c19a7e0fa3
Type methods shouldn't always operate on speculative part Reviewed-by: kvn, twisti
1379 lines
53 KiB
C++
1379 lines
53 KiB
C++
/*
|
|
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
|
|
// Optimization - Graph Style
|
|
|
|
//=============================================================================
|
|
//------------------------------hash-------------------------------------------
|
|
uint ConNode::hash() const {
|
|
return (uintptr_t)in(TypeFunc::Control) + _type->hash();
|
|
}
|
|
|
|
//------------------------------make-------------------------------------------
|
|
ConNode *ConNode::make( Compile* C, const Type *t ) {
|
|
switch( t->basic_type() ) {
|
|
case T_INT: return new (C) ConINode( t->is_int() );
|
|
case T_LONG: return new (C) ConLNode( t->is_long() );
|
|
case T_FLOAT: return new (C) ConFNode( t->is_float_constant() );
|
|
case T_DOUBLE: return new (C) ConDNode( t->is_double_constant() );
|
|
case T_VOID: return new (C) ConNode ( Type::TOP );
|
|
case T_OBJECT: return new (C) ConPNode( t->is_ptr() );
|
|
case T_ARRAY: return new (C) ConPNode( t->is_aryptr() );
|
|
case T_ADDRESS: return new (C) ConPNode( t->is_ptr() );
|
|
case T_NARROWOOP: return new (C) ConNNode( t->is_narrowoop() );
|
|
case T_NARROWKLASS: return new (C) ConNKlassNode( t->is_narrowklass() );
|
|
case T_METADATA: return new (C) ConPNode( t->is_ptr() );
|
|
// Expected cases: TypePtr::NULL_PTR, any is_rawptr()
|
|
// Also seen: AnyPtr(TopPTR *+top); from command line:
|
|
// r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
|
|
// %%%% Stop using TypePtr::NULL_PTR to represent nulls: use either TypeRawPtr::NULL_PTR
|
|
// or else TypeOopPtr::NULL_PTR. Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
|
|
}
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
/*
|
|
The major change is for CMoveP and StrComp. They have related but slightly
|
|
different problems. They both take in TWO oops which are both null-checked
|
|
independently before the using Node. After CCP removes the CastPP's they need
|
|
to pick up the guarding test edge - in this case TWO control edges. I tried
|
|
various solutions, all have problems:
|
|
|
|
(1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a
|
|
StrComp above a guarding null check. I've seen both cases in normal -Xcomp
|
|
testing.
|
|
|
|
(2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is
|
|
to figure out which test post-dominates. The real problem is that it doesn't
|
|
matter which one you pick. After you pick up, the dominating-test elider in
|
|
IGVN can remove the test and allow you to hoist up to the dominating test on
|
|
the chosen oop bypassing the test on the not-chosen oop. Seen in testing.
|
|
Oops.
|
|
|
|
(3) Leave the CastPP's in. This makes the graph more accurate in some sense;
|
|
we get to keep around the knowledge that an oop is not-null after some test.
|
|
Alas, the CastPP's interfere with GVN (some values are the regular oop, some
|
|
are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
|
|
This cost us 10% on SpecJVM, even when I removed some of the more trivial
|
|
cases in the optimizer. Removing more useless Phi's started allowing Loads to
|
|
illegally float above null checks. I gave up on this approach.
|
|
|
|
(4) Add BOTH control edges to both tests. Alas, too much code knows that
|
|
control edges are in slot-zero ONLY. Many quick asserts fail; no way to do
|
|
this one. Note that I really want to allow the CMoveP to float and add both
|
|
control edges to the dependent Load op - meaning I can select early but I
|
|
cannot Load until I pass both tests.
|
|
|
|
(5) Do not hoist CMoveP and StrComp. To this end I added the v-call
|
|
depends_only_on_test(). No obvious performance loss on Spec, but we are
|
|
clearly conservative on CMoveP (also so on StrComp but that's unlikely to
|
|
matter ever).
|
|
|
|
*/
|
|
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Move constants to the right.
|
|
Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
|
|
// Don't bother trying to transform a dead node
|
|
if( in(0) && in(0)->is_top() ) return NULL;
|
|
assert( !phase->eqv(in(Condition), this) &&
|
|
!phase->eqv(in(IfFalse), this) &&
|
|
!phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
|
|
if( phase->type(in(Condition)) == Type::TOP )
|
|
return NULL; // return NULL when Condition is dead
|
|
|
|
if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode* b = in(Condition)->as_Bool();
|
|
BoolNode* b2 = b->negate(phase);
|
|
return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------is_cmove_id------------------------------------
|
|
// Helper function to check for CMOVE identity. Shared with PhiNode::Identity
|
|
Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
|
|
// Check for Cmp'ing and CMove'ing same values
|
|
if( (phase->eqv(cmp->in(1),f) &&
|
|
phase->eqv(cmp->in(2),t)) ||
|
|
// Swapped Cmp is OK
|
|
(phase->eqv(cmp->in(2),f) &&
|
|
phase->eqv(cmp->in(1),t)) ) {
|
|
// Give up this identity check for floating points because it may choose incorrect
|
|
// value around 0.0 and -0.0
|
|
if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
|
|
return NULL;
|
|
// Check for "(t==f)?t:f;" and replace with "f"
|
|
if( b->_test._test == BoolTest::eq )
|
|
return f;
|
|
// Allow the inverted case as well
|
|
// Check for "(t!=f)?t:f;" and replace with "t"
|
|
if( b->_test._test == BoolTest::ne )
|
|
return t;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// Conditional-move is an identity if both inputs are the same, or the test
|
|
// true or false.
