6b911624f2
Reviewed-by: lkorinth, kbarrett
641 lines
25 KiB
C++
641 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_GC_G1_HEAPREGION_HPP
|
|
#define SHARE_GC_G1_HEAPREGION_HPP
|
|
|
|
#include "gc/g1/g1BlockOffsetTable.hpp"
|
|
#include "gc/g1/g1HeapRegionTraceType.hpp"
|
|
#include "gc/g1/g1SurvRateGroup.hpp"
|
|
#include "gc/g1/heapRegionTracer.hpp"
|
|
#include "gc/g1/heapRegionType.hpp"
|
|
#include "gc/shared/ageTable.hpp"
|
|
#include "gc/shared/spaceDecorator.hpp"
|
|
#include "gc/shared/verifyOption.hpp"
|
|
#include "runtime/mutex.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
class G1CollectedHeap;
|
|
class G1CMBitMap;
|
|
class G1Predictions;
|
|
class HeapRegionRemSet;
|
|
class HeapRegion;
|
|
class HeapRegionSetBase;
|
|
class nmethod;
|
|
|
|
#define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
|
|
#define HR_FORMAT_PARAMS(_hr_) \
|
|
(_hr_)->hrm_index(), \
|
|
(_hr_)->get_short_type_str(), \
|
|
p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
|
|
|
|
// sentinel value for hrm_index
|
|
#define G1_NO_HRM_INDEX ((uint) -1)
|
|
|
|
// A HeapRegion is the smallest piece of a G1CollectedHeap that
|
|
// can be collected independently.
|
|
|
|
// Each heap region is self contained. top() and end() can never
|
|
// be set beyond the end of the region. For humongous objects,
|
|
// the first region is a StartsHumongous region. If the humongous
|
|
// object is larger than a heap region, the following regions will
|
|
// be of type ContinuesHumongous. In this case the top() of the
|
|
// StartHumongous region and all ContinuesHumongous regions except
|
|
// the last will point to their own end. The last ContinuesHumongous
|
|
// region may have top() equal the end of object if there isn't
|
|
// room for filler objects to pad out to the end of the region.
|
|
class HeapRegion : public CHeapObj<mtGC> {
|
|
friend class VMStructs;
|
|
|
|
HeapWord* const _bottom;
|
|
HeapWord* const _end;
|
|
|
|
HeapWord* volatile _top;
|
|
HeapWord* _compaction_top;
|
|
|
|
G1BlockOffsetTablePart _bot_part;
|
|
Mutex _par_alloc_lock;
|
|
// When we need to retire an allocation region, while other threads
|
|
// are also concurrently trying to allocate into it, we typically
|
|
// allocate a dummy object at the end of the region to ensure that
|
|
// no more allocations can take place in it. However, sometimes we
|
|
// want to know where the end of the last "real" object we allocated
|
|
// into the region was and this is what this keeps track.
|
|
HeapWord* _pre_dummy_top;
|
|
|
|
public:
|
|
HeapWord* bottom() const { return _bottom; }
|
|
HeapWord* end() const { return _end; }
|
|
|
|
void set_compaction_top(HeapWord* compaction_top) { _compaction_top = compaction_top; }
|
|
HeapWord* compaction_top() const { return _compaction_top; }
|
|
|
|
void set_top(HeapWord* value) { _top = value; }
|
|
HeapWord* top() const { return _top; }
|
|
|
|
// See the comment above in the declaration of _pre_dummy_top for an
|
|
// explanation of what it is.
|
|
void set_pre_dummy_top(HeapWord* pre_dummy_top) {
|
|
assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
|
|
_pre_dummy_top = pre_dummy_top;
|
|
}
|
|
HeapWord* pre_dummy_top() { return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top; }
|
|
void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
|
|
|
|
// Returns true iff the given the heap region contains the
|
|
// given address as part of an allocated object. This may
|
|
// be a potentially, so we restrict its use to assertion checks only.
|
|
bool is_in(const void* p) const {
|
|
return is_in_reserved(p);
|
|
}
|
|
bool is_in(oop obj) const {
|
|
return is_in((void*)obj);
|
|
}
|
|
// Returns true iff the given reserved memory of the space contains the
|
|
// given address.
