = ??, TODO - get real value
CPU_MODEL_SANDYBRIDGE_EP = 45
} cpuExtendedFamily;
// cpuid information block. All info derived from executing cpuid with
// various function numbers is stored here. Intel and AMD info is
// merged in this block: accessor methods disentangle it.
//
// The info block is laid out in subblocks of 4 dwords corresponding to
// eax, ebx, ecx and edx, whether or not they contain anything useful.
struct CpuidInfo {
// cpuid function 0
uint32_t std_max_function;
uint32_t std_vendor_name_0;
uint32_t std_vendor_name_1;
uint32_t std_vendor_name_2;
// cpuid function 1
StdCpuid1Eax std_cpuid1_eax;
StdCpuid1Ebx std_cpuid1_ebx;
StdCpuid1Ecx std_cpuid1_ecx;
StdCpuid1Edx std_cpuid1_edx;
// cpuid function 4 (deterministic cache parameters)
DcpCpuid4Eax dcp_cpuid4_eax;
DcpCpuid4Ebx dcp_cpuid4_ebx;
uint32_t dcp_cpuid4_ecx; // unused currently
uint32_t dcp_cpuid4_edx; // unused currently
// cpuid function 7 (structured extended features)
SefCpuid7Eax sef_cpuid7_eax;
SefCpuid7Ebx sef_cpuid7_ebx;
uint32_t sef_cpuid7_ecx; // unused currently
uint32_t sef_cpuid7_edx; // unused currently
// cpuid function 0xB (processor topology)
// ecx = 0
uint32_t tpl_cpuidB0_eax;
TplCpuidBEbx tpl_cpuidB0_ebx;
uint32_t tpl_cpuidB0_ecx; // unused currently
uint32_t tpl_cpuidB0_edx; // unused currently
// ecx = 1
uint32_t tpl_cpuidB1_eax;
TplCpuidBEbx tpl_cpuidB1_ebx;
uint32_t tpl_cpuidB1_ecx; // unused currently
uint32_t tpl_cpuidB1_edx; // unused currently
// ecx = 2
uint32_t tpl_cpuidB2_eax;
TplCpuidBEbx tpl_cpuidB2_ebx;
uint32_t tpl_cpuidB2_ecx; // unused currently
uint32_t tpl_cpuidB2_edx; // unused currently
// cpuid function 0x80000000 // example, unused
uint32_t ext_max_function;
uint32_t ext_vendor_name_0;
uint32_t ext_vendor_name_1;
uint32_t ext_vendor_name_2;
// cpuid function 0x80000001
uint32_t ext_cpuid1_eax; // reserved
uint32_t ext_cpuid1_ebx; // reserved
ExtCpuid1Ecx ext_cpuid1_ecx;
ExtCpuid1Edx ext_cpuid1_edx;
// cpuid functions 0x80000002 thru 0x80000004: example, unused
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
// cpuid function 0x80000005 //AMD L1, Intel reserved
uint32_t ext_cpuid5_eax; // unused currently
uint32_t ext_cpuid5_ebx; // reserved
ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD)
ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD)
// cpuid function 0x80000007
uint32_t ext_cpuid7_eax; // reserved
uint32_t ext_cpuid7_ebx; // reserved
uint32_t ext_cpuid7_ecx; // reserved
ExtCpuid7Edx ext_cpuid7_edx; // tscinv
// cpuid function 0x80000008
uint32_t ext_cpuid8_eax; // unused currently
uint32_t ext_cpuid8_ebx; // reserved
ExtCpuid8Ecx ext_cpuid8_ecx;
uint32_t ext_cpuid8_edx; // reserved
// extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
XemXcr0Eax xem_xcr0_eax;
uint32_t xem_xcr0_edx; // reserved
};
// The actual cpuid info block
static CpuidInfo _cpuid_info;
// Extractors and predicates
static uint32_t extended_cpu_family() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
return result;
}
static uint32_t extended_cpu_model() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
return result;
}
static uint32_t cpu_stepping() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
return result;
}
static uint logical_processor_count() {
uint result = threads_per_core();
return result;
}
static uint32_t feature_flags() {
uint32_t result = 0;
if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
result |= CPU_CX8;
if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
result |= CPU_CMOV;
if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
_cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
result |= CPU_FXSR;
// HT flag is set for multi-core processors also.
if (threads_per_core() > 1)
result |= CPU_HT;
if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
_cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
result |= CPU_MMX;
if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
result |= CPU_SSE;
if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
result |= CPU_SSE2;
if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
result |= CPU_SSE3;
if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
result |= CPU_SSSE3;
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
result |= CPU_SSE4_1;
if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
result |= CPU_SSE4_2;
if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
result |= CPU_POPCNT;
if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
_cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
_cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
_cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
result |= CPU_AVX;
if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
result |= CPU_AVX2;
}
if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
result |= CPU_TSC;
if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
result |= CPU_TSCINV;
// AMD features.
if (is_amd()) {
if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
(_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
result |= CPU_3DNOW_PREFETCH;
if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
result |= CPU_LZCNT;
if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
result |= CPU_SSE4A;
}
return result;
}
static void get_processor_features();
public:
// Offsets for cpuid asm stub
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
// Initialization
static void initialize();
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
}
//
// Processor family:
// 3 - 386
// 4 - 486
// 5 - Pentium
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
// Pentium M, Core Solo, Core Duo, Core2 Duo
// family 6 model: 9, 13, 14, 15
// 0x0f - Pentium 4, Opteron
//
// Note: The cpu family should be used to select between
// instruction sequences which are valid on all Intel
// processors. Use the feature test functions below to
// determine whether a particular instruction is supported.