|
|
Node *CMoveNode::Identity( PhaseTransform *phase ) {
|
|
if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
|
|
return in(IfFalse); // Then it doesn't matter
|
|
if( phase->type(in(Condition)) == TypeInt::ZERO )
|
|
return in(IfFalse); // Always pick left(false) input
|
|
if( phase->type(in(Condition)) == TypeInt::ONE )
|
|
return in(IfTrue); // Always pick right(true) input
|
|
|
|
// Check for CMove'ing a constant after comparing against the constant.
|
|
// Happens all the time now, since if we compare equality vs a constant in
|
|
// the parser, we "know" the variable is constant on one path and we force
|
|
// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
|
|
// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
|
|
// general in that we don't need constants.
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode *b = in(Condition)->as_Bool();
|
|
Node *cmp = b->in(1);
|
|
if( cmp->is_Cmp() ) {
|
|
Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
|
|
if( id ) return id;
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Result is the meet of inputs
|
|
const Type *CMoveNode::Value( PhaseTransform *phase ) const {
|
|
if( phase->type(in(Condition)) == Type::TOP )
|
|
return Type::TOP;
|
|
return phase->type(in(IfFalse))->meet_speculative(phase->type(in(IfTrue)));
|
|
}
|
|
|
|
//------------------------------make-------------------------------------------
|
|
// Make a correctly-flavored CMove. Since _type is directly determined
|
|
// from the inputs we do not need to specify it here.
|
|
CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
|
|
switch( t->basic_type() ) {
|
|
case T_INT: return new (C) CMoveINode( bol, left, right, t->is_int() );
|
|
case T_FLOAT: return new (C) CMoveFNode( bol, left, right, t );
|
|
case T_DOUBLE: return new (C) CMoveDNode( bol, left, right, t );
|
|
case T_LONG: return new (C) CMoveLNode( bol, left, right, t->is_long() );
|
|
case T_OBJECT: return new (C) CMovePNode( c, bol, left, right, t->is_oopptr() );
|
|
case T_ADDRESS: return new (C) CMovePNode( c, bol, left, right, t->is_ptr() );
|
|
case T_NARROWOOP: return new (C) CMoveNNode( c, bol, left, right, t );
|
|
default:
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for conversions to boolean
|
|
Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
// If zero is on the left (false-case, no-move-case) it must mean another
|
|
// constant is on the right (otherwise the shared CMove::Ideal code would
|
|
// have moved the constant to the right). This situation is bad for Intel
|
|
// and a don't-care for Sparc. It's bad for Intel because the zero has to
|
|
// be manifested in a register with a XOR which kills flags, which are live
|
|
// on input to the CMoveI, leading to a situation which causes excessive
|
|
// spilling on Intel. For Sparc, if the zero in on the left the Sparc will
|
|
// zero a register via G0 and conditionally-move the other constant. If the
|
|
// zero is on the right, the Sparc will load the first constant with a
|
|
// 13-bit set-lo and conditionally move G0. See bug 4677505.
|
|
if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
|
|
if( in(Condition)->is_Bool() ) {
|
|
BoolNode* b = in(Condition)->as_Bool();
|
|
BoolNode* b2 = b->negate(phase);
|
|
return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
|
|
}
|
|
}
|
|
|
|
// Now check for booleans
|
|
int flip = 0;
|
|
|
|
// Check for picking from zero/one
|
|
if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
|
|
flip = 1 - flip;
|
|
} else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
|
|
} else return NULL;
|
|
|
|
// Check for eq/ne test
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
if( bol->_test._test == BoolTest::eq ) {
|
|
} else if( bol->_test._test == BoolTest::ne ) {
|
|
flip = 1-flip;
|
|
} else return NULL;
|
|
|
|
// Check for vs 0 or 1
|
|
if( !bol->in(1)->is_Cmp() ) return NULL;
|
|
const CmpNode *cmp = bol->in(1)->as_Cmp();
|
|
if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
|
|
} else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
|
|
// Allow cmp-vs-1 if the other input is bounded by 0-1
|
|
if( phase->type(cmp->in(1)) != TypeInt::BOOL )
|
|
return NULL;
|
|
flip = 1 - flip;
|
|
} else return NULL;
|
|
|
|
// Convert to a bool (flipped)
|
|
// Build int->bool conversion
|
|
#ifndef PRODUCT
|
|
if( PrintOpto ) tty->print_cr("CMOV to I2B");
|
|
#endif
|
|
Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
|
|
if( flip )
|
|
n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
|
|
|
|
return n;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for absolute value
|
|
Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
int cmp_zero_idx = 0; // Index of compare input where to look for zero
|
|
int phi_x_idx = 0; // Index of phi input where to find naked x
|
|
|
|
// Find the Bool
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
// Check bool sense
|
|
switch( bol->_test._test ) {
|
|
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
|
|
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
|
|
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
|
|
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
|
|
default: return NULL; break;
|
|
}
|
|
|
|
// Find zero input of CmpF; the other input is being abs'd
|
|
Node *cmpf = bol->in(1);
|
|
if( cmpf->Opcode() != Op_CmpF ) return NULL;
|
|
Node *X = NULL;
|
|
bool flip = false;
|
|
if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
|
|
X = cmpf->in(3 - cmp_zero_idx);
|
|
} else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
|
|
// The test is inverted, we should invert the result...