|
|
bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
|
|
|
|
size_t capacity() const { return byte_size(bottom(), end()); }
|
|
size_t used() const { return byte_size(bottom(), top()); }
|
|
size_t free() const { return byte_size(top(), end()); }
|
|
|
|
bool is_empty() const { return used() == 0; }
|
|
|
|
private:
|
|
void reset_after_compaction() { set_top(compaction_top()); }
|
|
|
|
void clear(bool mangle_space);
|
|
|
|
HeapWord* block_start_const(const void* p) const;
|
|
|
|
void mangle_unused_area() PRODUCT_RETURN;
|
|
|
|
// Try to allocate at least min_word_size and up to desired_size from this region.
|
|
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
|
|
// space allocated.
|
|
// This version assumes that all allocation requests to this HeapRegion are properly
|
|
// synchronized.
|
|
inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
// Try to allocate at least min_word_size and up to desired_size from this HeapRegion.
|
|
// Returns NULL if not possible, otherwise sets actual_word_size to the amount of
|
|
// space allocated.
|
|
// This version synchronizes with other calls to par_allocate_impl().
|
|
inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
|
|
public:
|
|
HeapWord* block_start(const void* p);
|
|
|
|
void object_iterate(ObjectClosure* blk);
|
|
|
|
// Allocation (return NULL if full). Assumes the caller has established
|
|
// mutually exclusive access to the HeapRegion.
|
|
HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
// Allocation (return NULL if full). Enforces mutual exclusion internally.
|
|
HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
|
|
|
|
HeapWord* allocate(size_t word_size);
|
|
HeapWord* par_allocate(size_t word_size);
|
|
|
|
inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
|
|
inline HeapWord* allocate_no_bot_updates(size_t word_size);
|
|
inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
|
|
|
|
// Full GC support methods.
|
|
|
|
HeapWord* initialize_threshold();
|
|
HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
|
|
// Update heap region to be consistent after Full GC compaction.
|
|
void reset_humongous_during_compaction() {
|
|
assert(is_humongous(),
|
|
"should only be called for humongous regions");
|
|
|
|
zero_marked_bytes();
|
|
init_top_at_mark_start();
|
|
}
|
|
// Update heap region to be consistent after Full GC compaction.
|
|
void complete_compaction();
|
|
|
|
// All allocated blocks are occupied by objects in a HeapRegion
|
|
bool block_is_obj(const HeapWord* p) const;
|
|
|
|
// Returns whether the given object is dead based on TAMS and bitmap.
|
|
bool is_obj_dead(const oop obj, const G1CMBitMap* const prev_bitmap) const;
|
|
|
|
// Returns the object size for all valid block starts
|
|
// and the amount of unallocated words if called on top()
|
|
size_t block_size(const HeapWord* p) const;
|
|
|
|
// Scans through the region using the bitmap to determine what
|
|
// objects to call size_t ApplyToMarkedClosure::apply(oop) for.
|
|
template<typename ApplyToMarkedClosure>
|
|
inline void apply_to_marked_objects(G1CMBitMap* bitmap, ApplyToMarkedClosure* closure);
|
|
|
|
void reset_bot() {
|
|
_bot_part.reset_bot();
|
|
}
|
|
|
|
private:
|
|
// The remembered set for this region.
|
|
HeapRegionRemSet* _rem_set;
|
|
|
|
// Cached index of this region in the heap region sequence.
|
|
const uint _hrm_index;
|
|
|
|
HeapRegionType _type;
|
|
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* _humongous_start_region;
|
|
|
|
// True iff an attempt to evacuate an object in the region failed.
|
|
bool _evacuation_failed;
|
|
|
|
static const uint InvalidCSetIndex = UINT_MAX;
|
|
|
|
// The index in the optional regions array, if this region
|
|
// is considered optional during a mixed collections.
|
|
uint _index_in_opt_cset;
|
|
|
|
// Fields used by the HeapRegionSetBase class and subclasses.
|
|
HeapRegion* _next;
|
|
HeapRegion* _prev;
|
|
#ifdef ASSERT
|
|
HeapRegionSetBase* _containing_set;
|
|
#endif // ASSERT
|
|
|
|
// The start of the unmarked area. The unmarked area extends from this
|
|
// word until the top and/or end of the region, and is the part
|
|
// of the region for which no marking was done, i.e. objects may
|
|
// have been allocated in this part since the last mark phase.
|
|
// "prev" is the top at the start of the last completed marking.
|
|
// "next" is the top at the start of the in-progress marking (if any.)
|
|
HeapWord* _prev_top_at_mark_start;
|
|
HeapWord* _next_top_at_mark_start;
|
|
|
|
// We use concurrent marking to determine the amount of live data
|
|
// in each heap region.
