jdk-24/src/hotspot/share/oops/access.inline.hpp
Roman Kennke 482e40cc8c 8198285: More consistent Access API for arraycopy
Reviewed-by: eosterlund, shade
2018-06-04 23:01:48 +02:00

379 lines
17 KiB
C++

/*
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OOPS_ACCESS_INLINE_HPP
#define SHARE_OOPS_ACCESS_INLINE_HPP
#include "gc/shared/barrierSetConfig.inline.hpp"
#include "oops/access.hpp"
#include "oops/accessBackend.inline.hpp"
// This file outlines the last 2 steps of the template pipeline of accesses going through
// the Access API.
// * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
// happens for an access. The appropriate BarrierSet::AccessBarrier accessor
// is resolved, then the function pointer is updated to that accessor for
// future invocations.
// * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
// as the address type of an oop on the heap (is it oop* or narrowOop*) to
// the appropriate type. It also splits sufficiently orthogonal accesses into
// different functions, such as whether the access involves oops or primitives
// and whether the access is performed on the heap or outside. Then the
// appropriate BarrierSet::AccessBarrier is called to perform the access.
namespace AccessInternal {
// Step 5.b: Post-runtime dispatch.
// This class is the last step before calling the BarrierSet::AccessBarrier.
// Here we make sure to figure out types that were not known prior to the
// runtime dispatch, such as whether an oop on the heap is oop or narrowOop.
// We also split orthogonal barriers such as handling primitives vs oops
// and on-heap vs off-heap into different calls to the barrier set.
template <class GCBarrierType, BarrierType type, DecoratorSet decorators>
struct PostRuntimeDispatch: public AllStatic { };
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE, decorators>: public AllStatic {
template <typename T>
static void access_barrier(void* addr, T value) {
GCBarrierType::store_in_heap(reinterpret_cast<T*>(addr), value);
}
static void oop_access_barrier(void* addr, oop value) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
GCBarrierType::oop_store_in_heap(reinterpret_cast<OopType*>(addr), value);
} else {
GCBarrierType::oop_store_not_in_heap(reinterpret_cast<OopType*>(addr), value);
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD, decorators>: public AllStatic {
template <typename T>
static T access_barrier(void* addr) {
return GCBarrierType::load_in_heap(reinterpret_cast<T*>(addr));
}
static oop oop_access_barrier(void* addr) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_load_in_heap(reinterpret_cast<OopType*>(addr));
} else {
return GCBarrierType::oop_load_not_in_heap(reinterpret_cast<OopType*>(addr));
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, void* addr) {
return GCBarrierType::atomic_xchg_in_heap(new_value, reinterpret_cast<T*>(addr));
}
static oop oop_access_barrier(oop new_value, void* addr) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_atomic_xchg_in_heap(new_value, reinterpret_cast<OopType*>(addr));
} else {
return GCBarrierType::oop_atomic_xchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr));
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, void* addr, T compare_value) {
return GCBarrierType::atomic_cmpxchg_in_heap(new_value, reinterpret_cast<T*>(addr), compare_value);
}
static oop oop_access_barrier(oop new_value, void* addr, oop compare_value) {
typedef typename HeapOopType<decorators>::type OopType;
if (HasDecorator<decorators, IN_HEAP>::value) {
return GCBarrierType::oop_atomic_cmpxchg_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
} else {
return GCBarrierType::oop_atomic_cmpxchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
}
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ARRAYCOPY, decorators>: public AllStatic {
template <typename T>
static bool access_barrier(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
GCBarrierType::arraycopy_in_heap(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
return true;
}
template <typename T>
static bool oop_access_barrier(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
typedef typename HeapOopType<decorators>::type OopType;
return GCBarrierType::oop_arraycopy_in_heap(src_obj, src_offset_in_bytes, reinterpret_cast<OopType*>(src_raw),
dst_obj, dst_offset_in_bytes, reinterpret_cast<OopType*>(dst_raw),
length);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE_AT, decorators>: public AllStatic {
template <typename T>
static void access_barrier(oop base, ptrdiff_t offset, T value) {
GCBarrierType::store_in_heap_at(base, offset, value);
}
static void oop_access_barrier(oop base, ptrdiff_t offset, oop value) {
GCBarrierType::oop_store_in_heap_at(base, offset, value);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(oop base, ptrdiff_t offset) {
return GCBarrierType::template load_in_heap_at<T>(base, offset);
}
static oop oop_access_barrier(oop base, ptrdiff_t offset) {
return GCBarrierType::oop_load_in_heap_at(base, offset);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, oop base, ptrdiff_t offset) {
return GCBarrierType::atomic_xchg_in_heap_at(new_value, base, offset);
}
static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset) {
return GCBarrierType::oop_atomic_xchg_in_heap_at(new_value, base, offset);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG_AT, decorators>: public AllStatic {
template <typename T>
static T access_barrier(T new_value, oop base, ptrdiff_t offset, T compare_value) {
return GCBarrierType::atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
}
static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
return GCBarrierType::oop_atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_CLONE, decorators>: public AllStatic {
static void access_barrier(oop src, oop dst, size_t size) {
GCBarrierType::clone_in_heap(src, dst, size);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_RESOLVE, decorators>: public AllStatic {
static oop access_barrier(oop obj) {
return GCBarrierType::resolve(obj);
}
};
template <class GCBarrierType, DecoratorSet decorators>
struct PostRuntimeDispatch<GCBarrierType, BARRIER_EQUALS, decorators>: public AllStatic {
static bool access_barrier(oop o1, oop o2) {
return GCBarrierType::equals(o1, o2);
}
};
// Resolving accessors with barriers from the barrier set happens in two steps.