|
|
X = cmpf->in(cmp_zero_idx);
|
|
flip = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
// If X is found on the appropriate phi input, find the subtract on the other
|
|
if( X != in(phi_x_idx) ) return NULL;
|
|
int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
|
|
Node *sub = in(phi_sub_idx);
|
|
|
|
// Allow only SubF(0,X) and fail out for all others; NegF is not OK
|
|
if( sub->Opcode() != Op_SubF ||
|
|
sub->in(2) != X ||
|
|
phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
|
|
|
|
Node *abs = new (phase->C) AbsFNode( X );
|
|
if( flip )
|
|
abs = new (phase->C) SubFNode(sub->in(1), phase->transform(abs));
|
|
|
|
return abs;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Check for absolute value
|
|
Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Try generic ideal's first
|
|
Node *x = CMoveNode::Ideal(phase, can_reshape);
|
|
if( x ) return x;
|
|
|
|
int cmp_zero_idx = 0; // Index of compare input where to look for zero
|
|
int phi_x_idx = 0; // Index of phi input where to find naked x
|
|
|
|
// Find the Bool
|
|
if( !in(1)->is_Bool() ) return NULL;
|
|
BoolNode *bol = in(1)->as_Bool();
|
|
// Check bool sense
|
|
switch( bol->_test._test ) {
|
|
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
|
|
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
|
|
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
|
|
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
|
|
default: return NULL; break;
|
|
}
|
|
|
|
// Find zero input of CmpD; the other input is being abs'd
|
|
Node *cmpd = bol->in(1);
|
|
if( cmpd->Opcode() != Op_CmpD ) return NULL;
|
|
Node *X = NULL;
|
|
bool flip = false;
|
|
if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
|
|
X = cmpd->in(3 - cmp_zero_idx);
|
|
} else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
|
|
// The test is inverted, we should invert the result...
|
|
X = cmpd->in(cmp_zero_idx);
|
|
flip = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
// If X is found on the appropriate phi input, find the subtract on the other
|
|
if( X != in(phi_x_idx) ) return NULL;
|
|
int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
|
|
Node *sub = in(phi_sub_idx);
|
|
|
|
// Allow only SubD(0,X) and fail out for all others; NegD is not OK
|
|
if( sub->Opcode() != Op_SubD ||
|
|
sub->in(2) != X ||
|
|
phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
|
|
|
|
Node *abs = new (phase->C) AbsDNode( X );
|
|
if( flip )
|
|
abs = new (phase->C) SubDNode(sub->in(1), phase->transform(abs));
|
|
|
|
return abs;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// If input is already higher or equal to cast type, then this is an identity.
|
|
Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
|
|
return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Take 'join' of input and cast-up type
|
|
const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
|
|
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
|
|
const Type* ft = phase->type(in(1))->filter_speculative(_type);
|
|
|
|
#ifdef ASSERT
|
|
// Previous versions of this function had some special case logic,
|
|
// which is no longer necessary. Make sure of the required effects.
|
|
switch (Opcode()) {
|
|
case Op_CastII:
|
|
{
|
|
const Type* t1 = phase->type(in(1));
|
|
if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
|
|
const Type* rt = t1->join_speculative(_type);
|
|
if (rt->empty()) assert(ft == Type::TOP, "special case #2");
|
|
break;
|
|
}
|
|
case Op_CastPP:
|
|
if (phase->type(in(1)) == TypePtr::NULL_PTR &&
|
|
_type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
|
|
assert(ft == Type::TOP, "special case #3");
|
|
break;
|
|
}
|
|
#endif //ASSERT
|
|
|
|
return ft;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node. Strip out
|
|
// control copies
|
|
Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
|
|
}
|
|
|
|
//------------------------------Ideal_DU_postCCP-------------------------------
|
|
// Throw away cast after constant propagation
|
|
Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
|
|
const Type *t = ccp->type(in(1));
|
|
ccp->hash_delete(this);
|
|
set_type(t); // Turn into ID function
|
|
ccp->hash_insert(this);
|
|
return this;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
|
|
//------------------------------Ideal_DU_postCCP-------------------------------
|
|
// If not converting int->oop, throw away cast after constant propagation
|
|
Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
|
|
const Type *t = ccp->type(in(1));
|
|
if (!t->isa_oop_ptr() || ((in(1)->is_DecodeN()) && Matcher::gen_narrow_oop_implicit_null_checks())) {
|
|
return NULL; // do not transform raw pointers or narrow oops
|
|
}
|
|
return ConstraintCastNode::Ideal_DU_postCCP(ccp);
|
|
}
|
|
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
// If input is already higher or equal to cast type, then this is an identity.
|
|
Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
|
|
// Toned down to rescue meeting at a Phi 3 different oops all implementing
|
|
// the same interface. CompileTheWorld starting at 502, kd12rc1.zip.
|
|
return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Take 'join' of input and cast-up type, unless working with an Interface
|
|
const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
|
|
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
|
|
|
|
const Type *inn = phase->type(in(1));
|
|
if( inn == Type::TOP ) return Type::TOP; // No information yet
|
|
|
|
const TypePtr *in_type = inn->isa_ptr();
|
|
const TypePtr *my_type = _type->isa_ptr();
|
|
const Type *result = _type;
|
|
if( in_type != NULL && my_type != NULL ) {
|
|
TypePtr::PTR in_ptr = in_type->ptr();
|
|
if( in_ptr == TypePtr::Null ) {
|
|
result = in_type;
|
|
} else if( in_ptr == TypePtr::Constant ) {
|
|
// Casting a constant oop to an interface?