|
|
size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
|
|
size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
|
|
|
|
void init_top_at_mark_start() {
|
|
assert(_prev_marked_bytes == 0 &&
|
|
_next_marked_bytes == 0,
|
|
"Must be called after zero_marked_bytes.");
|
|
_prev_top_at_mark_start = _next_top_at_mark_start = bottom();
|
|
}
|
|
|
|
// Data for young region survivor prediction.
|
|
uint _young_index_in_cset;
|
|
G1SurvRateGroup* _surv_rate_group;
|
|
int _age_index;
|
|
|
|
// Cached attributes used in the collection set policy information
|
|
|
|
// The calculated GC efficiency of the region.
|
|
double _gc_efficiency;
|
|
|
|
uint _node_index;
|
|
|
|
void report_region_type_change(G1HeapRegionTraceType::Type to);
|
|
|
|
// Returns whether the given object address refers to a dead object, and either the
|
|
// size of the object (if live) or the size of the block (if dead) in size.
|
|
// May
|
|
// - only called with obj < top()
|
|
// - not called on humongous objects or archive regions
|
|
inline bool is_obj_dead_with_size(const oop obj, const G1CMBitMap* const prev_bitmap, size_t* size) const;
|
|
|
|
// Iterate over the references covered by the given MemRegion in a humongous
|
|
// object and apply the given closure to them.
|
|
// Humongous objects are allocated directly in the old-gen. So we need special
|
|
// handling for concurrent processing encountering an in-progress allocation.
|
|
// Returns the address after the last actually scanned or NULL if the area could
|
|
// not be scanned (That should only happen when invoked concurrently with the
|
|
// mutator).
|
|
template <class Closure, bool is_gc_active>
|
|
inline HeapWord* do_oops_on_memregion_in_humongous(MemRegion mr,
|
|
Closure* cl,
|
|
G1CollectedHeap* g1h);
|
|
|
|
// Returns the block size of the given (dead, potentially having its class unloaded) object
|
|
// starting at p extending to at most the prev TAMS using the given mark bitmap.
|
|
inline size_t block_size_using_bitmap(const HeapWord* p, const G1CMBitMap* const prev_bitmap) const;
|
|
public:
|
|
HeapRegion(uint hrm_index, G1BlockOffsetTable* bot, MemRegion mr);
|
|
|
|
// If this region is a member of a HeapRegionManager, the index in that
|
|
// sequence, otherwise -1.
|
|
uint hrm_index() const { return _hrm_index; }
|
|
|
|
// Initializing the HeapRegion not only resets the data structure, but also
|
|
// resets the BOT for that heap region.
|
|
// The default values for clear_space means that we will do the clearing if
|
|
// there's clearing to be done ourselves. We also always mangle the space.
|
|
void initialize(bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
|
|
|
|
static int LogOfHRGrainBytes;
|
|
static int LogOfHRGrainWords;
|
|
static int LogCardsPerRegion;
|
|
|
|
static size_t GrainBytes;
|
|
static size_t GrainWords;
|
|
static size_t CardsPerRegion;
|
|
|
|
static size_t align_up_to_region_byte_size(size_t sz) {
|
|
return (sz + (size_t) GrainBytes - 1) &
|
|
~((1 << (size_t) LogOfHRGrainBytes) - 1);
|
|
}
|
|
|
|
// Returns whether a field is in the same region as the obj it points to.
|
|
template <typename T>
|
|
static bool is_in_same_region(T* p, oop obj) {
|
|
assert(p != NULL, "p can't be NULL");
|
|
assert(obj != NULL, "obj can't be NULL");
|
|
return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
|
|
}
|
|
|
|
static size_t max_region_size();
|
|
static size_t min_region_size_in_words();
|
|
|
|
// It sets up the heap region size (GrainBytes / GrainWords), as
|
|
// well as other related fields that are based on the heap region
|
|
// size (LogOfHRGrainBytes / LogOfHRGrainWords /
|
|
// CardsPerRegion). All those fields are considered constant
|
|
// throughout the JVM's execution, therefore they should only be set
|
|
// up once during initialization time.
|
|
static void setup_heap_region_size(size_t max_heap_size);
|
|
|
|
// The number of bytes marked live in the region in the last marking phase.
|
|
size_t marked_bytes() { return _prev_marked_bytes; }
|
|
size_t live_bytes() {
|
|
return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
|
|
}
|
|
|
|
// The number of bytes counted in the next marking.