//
static int cpu_family() { return _cpu;}
static bool is_P6() { return cpu_family() >= 6; }
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
static bool supports_processor_topology() {
return (_cpuid_info.std_max_function >= 0xB) &&
// eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
// Some cpus have max cpuid >= 0xB but do not support processor topology.
((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
}
static uint cores_per_cpu() {
uint result = 1;
if (is_intel()) {
if (supports_processor_topology()) {
result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
_cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
} else {
result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
}
} else if (is_amd()) {
result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
}
return result;
}
static uint threads_per_core() {
uint result = 1;
if (is_intel() && supports_processor_topology()) {
result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
} else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
cores_per_cpu();
}
return result;
}
static intx prefetch_data_size() {
intx result = 0;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
} else if (is_amd()) {
result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
}
if (result < 32) // not defined ?
result = 32; // 32 bytes by default on x86 and other x64
return result;
}
//
// Feature identification
//
static bool supports_cpuid() { return _cpuFeatures != 0; }
static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
static bool supports_popcnt() { return (_cpuFeatures & CPU_POPCNT) != 0; }
static bool supports_avx() { return (_cpuFeatures & CPU_AVX) != 0; }
static bool supports_avx2() { return (_cpuFeatures & CPU_AVX2) != 0; }
static bool supports_tsc() { return (_cpuFeatures & CPU_TSC) != 0; }
// Intel features
static bool is_intel_family_core() { return is_intel() &&
extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
static bool is_intel_tsc_synched_at_init() {
if (is_intel_family_core()) {
uint32_t ext_model = extended_cpu_model();
if (ext_model == CPU_MODEL_NEHALEM_EP ||
ext_model == CPU_MODEL_WESTMERE_EP ||
// TODO ext_model == CPU_MODEL_IVYBRIDGE_EP ||
ext_model == CPU_MODEL_SANDYBRIDGE_EP) {
// 2-socket invtsc support. EX versions with 4 sockets are not
// guaranteed to synchronize tscs at initialization via a double
// handshake. The tscs can be explicitly set in software. Code
// that uses tsc values must be prepared for them to arbitrarily
// jump backward or forward.
return true;
}
}
return false;
}
// AMD features
static bool supports_3dnow_prefetch() { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
static bool supports_lzcnt() { return (_cpuFeatures & CPU_LZCNT) != 0; }
static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
static bool is_amd_Barcelona() { return is_amd() &&
extended_cpu_family() == CPU_FAMILY_AMD_11H; }
// Intel and AMD newer cores support fast timestamps well
static bool supports_tscinv_bit() {
return (_cpuFeatures & CPU_TSCINV) != 0;
}
static bool supports_tscinv() {
return supports_tscinv_bit() &&
( (is_amd() && !is_amd_Barcelona()) ||
is_intel_tsc_synched_at_init() );
}
// Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 &&
supports_sse3() && _model != 0x1C; }
static bool supports_compare_and_exchange() { return true; }
static const char* cpu_features() { return _features_str; }
static intx allocate_prefetch_distance() {
// This method should be called before allocate_prefetch_style().
//
// Hardware prefetching (distance/size in bytes):
// Pentium 3 - 64 / 32
// Pentium 4 - 256 / 128
// Athlon - 64 / 32 ????
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
// Core - 128 / 64
//
// Software prefetching (distance in bytes / instruction with best score):
// Pentium 3 - 128 / prefetchnta
// Pentium 4 - 512 / prefetchnta
// Athlon - 128 / prefetchnta
// Opteron - 256 / prefetchnta
// Core - 256 / prefetchnta
// It will be used only when AllocatePrefetchStyle > 0
intx count = AllocatePrefetchDistance;
if (count < 0) { // default ?
if (is_amd()) { // AMD
if (supports_sse2())
count = 256; // Opteron
else
count = 128; // Athlon
} else { // Intel
if (supports_sse2())
if (cpu_family() == 6) {
count = 256; // Pentium M, Core, Core2
} else {
count = 512; // Pentium 4
}
else
count = 128; // Pentium 3 (and all other old CPUs)
}
}
return count;
}
static intx allocate_prefetch_style() {
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
// Return 0 if AllocatePrefetchDistance was not defined.
return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
}
// Prefetch interval for gc copy/scan == 9 dcache lines. Derived from
// 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
// Tested intervals from 128 to 2048 in increments of 64 == one cache line.
// 256 bytes (4 dcache lines) was the nearest runner-up to 576.
// gc copy/scan is disabled if prefetchw isn't supported, because
// Prefetch::write emits an inlined prefetchw on Linux.
// Do not use the 3dnow prefetchw instruction. It isn't supported on em64t.
// The used prefetcht0 instruction works for both amd64 and em64t.
static intx prefetch_copy_interval_in_bytes() {
intx interval = PrefetchCopyIntervalInBytes;
return interval >= 0 ? interval : 576;
}
static intx prefetch_scan_interval_in_bytes() {
intx interval = PrefetchScanIntervalInBytes;
return interval >= 0 ? interval : 576;
}
static intx prefetch_fields_ahead() {
intx count = PrefetchFieldsAhead;
return count >= 0 ? count : 1;
}
};
#endif // CPU_X86_VM_VM_VERSION_X86_HPP