|
|
// (i.e., a String to a Comparable?)
|
|
// Then return the interface.
|
|
const TypeOopPtr *jptr = my_type->isa_oopptr();
|
|
assert( jptr, "" );
|
|
result = (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
|
|
? my_type->cast_to_ptr_type( TypePtr::NotNull )
|
|
: in_type;
|
|
} else {
|
|
result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
|
|
}
|
|
}
|
|
return result;
|
|
|
|
// JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
|
|
// FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
|
|
|
|
//
|
|
// Remove this code after overnight run indicates no performance
|
|
// loss from not performing JOIN at CheckCastPPNode
|
|
//
|
|
// const TypeInstPtr *in_oop = in->isa_instptr();
|
|
// const TypeInstPtr *my_oop = _type->isa_instptr();
|
|
// // If either input is an 'interface', return destination type
|
|
// assert (in_oop == NULL || in_oop->klass() != NULL, "");
|
|
// assert (my_oop == NULL || my_oop->klass() != NULL, "");
|
|
// if( (in_oop && in_oop->klass()->is_interface())
|
|
// ||(my_oop && my_oop->klass()->is_interface()) ) {
|
|
// TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
|
|
// // Preserve cast away nullness for interfaces
|
|
// if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
|
|
// return my_oop->cast_to_ptr_type(TypePtr::NotNull);
|
|
// }
|
|
// return _type;
|
|
// }
|
|
//
|
|
// // Neither the input nor the destination type is an interface,
|
|
//
|
|
// // history: JOIN used to cause weird corner case bugs
|
|
// // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
|
|
// // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
|
|
// // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
|
|
// const Type *join = in->join(_type);
|
|
// // Check if join preserved NotNull'ness for pointers
|
|
// if( join->isa_ptr() && _type->isa_ptr() ) {
|
|
// TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
|
|
// TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
|
|
// // If there isn't any NotNull'ness to preserve
|
|
// // OR if join preserved NotNull'ness then return it
|
|
// if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
|
|
// join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
|
|
// return join;
|
|
// }
|
|
// // ELSE return same old type as before
|
|
// return _type;
|
|
// }
|
|
// // Not joining two pointers
|
|
// return join;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node. Strip out
|
|
// control copies
|
|
Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
|
|
}
|
|
|
|
|
|
Node* DecodeNNode::Identity(PhaseTransform* phase) {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return in(1);
|
|
|
|
if (in(1)->is_EncodeP()) {
|
|
// (DecodeN (EncodeP p)) -> p
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
|
|
|
|
assert(t->isa_narrowoop(), "only narrowoop here");
|
|
return t->make_ptr();
|
|
}
|
|
|
|
Node* EncodePNode::Identity(PhaseTransform* phase) {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return in(1);
|
|
|
|
if (in(1)->is_DecodeN()) {
|
|
// (EncodeP (DecodeN p)) -> p
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
const Type *EncodePNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
|
|
|
|
assert(t->isa_oop_ptr(), "only oopptr here");
|
|
return t->make_narrowoop();
|
|
}
|
|
|
|
|
|
Node *EncodeNarrowPtrNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
|
|
return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
|
|
}
|
|
|
|
Node* DecodeNKlassNode::Identity(PhaseTransform* phase) {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return in(1);
|
|
|
|
if (in(1)->is_EncodePKlass()) {
|
|
// (DecodeNKlass (EncodePKlass p)) -> p
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
const Type *DecodeNKlassNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if (t == Type::TOP) return Type::TOP;
|
|
assert(t != TypeNarrowKlass::NULL_PTR, "null klass?");
|
|
|
|
assert(t->isa_narrowklass(), "only narrow klass ptr here");
|
|
return t->make_ptr();
|
|
}
|
|
|
|
Node* EncodePKlassNode::Identity(PhaseTransform* phase) {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return in(1);
|
|
|
|
if (in(1)->is_DecodeNKlass()) {
|
|
// (EncodePKlass (DecodeNKlass p)) -> p
|
|
return in(1)->in(1);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
const Type *EncodePKlassNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if (t == Type::TOP) return Type::TOP;
|
|
assert (t != TypePtr::NULL_PTR, "null klass?");
|
|
|
|
assert(UseCompressedClassPointers && t->isa_klassptr(), "only klass ptr here");
|
|
return t->make_narrowklass();
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
Node *Conv2BNode::Identity( PhaseTransform *phase ) {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return in(1);
|
|
if( t == TypeInt::ZERO ) return in(1);
|
|
if( t == TypeInt::ONE ) return in(1);
|
|
if( t == TypeInt::BOOL ) return in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == TypeInt::ZERO ) return TypeInt::ZERO;
|
|
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
|
|
const TypePtr *tp = t->isa_ptr();
|
|
if( tp != NULL ) {
|
|
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
|
|
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
|
|
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
|
|
return TypeInt::BOOL;
|
|
}
|
|
if (t->base() != Type::Int) return TypeInt::BOOL;
|
|
const TypeInt *ti = t->is_int();
|
|
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
|
|
return TypeInt::BOOL;
|
|
}
|
|
|
|
|
|
// The conversions operations are all Alpha sorted. Please keep it that way!