|
|
size_t next_marked_bytes() { return _next_marked_bytes; }
|
|
// The number of bytes live wrt the next marking.
|
|
size_t next_live_bytes() {
|
|
return
|
|
(top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
|
|
}
|
|
|
|
// A lower bound on the amount of garbage bytes in the region.
|
|
size_t garbage_bytes() {
|
|
size_t used_at_mark_start_bytes =
|
|
(prev_top_at_mark_start() - bottom()) * HeapWordSize;
|
|
return used_at_mark_start_bytes - marked_bytes();
|
|
}
|
|
|
|
// Return the amount of bytes we'll reclaim if we collect this
|
|
// region. This includes not only the known garbage bytes in the
|
|
// region but also any unallocated space in it, i.e., [top, end),
|
|
// since it will also be reclaimed if we collect the region.
|
|
size_t reclaimable_bytes() {
|
|
size_t known_live_bytes = live_bytes();
|
|
assert(known_live_bytes <= capacity(), "sanity");
|
|
return capacity() - known_live_bytes;
|
|
}
|
|
|
|
// An upper bound on the number of live bytes in the region.
|
|
size_t max_live_bytes() { return used() - garbage_bytes(); }
|
|
|
|
void add_to_marked_bytes(size_t incr_bytes) {
|
|
_next_marked_bytes = _next_marked_bytes + incr_bytes;
|
|
}
|
|
|
|
void zero_marked_bytes() {
|
|
_prev_marked_bytes = _next_marked_bytes = 0;
|
|
}
|
|
// Get the start of the unmarked area in this region.
|
|
HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
|
|
HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
|
|
|
|
// Note the start or end of marking. This tells the heap region
|
|
// that the collector is about to start or has finished (concurrently)
|
|
// marking the heap.
|
|
|
|
// Notify the region that concurrent marking is starting. Initialize
|
|
// all fields related to the next marking info.
|
|
inline void note_start_of_marking();
|
|
|
|
// Notify the region that concurrent marking has finished. Copy the
|
|
// (now finalized) next marking info fields into the prev marking
|
|
// info fields.
|
|
inline void note_end_of_marking();
|
|
|
|
const char* get_type_str() const { return _type.get_str(); }
|
|
const char* get_short_type_str() const { return _type.get_short_str(); }
|
|
G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
|
|
|
|
bool is_free() const { return _type.is_free(); }
|
|
|
|
bool is_young() const { return _type.is_young(); }
|
|
bool is_eden() const { return _type.is_eden(); }
|
|
bool is_survivor() const { return _type.is_survivor(); }
|
|
|
|
bool is_humongous() const { return _type.is_humongous(); }
|
|
bool is_starts_humongous() const { return _type.is_starts_humongous(); }
|
|
bool is_continues_humongous() const { return _type.is_continues_humongous(); }
|
|
|
|
bool is_old() const { return _type.is_old(); }
|
|
|
|
bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
|
|
|
|
bool is_old_or_humongous_or_archive() const { return _type.is_old_or_humongous_or_archive(); }
|
|
|
|
// A pinned region contains objects which are not moved by garbage collections.
|
|
// Humongous regions and archive regions are pinned.
|
|
bool is_pinned() const { return _type.is_pinned(); }
|
|
|
|
// An archive region is a pinned region, also tagged as old, which
|
|
// should not be marked during mark/sweep. This allows the address
|
|
// space to be shared by JVM instances.
|
|
bool is_archive() const { return _type.is_archive(); }
|
|
bool is_open_archive() const { return _type.is_open_archive(); }
|
|
bool is_closed_archive() const { return _type.is_closed_archive(); }
|
|
|
|
void set_free();
|
|
|
|
void set_eden();
|
|
void set_eden_pre_gc();
|
|
void set_survivor();
|
|
|
|
void move_to_old();
|
|
void set_old();
|
|
|
|
void set_open_archive();
|
|
void set_closed_archive();
|
|
|
|
// For a humongous region, region in which it starts.
|
|
HeapRegion* humongous_start_region() const {
|
|
return _humongous_start_region;
|
|
}
|
|
|
|
// Makes the current region be a "starts humongous" region, i.e.,
|
|
// the first region in a series of one or more contiguous regions
|
|
// that will contain a single "humongous" object.
|
|
//
|
|
// obj_top : points to the top of the humongous object.
|
|
// fill_size : size of the filler object at the end of the region series.