// 1. Expand paths with runtime-decorators, e.g. is UseCompressedOops on or off.
// 2. Expand paths for each BarrierSet available in the system.
template <DecoratorSet decorators, typename FunctionPointerT, BarrierType barrier_type>
struct BarrierResolver: public AllStatic {
template <DecoratorSet ds>
static typename EnableIf<
HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
FunctionPointerT>::type
resolve_barrier_gc() {
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
switch (bs->kind()) {
#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
case BarrierSet::bs_name: { \
return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
AccessBarrier<ds>, barrier_type, ds>::oop_access_barrier; \
} \
break;
FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
default:
fatal("BarrierSet AccessBarrier resolving not implemented");
return NULL;
};
}
template <DecoratorSet ds>
static typename EnableIf<
!HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
FunctionPointerT>::type
resolve_barrier_gc() {
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
switch (bs->kind()) {
#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
case BarrierSet::bs_name: { \
return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
AccessBarrier<ds>, barrier_type, ds>::access_barrier; \
} \
break;
FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
default:
fatal("BarrierSet AccessBarrier resolving not implemented");
return NULL;
};
}
static FunctionPointerT resolve_barrier_rt() {
if (UseCompressedOops) {
const DecoratorSet expanded_decorators = decorators | INTERNAL_RT_USE_COMPRESSED_OOPS;
return resolve_barrier_gc<expanded_decorators>();
} else {
return resolve_barrier_gc<decorators>();
}
}
static FunctionPointerT resolve_barrier() {
return resolve_barrier_rt();
}
};
// Step 5.a: Barrier resolution
// The RuntimeDispatch class is responsible for performing a runtime dispatch of the
// accessor. This is required when the access either depends on whether compressed oops
// is being used, or it depends on which GC implementation was chosen (e.g. requires GC
// barriers). The way it works is that a function pointer initially pointing to an
// accessor resolution function gets called for each access. Upon first invocation,
// it resolves which accessor to be used in future invocations and patches the
// function pointer to this new accessor.
template <DecoratorSet decorators, typename T>
void RuntimeDispatch<decorators, T, BARRIER_STORE>::store_init(void* addr, T value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE>::resolve_barrier();
_store_func = function;
function(addr, value);
}
template <DecoratorSet decorators, typename T>
void RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::store_at_init(oop base, ptrdiff_t offset, T value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE_AT>::resolve_barrier();
_store_at_func = function;
function(base, offset, value);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_LOAD>::load_init(void* addr) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD>::resolve_barrier();
_load_func = function;
return function(addr);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::load_at_init(oop base, ptrdiff_t offset) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD_AT>::resolve_barrier();
_load_at_func = function;
return function(base, offset);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::atomic_cmpxchg_init(T new_value, void* addr, T compare_value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG>::resolve_barrier();
_atomic_cmpxchg_func = function;
return function(new_value, addr, compare_value);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::atomic_cmpxchg_at_init(T new_value, oop base, ptrdiff_t offset, T compare_value) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG_AT>::resolve_barrier();
_atomic_cmpxchg_at_func = function;
return function(new_value, base, offset, compare_value);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::atomic_xchg_init(T new_value, void* addr) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG>::resolve_barrier();
_atomic_xchg_func = function;
return function(new_value, addr);
}
template <DecoratorSet decorators, typename T>
T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at_init(T new_value, oop base, ptrdiff_t offset) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG_AT>::resolve_barrier();
_atomic_xchg_at_func = function;
return function(new_value, base, offset);
}
template <DecoratorSet decorators, typename T>
bool RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy_init(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
size_t length) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_ARRAYCOPY>::resolve_barrier();
_arraycopy_func = function;
return function(src_obj, src_offset_in_bytes, src_raw,
dst_obj, dst_offset_in_bytes, dst_raw,
length);
}
template <DecoratorSet decorators, typename T>
void RuntimeDispatch<decorators, T, BARRIER_CLONE>::clone_init(oop src, oop dst, size_t size) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_CLONE>::resolve_barrier();
_clone_func = function;
function(src, dst, size);
}
template <DecoratorSet decorators, typename T>
oop RuntimeDispatch<decorators, T, BARRIER_RESOLVE>::resolve_init(oop obj) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_RESOLVE>::resolve_barrier();
_resolve_func = function;
return function(obj);
}
template <DecoratorSet decorators, typename T>
bool RuntimeDispatch<decorators, T, BARRIER_EQUALS>::equals_init(oop o1, oop o2) {
func_t function = BarrierResolver<decorators, func_t, BARRIER_EQUALS>::resolve_barrier();
_equals_func = function;
return function(o1, o2);
}
}
#endif // SHARE_OOPS_ACCESS_INLINE_HPP