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::DOUBLE ) return Type::FLOAT;
|
|
const TypeD *td = t->is_double_constant();
|
|
return TypeF::make( (float)td->getd() );
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// Float's can be converted to doubles with no loss of bits. Hence
|
|
// converting a float to a double and back to a float is a NOP.
|
|
Node *ConvD2FNode::Identity(PhaseTransform *phase) {
|
|
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::DOUBLE ) return TypeInt::INT;
|
|
const TypeD *td = t->is_double_constant();
|
|
return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// If converting to an int type, skip any rounding nodes
|
|
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_RoundDouble )
|
|
set_req(1,in(1)->in(1));
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// Int's can be converted to doubles with no loss of bits. Hence
|
|
// converting an integer to a double and back to an integer is a NOP.
|
|
Node *ConvD2INode::Identity(PhaseTransform *phase) {
|
|
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::DOUBLE ) return TypeLong::LONG;
|
|
const TypeD *td = t->is_double_constant();
|
|
return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *ConvD2LNode::Identity(PhaseTransform *phase) {
|
|
// Remove ConvD2L->ConvL2D->ConvD2L sequences.
|
|
if( in(1) ->Opcode() == Op_ConvL2D &&
|
|
in(1)->in(1)->Opcode() == Op_ConvD2L )
|
|
return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// If converting to an int type, skip any rounding nodes
|
|
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_RoundDouble )
|
|
set_req(1,in(1)->in(1));
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::FLOAT ) return Type::DOUBLE;
|
|
const TypeF *tf = t->is_float_constant();
|
|
return TypeD::make( (double)tf->getf() );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::FLOAT ) return TypeInt::INT;
|
|
const TypeF *tf = t->is_float_constant();
|
|
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *ConvF2INode::Identity(PhaseTransform *phase) {
|
|
// Remove ConvF2I->ConvI2F->ConvF2I sequences.
|
|
if( in(1) ->Opcode() == Op_ConvI2F &&
|
|
in(1)->in(1)->Opcode() == Op_ConvF2I )
|
|
return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// If converting to an int type, skip any rounding nodes
|
|
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_RoundFloat )
|
|
set_req(1,in(1)->in(1));
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::FLOAT ) return TypeLong::LONG;
|
|
const TypeF *tf = t->is_float_constant();
|
|
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *ConvF2LNode::Identity(PhaseTransform *phase) {
|
|
// Remove ConvF2L->ConvL2F->ConvF2L sequences.
|
|
if( in(1) ->Opcode() == Op_ConvL2F &&
|
|
in(1)->in(1)->Opcode() == Op_ConvF2L )
|
|
return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// If converting to an int type, skip any rounding nodes
|
|
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_RoundFloat )
|
|
set_req(1,in(1)->in(1));
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeInt *ti = t->is_int();
|
|
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
|
|
return bottom_type();
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeInt *ti = t->is_int();
|
|
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
|
|
return bottom_type();
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *ConvI2FNode::Identity(PhaseTransform *phase) {
|
|
// Remove ConvI2F->ConvF2I->ConvI2F sequences.
|
|
if( in(1) ->Opcode() == Op_ConvF2I &&
|
|
in(1)->in(1)->Opcode() == Op_ConvI2F )
|
|
return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeInt *ti = t->is_int();
|
|
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
|
|
// Join my declared type against my incoming type.
|
|
tl = tl->filter(_type);
|
|
return tl;
|
|
}
|
|
|
|
#ifdef _LP64
|
|
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
|
|
jlong lo2, jlong hi2) {
|
|
// Two ranges overlap iff one range's low point falls in the other range.
|
|
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
|
|
}
|
|
#endif
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
const TypeLong* this_type = this->type()->is_long();
|
|
Node* this_changed = NULL;
|
|
|
|
// If _major_progress, then more loop optimizations follow. Do NOT
|
|
// remove this node's type assertion until no more loop ops can happen.
|
|
// The progress bit is set in the major loop optimizations THEN comes the
|
|
// call to IterGVN and any chance of hitting this code. Cf. Opaque1Node.
|
|
if (can_reshape && !phase->C->major_progress()) {
|
|
const TypeInt* in_type = phase->type(in(1))->isa_int();
|
|
if (in_type != NULL && this_type != NULL &&
|
|
(in_type->_lo != this_type->_lo ||
|
|
in_type->_hi != this_type->_hi)) {
|
|
// Although this WORSENS the type, it increases GVN opportunities,
|
|
// because I2L nodes with the same input will common up, regardless
|
|
// of slightly differing type assertions. Such slight differences
|
|
// arise routinely as a result of loop unrolling, so this is a
|
|
// post-unrolling graph cleanup. Choose a type which depends only
|
|
// on my input. (Exception: Keep a range assertion of >=0 or <0.)
|
|
jlong lo1 = this_type->_lo;
|
|
jlong hi1 = this_type->_hi;
|
|
int w1 = this_type->_widen;
|
|
if (lo1 != (jint)lo1 ||
|
|
hi1 != (jint)hi1 ||
|
|
lo1 > hi1) {
|
|
// Overflow leads to wraparound, wraparound leads to range saturation.
|
|
lo1 = min_jint; hi1 = max_jint;
|
|
} else if (lo1 >= 0) {
|
|
// Keep a range assertion of >=0.
|
|
lo1 = 0; hi1 = max_jint;
|
|
} else if (hi1 < 0) {
|
|
// Keep a range assertion of <0.
|
|
lo1 = min_jint; hi1 = -1;
|
|
} else {
|
|
lo1 = min_jint; hi1 = max_jint;
|
|
}
|
|
const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
|
|
MIN2((jlong)in_type->_hi, hi1),
|
|
MAX2((int)in_type->_widen, w1));
|
|
if (wtype != type()) {
|
|
set_type(wtype);
|
|
// Note: this_type still has old type value, for the logic below.