|
|
void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
|
|
|
|
// Makes the current region be a "continues humongous'
|
|
// region. first_hr is the "start humongous" region of the series
|
|
// which this region will be part of.
|
|
void set_continues_humongous(HeapRegion* first_hr);
|
|
|
|
// Unsets the humongous-related fields on the region.
|
|
void clear_humongous();
|
|
|
|
// If the region has a remembered set, return a pointer to it.
|
|
HeapRegionRemSet* rem_set() const {
|
|
return _rem_set;
|
|
}
|
|
|
|
inline bool in_collection_set() const;
|
|
|
|
// Methods used by the HeapRegionSetBase class and subclasses.
|
|
|
|
// Getter and setter for the next and prev fields used to link regions into
|
|
// linked lists.
|
|
void set_next(HeapRegion* next) { _next = next; }
|
|
HeapRegion* next() { return _next; }
|
|
|
|
void set_prev(HeapRegion* prev) { _prev = prev; }
|
|
HeapRegion* prev() { return _prev; }
|
|
|
|
void unlink_from_list();
|
|
|
|
// Every region added to a set is tagged with a reference to that
|
|
// set. This is used for doing consistency checking to make sure that
|
|
// the contents of a set are as they should be and it's only
|
|
// available in non-product builds.
|
|
#ifdef ASSERT
|
|
void set_containing_set(HeapRegionSetBase* containing_set) {
|
|
assert((containing_set != NULL && _containing_set == NULL) ||
|
|
containing_set == NULL,
|
|
"containing_set: " PTR_FORMAT " "
|
|
"_containing_set: " PTR_FORMAT,
|
|
p2i(containing_set), p2i(_containing_set));
|
|
|
|
_containing_set = containing_set;
|
|
}
|
|
|
|
HeapRegionSetBase* containing_set() { return _containing_set; }
|
|
#else // ASSERT
|
|
void set_containing_set(HeapRegionSetBase* containing_set) { }
|
|
|
|
// containing_set() is only used in asserts so there's no reason
|
|
// to provide a dummy version of it.
|
|
#endif // ASSERT
|
|
|
|
|
|
// Reset the HeapRegion to default values and clear its remembered set.
|
|
// If clear_space is true, clear the HeapRegion's memory.
|
|
// Callers must ensure this is not called by multiple threads at the same time.
|
|
void hr_clear(bool clear_space);
|
|
// Clear the card table corresponding to this region.
|
|
void clear_cardtable();
|
|
|
|
// Returns the "evacuation_failed" property of the region.
|
|
bool evacuation_failed() { return _evacuation_failed; }
|
|
|
|
// Sets the "evacuation_failed" property of the region.
|
|
void set_evacuation_failed(bool b) {
|
|
_evacuation_failed = b;
|
|
|
|
if (b) {
|
|
_next_marked_bytes = 0;
|
|
}
|
|
}
|
|
|
|
// Notify the region that we are about to start processing
|
|
// self-forwarded objects during evac failure handling.
|
|
void note_self_forwarding_removal_start(bool during_concurrent_start,
|
|
bool during_conc_mark);
|
|
|
|
// Notify the region that we have finished processing self-forwarded
|
|
// objects during evac failure handling.
|
|
void note_self_forwarding_removal_end(size_t marked_bytes);
|
|
|
|
uint index_in_opt_cset() const {
|
|
assert(has_index_in_opt_cset(), "Opt cset index not set.");
|
|
return _index_in_opt_cset;
|
|
}
|
|
bool has_index_in_opt_cset() const { return _index_in_opt_cset != InvalidCSetIndex; }
|
|
void set_index_in_opt_cset(uint index) { _index_in_opt_cset = index; }
|
|
void clear_index_in_opt_cset() { _index_in_opt_cset = InvalidCSetIndex; }
|
|
|
|
void calc_gc_efficiency(void);
|
|
double gc_efficiency() const { return _gc_efficiency;}
|
|
|
|
uint young_index_in_cset() const { return _young_index_in_cset; }
|
|
void clear_young_index_in_cset() { _young_index_in_cset = 0; }
|
|
void set_young_index_in_cset(uint index) {
|
|
assert(index != UINT_MAX, "just checking");
|
|
assert(index != 0, "just checking");
|
|
assert(is_young(), "pre-condition");
|
|
_young_index_in_cset = index;
|
|
}
|
|
|
|
int age_in_surv_rate_group() const;
|
|
bool has_valid_age_in_surv_rate() const;
|
|
|
|
bool has_surv_rate_group() const;
|
|
|
|
double surv_rate_prediction(G1Predictions const& predictor) const;
|
|
|
|
void install_surv_rate_group(G1SurvRateGroup* surv_rate_group);
|
|
void uninstall_surv_rate_group();
|
|
|
|
void record_surv_words_in_group(size_t words_survived);
|
|
|
|
// Determine if an object has been allocated since the last
|
|
// mark performed by the collector. This returns true iff the object
|
|
// is within the unmarked area of the region.