|
|
this_changed = this;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
|
|
// but only if x and y have subranges that cannot cause 32-bit overflow,
|
|
// under the assumption that x+y is in my own subrange this->type().
|
|
|
|
// This assumption is based on a constraint (i.e., type assertion)
|
|
// established in Parse::array_addressing or perhaps elsewhere.
|
|
// This constraint has been adjoined to the "natural" type of
|
|
// the incoming argument in(0). We know (because of runtime
|
|
// checks) - that the result value I2L(x+y) is in the joined range.
|
|
// Hence we can restrict the incoming terms (x, y) to values such
|
|
// that their sum also lands in that range.
|
|
|
|
// This optimization is useful only on 64-bit systems, where we hope
|
|
// the addition will end up subsumed in an addressing mode.
|
|
// It is necessary to do this when optimizing an unrolled array
|
|
// copy loop such as x[i++] = y[i++].
|
|
|
|
// On 32-bit systems, it's better to perform as much 32-bit math as
|
|
// possible before the I2L conversion, because 32-bit math is cheaper.
|
|
// There's no common reason to "leak" a constant offset through the I2L.
|
|
// Addressing arithmetic will not absorb it as part of a 64-bit AddL.
|
|
|
|
Node* z = in(1);
|
|
int op = z->Opcode();
|
|
if (op == Op_AddI || op == Op_SubI) {
|
|
Node* x = z->in(1);
|
|
Node* y = z->in(2);
|
|
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
|
|
if (phase->type(x) == Type::TOP) return this_changed;
|
|
if (phase->type(y) == Type::TOP) return this_changed;
|
|
const TypeInt* tx = phase->type(x)->is_int();
|
|
const TypeInt* ty = phase->type(y)->is_int();
|
|
const TypeLong* tz = this_type;
|
|
jlong xlo = tx->_lo;
|
|
jlong xhi = tx->_hi;
|
|
jlong ylo = ty->_lo;
|
|
jlong yhi = ty->_hi;
|
|
jlong zlo = tz->_lo;
|
|
jlong zhi = tz->_hi;
|
|
jlong vbit = CONST64(1) << BitsPerInt;
|
|
int widen = MAX2(tx->_widen, ty->_widen);
|
|
if (op == Op_SubI) {
|
|
jlong ylo0 = ylo;
|
|
ylo = -yhi;
|
|
yhi = -ylo0;
|
|
}
|
|
// See if x+y can cause positive overflow into z+2**32
|
|
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
|
|
return this_changed;
|
|
}
|
|
// See if x+y can cause negative overflow into z-2**32
|
|
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
|
|
return this_changed;
|
|
}
|
|
// Now it's always safe to assume x+y does not overflow.
|
|
// This is true even if some pairs x,y might cause overflow, as long
|
|
// as that overflow value cannot fall into [zlo,zhi].
|
|
|
|
// Confident that the arithmetic is "as if infinite precision",
|
|
// we can now use z's range to put constraints on those of x and y.
|
|
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
|
|
// more "restricted" range by intersecting [xlo,xhi] with the
|
|
// range obtained by subtracting y's range from the asserted range
|
|
// of the I2L conversion. Here's the interval arithmetic algebra:
|
|
// x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
|
|
// => x in [zlo-yhi, zhi-ylo]
|
|
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
|
|
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
|
|
jlong rxlo = MAX2(xlo, zlo - yhi);
|
|
jlong rxhi = MIN2(xhi, zhi - ylo);
|
|
// And similarly, x changing place with y:
|
|
jlong rylo = MAX2(ylo, zlo - xhi);
|
|
jlong ryhi = MIN2(yhi, zhi - xlo);
|
|
if (rxlo > rxhi || rylo > ryhi) {
|
|
return this_changed; // x or y is dying; don't mess w/ it
|
|
}
|
|
if (op == Op_SubI) {
|
|
jlong rylo0 = rylo;
|
|
rylo = -ryhi;
|
|
ryhi = -rylo0;
|
|
}
|
|
|
|
Node* cx = phase->transform( new (phase->C) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
|
|
Node* cy = phase->transform( new (phase->C) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
|
|
switch (op) {
|
|
case Op_AddI: return new (phase->C) AddLNode(cx, cy);
|
|
case Op_SubI: return new (phase->C) SubLNode(cx, cy);
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
#endif //_LP64
|
|
|
|
return this_changed;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeLong *tl = t->is_long();
|
|
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
|
|
return bottom_type();
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeLong *tl = t->is_long();
|
|
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
|
|
return bottom_type();
|
|
}
|
|
|
|
//=============================================================================
|
|
//----------------------------Identity-----------------------------------------
|
|
Node *ConvL2INode::Identity( PhaseTransform *phase ) {
|
|
// Convert L2I(I2L(x)) => x
|
|
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeLong *tl = t->is_long();
|
|
if (tl->is_con())
|
|
// Easy case.
|
|
return TypeInt::make((jint)tl->get_con());
|
|
return bottom_type();
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Return a node which is more "ideal" than the current node.
|
|
// Blow off prior masking to int
|
|
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
Node *andl = in(1);
|
|
uint andl_op = andl->Opcode();
|
|
if( andl_op == Op_AndL ) {
|
|
// Blow off prior masking to int
|
|
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
|
|
set_req(1,andl->in(1));
|
|
return this;
|
|
}
|
|
}
|
|
|
|
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
|
|
// This replaces an 'AddL' with an 'AddI'.
|
|
if( andl_op == Op_AddL ) {
|
|
// Don't do this for nodes which have more than one user since
|
|
// we'll end up computing the long add anyway.
|
|
if (andl->outcnt() > 1) return NULL;
|
|
|
|
Node* x = andl->in(1);
|
|
Node* y = andl->in(2);
|
|
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
|
|
if (phase->type(x) == Type::TOP) return NULL;
|
|
if (phase->type(y) == Type::TOP) return NULL;
|
|
Node *add1 = phase->transform(new (phase->C) ConvL2INode(x));
|
|
Node *add2 = phase->transform(new (phase->C) ConvL2INode(y));
|
|
return new (phase->C) AddINode(add1,add2);
|
|
}
|
|
|
|
// Disable optimization: LoadL->ConvL2I ==> LoadI.
|
|
// It causes problems (sizes of Load and Store nodes do not match)
|
|
// in objects initialization code and Escape Analysis.
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t->base() == Type_X && t->singleton()) {
|
|
uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
|
|
if (bits == 0) return TypePtr::NULL_PTR;
|
|
return TypeRawPtr::make((address) bits);
|
|
}
|
|
return CastX2PNode::bottom_type();
|
|
}
|
|
|
|
//------------------------------Idealize---------------------------------------
|
|
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
|
|
if (t == Type::TOP) return false;
|
|
const TypeX* tl = t->is_intptr_t();
|
|
jint lo = min_jint;
|
|
jint hi = max_jint;
|
|
if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
|
|
return (tl->_lo >= lo) && (tl->_hi <= hi);
|
|
}
|
|
|
|
static inline Node* addP_of_X2P(PhaseGVN *phase,
|
|
Node* base,
|
|
Node* dispX,
|
|
bool negate = false) {
|
|
if (negate) {
|
|
dispX = new (phase->C) SubXNode(phase->MakeConX(0), phase->transform(dispX));
|
|
}
|
|
return new (phase->C) AddPNode(phase->C->top(),
|
|
phase->transform(new (phase->C) CastX2PNode(base)),
|
|
phase->transform(dispX));
|
|
}
|
|
|
|
Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
|
|
int op = in(1)->Opcode();
|
|
Node* x;
|
|
Node* y;
|
|
switch (op) {
|
|
case Op_SubX:
|
|
x = in(1)->in(1);
|
|
// Avoid ideal transformations ping-pong between this and AddP for raw pointers.
|
|
if (phase->find_intptr_t_con(x, -1) == 0)
|
|
break;
|
|
y = in(1)->in(2);
|
|
if (fits_in_int(phase->type(y), true)) {
|
|
return addP_of_X2P(phase, x, y, true);
|
|
}
|
|
break;
|
|
case Op_AddX:
|
|
x = in(1)->in(1);
|
|
y = in(1)->in(2);
|
|
if (fits_in_int(phase->type(y))) {
|
|
return addP_of_X2P(phase, x, y);
|
|
}
|
|
if (fits_in_int(phase->type(x))) {
|
|
return addP_of_X2P(phase, y, x);
|
|
}
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *CastX2PNode::Identity( PhaseTransform *phase ) {
|
|
if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
if (t->base() == Type::RawPtr && t->singleton()) {
|
|
uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
|
|
return TypeX::make(bits);
|
|
}
|
|
return CastP2XNode::bottom_type();
|
|
}
|
|
|
|
Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
Node *CastP2XNode::Identity( PhaseTransform *phase ) {
|
|
if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
|
|
return this;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
// Remove redundant roundings
|
|
Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
|
|
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
|
|
// Do not round constants
|
|
if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
|
|
int op = in(1)->Opcode();
|
|
// Redundant rounding
|
|
if( op == Op_RoundFloat ) return in(1);
|
|
// Already rounded
|
|
if( op == Op_Parm ) return in(1);
|
|
if( op == Op_LoadF ) return in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
|
|
return phase->type( in(1) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
// Remove redundant roundings. Incoming arguments are already rounded.
|
|
Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
|
|
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
|
|
// Do not round constants
|
|
if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
|
|
int op = in(1)->Opcode();
|
|
// Redundant rounding
|
|
if( op == Op_RoundDouble ) return in(1);
|
|
// Already rounded
|
|
if( op == Op_Parm ) return in(1);
|
|
if( op == Op_LoadD ) return in(1);
|
|
if( op == Op_ConvF2D ) return in(1);
|
|
if( op == Op_ConvI2D ) return in(1);
|
|
return this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
|
|
return phase->type( in(1) );
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Do not allow value-numbering
|
|
uint Opaque1Node::hash() const { return NO_HASH; }
|
|
uint Opaque1Node::cmp( const Node &n ) const {
|
|
return (&n == this); // Always fail except on self
|
|
}
|
|
|
|
//------------------------------Identity---------------------------------------
|
|
// If _major_progress, then more loop optimizations follow. Do NOT remove
|
|
// the opaque Node until no more loop ops can happen. Note the timing of
|
|
// _major_progress; it's set in the major loop optimizations THEN comes the
|
|
// call to IterGVN and any chance of hitting this code. Hence there's no
|
|
// phase-ordering problem with stripping Opaque1 in IGVN followed by some
|
|
// more loop optimizations that require it.