|
|
bool obj_allocated_since_prev_marking(oop obj) const {
|
|
return cast_from_oop<HeapWord*>(obj) >= prev_top_at_mark_start();
|
|
}
|
|
bool obj_allocated_since_next_marking(oop obj) const {
|
|
return cast_from_oop<HeapWord*>(obj) >= next_top_at_mark_start();
|
|
}
|
|
|
|
// Update the region state after a failed evacuation.
|
|
void handle_evacuation_failure();
|
|
|
|
// Iterate over the objects overlapping the given memory region, applying cl
|
|
// to all references in the region. This is a helper for
|
|
// G1RemSet::refine_card*, and is tightly coupled with them.
|
|
// mr must not be empty. Must be trimmed to the allocated/parseable space in this region.
|
|
// This region must be old or humongous.
|
|
// Returns the next unscanned address if the designated objects were successfully
|
|
// processed, NULL if an unparseable part of the heap was encountered (That should
|
|
// only happen when invoked concurrently with the mutator).
|
|
template <bool is_gc_active, class Closure>
|
|
inline HeapWord* oops_on_memregion_seq_iterate_careful(MemRegion mr, Closure* cl);
|
|
|
|
// Routines for managing a list of code roots (attached to the
|
|
// this region's RSet) that point into this heap region.
|
|
void add_strong_code_root(nmethod* nm);
|
|
void add_strong_code_root_locked(nmethod* nm);
|
|
void remove_strong_code_root(nmethod* nm);
|
|
|
|
// Applies blk->do_code_blob() to each of the entries in
|
|
// the strong code roots list for this region
|
|
void strong_code_roots_do(CodeBlobClosure* blk) const;
|
|
|
|
uint node_index() const { return _node_index; }
|
|
void set_node_index(uint node_index) { _node_index = node_index; }
|
|
|
|
// Verify that the entries on the strong code root list for this
|
|
// region are live and include at least one pointer into this region.
|
|
void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
|
|
|
|
void print() const;
|
|
void print_on(outputStream* st) const;
|
|
|
|
// vo == UsePrevMarking -> use "prev" marking information,
|
|
// vo == UseNextMarking -> use "next" marking information
|
|
// vo == UseFullMarking -> use "next" marking bitmap but no TAMS
|
|
//
|
|
// NOTE: Only the "prev" marking information is guaranteed to be
|
|
// consistent most of the time, so most calls to this should use
|
|
// vo == UsePrevMarking.
|
|
// Currently, there is only one case where this is called with
|
|
// vo == UseNextMarking, which is to verify the "next" marking
|
|
// information at the end of remark.
|
|
// Currently there is only one place where this is called with
|
|
// vo == UseFullMarking, which is to verify the marking during a
|
|
// full GC.
|
|
void verify(VerifyOption vo, bool *failures) const;
|
|
|
|
// Verify using the "prev" marking information
|
|
void verify() const;
|
|
|
|
void verify_rem_set(VerifyOption vo, bool *failures) const;
|
|
void verify_rem_set() const;
|
|
};
|
|
|
|
// HeapRegionClosure is used for iterating over regions.
|
|
// Terminates the iteration when the "do_heap_region" method returns "true".
|
|
class HeapRegionClosure : public StackObj {
|
|
friend class HeapRegionManager;
|
|
friend class G1CollectionSet;
|
|
friend class G1CollectionSetCandidates;
|
|
|
|
bool _is_complete;
|
|
void set_incomplete() { _is_complete = false; }
|
|
|
|
public:
|
|
HeapRegionClosure(): _is_complete(true) {}
|
|
|
|
// Typically called on each region until it returns true.
|
|
virtual bool do_heap_region(HeapRegion* r) = 0;
|
|
|
|
// True after iteration if the closure was applied to all heap regions
|
|
// and returned "false" in all cases.
|
|
bool is_complete() { return _is_complete; }
|
|
};
|
|
|
|
#endif // SHARE_GC_G1_HEAPREGION_HPP
|