|
|
Node *Opaque1Node::Identity( PhaseTransform *phase ) {
|
|
return phase->C->major_progress() ? this : in(1);
|
|
}
|
|
|
|
//=============================================================================
|
|
// A node to prevent unwanted optimizations. Allows constant folding. Stops
|
|
// value-numbering, most Ideal calls or Identity functions. This Node is
|
|
// specifically designed to prevent the pre-increment value of a loop trip
|
|
// counter from being live out of the bottom of the loop (hence causing the
|
|
// pre- and post-increment values both being live and thus requiring an extra
|
|
// temp register and an extra move). If we "accidentally" optimize through
|
|
// this kind of a Node, we'll get slightly pessimal, but correct, code. Thus
|
|
// it's OK to be slightly sloppy on optimizations here.
|
|
|
|
// Do not allow value-numbering
|
|
uint Opaque2Node::hash() const { return NO_HASH; }
|
|
uint Opaque2Node::cmp( const Node &n ) const {
|
|
return (&n == this); // Always fail except on self
|
|
}
|
|
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeLong *tl = t->is_long();
|
|
if( !tl->is_con() ) return bottom_type();
|
|
JavaValue v;
|
|
v.set_jlong(tl->get_con());
|
|
return TypeD::make( v.get_jdouble() );
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
const TypeInt *ti = t->is_int();
|
|
if( !ti->is_con() ) return bottom_type();
|
|
JavaValue v;
|
|
v.set_jint(ti->get_con());
|
|
return TypeF::make( v.get_jfloat() );
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::FLOAT ) return TypeInt::INT;
|
|
const TypeF *tf = t->is_float_constant();
|
|
JavaValue v;
|
|
v.set_jfloat(tf->getf());
|
|
return TypeInt::make( v.get_jint() );
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t = phase->type( in(1) );
|
|
if( t == Type::TOP ) return Type::TOP;
|
|
if( t == Type::DOUBLE ) return TypeLong::LONG;
|
|
const TypeD *td = t->is_double_constant();
|
|
JavaValue v;
|
|
v.set_jdouble(td->getd());
|
|
return TypeLong::make( v.get_jlong() );
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CountLeadingZerosINode::Value(PhaseTransform* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
const TypeInt* ti = t->isa_int();
|
|
if (ti && ti->is_con()) {
|
|
jint i = ti->get_con();
|
|
// HD, Figure 5-6
|
|
if (i == 0)
|
|
return TypeInt::make(BitsPerInt);
|
|
int n = 1;
|
|
unsigned int x = i;
|
|
if (x >> 16 == 0) { n += 16; x <<= 16; }
|
|
if (x >> 24 == 0) { n += 8; x <<= 8; }
|
|
if (x >> 28 == 0) { n += 4; x <<= 4; }
|
|
if (x >> 30 == 0) { n += 2; x <<= 2; }
|
|
n -= x >> 31;
|
|
return TypeInt::make(n);
|
|
}
|
|
return TypeInt::INT;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CountLeadingZerosLNode::Value(PhaseTransform* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
const TypeLong* tl = t->isa_long();
|
|
if (tl && tl->is_con()) {
|
|
jlong l = tl->get_con();
|
|
// HD, Figure 5-6
|
|
if (l == 0)
|
|
return TypeInt::make(BitsPerLong);
|
|
int n = 1;
|
|
unsigned int x = (((julong) l) >> 32);
|
|
if (x == 0) { n += 32; x = (int) l; }
|
|
if (x >> 16 == 0) { n += 16; x <<= 16; }
|
|
if (x >> 24 == 0) { n += 8; x <<= 8; }
|
|
if (x >> 28 == 0) { n += 4; x <<= 4; }
|
|
if (x >> 30 == 0) { n += 2; x <<= 2; }
|
|
n -= x >> 31;
|
|
return TypeInt::make(n);
|
|
}
|
|
return TypeInt::INT;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CountTrailingZerosINode::Value(PhaseTransform* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
const TypeInt* ti = t->isa_int();
|
|
if (ti && ti->is_con()) {
|
|
jint i = ti->get_con();
|
|
// HD, Figure 5-14
|
|
int y;
|
|
if (i == 0)
|
|
return TypeInt::make(BitsPerInt);
|
|
int n = 31;
|
|
y = i << 16; if (y != 0) { n = n - 16; i = y; }
|
|
y = i << 8; if (y != 0) { n = n - 8; i = y; }
|
|
y = i << 4; if (y != 0) { n = n - 4; i = y; }
|
|
y = i << 2; if (y != 0) { n = n - 2; i = y; }
|
|
y = i << 1; if (y != 0) { n = n - 1; }
|
|
return TypeInt::make(n);
|
|
}
|
|
return TypeInt::INT;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
const Type* CountTrailingZerosLNode::Value(PhaseTransform* phase) const {
|
|
const Type* t = phase->type(in(1));
|
|
if (t == Type::TOP) return Type::TOP;
|
|
const TypeLong* tl = t->isa_long();
|
|
if (tl && tl->is_con()) {
|
|
jlong l = tl->get_con();
|
|
// HD, Figure 5-14
|
|
int x, y;
|
|
if (l == 0)
|
|
return TypeInt::make(BitsPerLong);
|
|
int n = 63;
|
|
y = (int) l; if (y != 0) { n = n - 32; x = y; } else x = (((julong) l) >> 32);
|
|
y = x << 16; if (y != 0) { n = n - 16; x = y; }
|
|
y = x << 8; if (y != 0) { n = n - 8; x = y; }
|
|
y = x << 4; if (y != 0) { n = n - 4; x = y; }
|
|
y = x << 2; if (y != 0) { n = n - 2; x = y; }
|
|
y = x << 1; if (y != 0) { n = n - 1; }
|
|
return TypeInt::make(n);
|
|
}
|
|
return TypeInt::INT;
|
|
}
|