6dc6f53f6a
Tiered policy requires highest compilation levels always available Reviewed-by: kvn, vlivanov
2486 lines
76 KiB
C++
2486 lines
76 KiB
C++
/*
|
|
* Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
|
|
#define SHARE_VM_OOPS_METHODDATAOOP_HPP
|
|
|
|
#include "interpreter/bytecodes.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/method.hpp"
|
|
#include "oops/oop.hpp"
|
|
#include "runtime/orderAccess.hpp"
|
|
|
|
class BytecodeStream;
|
|
class KlassSizeStats;
|
|
|
|
// The MethodData object collects counts and other profile information
|
|
// during zeroth-tier (interpretive) and first-tier execution.
|
|
// The profile is used later by compilation heuristics. Some heuristics
|
|
// enable use of aggressive (or "heroic") optimizations. An aggressive
|
|
// optimization often has a down-side, a corner case that it handles
|
|
// poorly, but which is thought to be rare. The profile provides
|
|
// evidence of this rarity for a given method or even BCI. It allows
|
|
// the compiler to back out of the optimization at places where it
|
|
// has historically been a poor choice. Other heuristics try to use
|
|
// specific information gathered about types observed at a given site.
|
|
//
|
|
// All data in the profile is approximate. It is expected to be accurate
|
|
// on the whole, but the system expects occasional inaccuraces, due to
|
|
// counter overflow, multiprocessor races during data collection, space
|
|
// limitations, missing MDO blocks, etc. Bad or missing data will degrade
|
|
// optimization quality but will not affect correctness. Also, each MDO
|
|
// is marked with its birth-date ("creation_mileage") which can be used
|
|
// to assess the quality ("maturity") of its data.
|
|
//
|
|
// Short (<32-bit) counters are designed to overflow to a known "saturated"
|
|
// state. Also, certain recorded per-BCI events are given one-bit counters
|
|
// which overflow to a saturated state which applied to all counters at
|
|
// that BCI. In other words, there is a small lattice which approximates
|
|
// the ideal of an infinite-precision counter for each event at each BCI,
|
|
// and the lattice quickly "bottoms out" in a state where all counters
|
|
// are taken to be indefinitely large.
|
|
//
|
|
// The reader will find many data races in profile gathering code, starting
|
|
// with invocation counter incrementation. None of these races harm correct
|
|
// execution of the compiled code.
|
|
|
|
// forward decl
|
|
class ProfileData;
|
|
|
|
// DataLayout
|
|
//
|
|
// Overlay for generic profiling data.
|
|
class DataLayout VALUE_OBJ_CLASS_SPEC {
|
|
friend class VMStructs;
|
|
|
|
private:
|
|
// Every data layout begins with a header. This header
|
|
// contains a tag, which is used to indicate the size/layout
|
|
// of the data, 4 bits of flags, which can be used in any way,
|
|
// 4 bits of trap history (none/one reason/many reasons),
|
|
// and a bci, which is used to tie this piece of data to a
|
|
// specific bci in the bytecodes.
|
|
union {
|
|
intptr_t _bits;
|
|
struct {
|
|
u1 _tag;
|
|
u1 _flags;
|
|
u2 _bci;
|
|
} _struct;
|
|
} _header;
|
|
|
|
// The data layout has an arbitrary number of cells, each sized
|
|
// to accomodate a pointer or an integer.
|
|
intptr_t _cells[1];
|
|
|
|
// Some types of data layouts need a length field.
|
|
static bool needs_array_len(u1 tag);
|
|
|
|
public:
|
|
enum {
|
|
counter_increment = 1
|
|
};
|
|
|
|
enum {
|
|
cell_size = sizeof(intptr_t)
|
|
};
|
|
|
|
// Tag values
|
|
enum {
|
|
no_tag,
|
|
bit_data_tag,
|
|
counter_data_tag,
|
|
jump_data_tag,
|
|
receiver_type_data_tag,
|
|
virtual_call_data_tag,
|
|
ret_data_tag,
|
|
branch_data_tag,
|
|
multi_branch_data_tag,
|
|
arg_info_data_tag,
|
|
call_type_data_tag,
|
|
virtual_call_type_data_tag,
|
|
parameters_type_data_tag,
|
|
speculative_trap_data_tag
|
|
};
|
|
|
|
enum {
|
|
// The _struct._flags word is formatted as [trap_state:4 | flags:4].
|
|
// The trap state breaks down further as [recompile:1 | reason:3].
|
|
// This further breakdown is defined in deoptimization.cpp.
|
|
// See Deoptimization::trap_state_reason for an assert that
|
|
// trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
|
|
//
|
|
// The trap_state is collected only if ProfileTraps is true.
|
|
trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
|
|
trap_shift = BitsPerByte - trap_bits,
|
|
trap_mask = right_n_bits(trap_bits),
|
|
trap_mask_in_place = (trap_mask << trap_shift),
|
|
flag_limit = trap_shift,
|
|
flag_mask = right_n_bits(flag_limit),
|
|
first_flag = 0
|
|
};
|
|
|
|
// Size computation
|
|
static int header_size_in_bytes() {
|
|
return cell_size;
|
|
}
|
|
static int header_size_in_cells() {
|
|
return 1;
|
|
}
|
|
|
|
static int compute_size_in_bytes(int cell_count) {
|
|
return header_size_in_bytes() + cell_count * cell_size;
|
|
}
|
|
|
|
// Initialization
|
|
void initialize(u1 tag, u2 bci, int cell_count);
|
|
|
|
// Accessors
|
|
u1 tag() {
|
|
return _header._struct._tag;
|
|
}
|
|
|
|
// Return a few bits of trap state. Range is [0..trap_mask].
|
|
// The state tells if traps with zero, one, or many reasons have occurred.
|
|
// It also tells whether zero or many recompilations have occurred.
|
|
// The associated trap histogram in the MDO itself tells whether
|
|
// traps are common or not. If a BCI shows that a trap X has
|
|
// occurred, and the MDO shows N occurrences of X, we make the
|
|
// simplifying assumption that all N occurrences can be blamed
|
|
// on that BCI.
|
|
int trap_state() const {
|
|
return ((_header._struct._flags >> trap_shift) & trap_mask);
|
|
}
|
|
|
|
void set_trap_state(int new_state) {
|
|
assert(ProfileTraps, "used only under +ProfileTraps");
|
|
uint old_flags = (_header._struct._flags & flag_mask);
|
|
_header._struct._flags = (new_state << trap_shift) | old_flags;
|
|
}
|
|
|
|
u1 flags() const {
|
|
return _header._struct._flags;
|
|
}
|
|
|
|
u2 bci() const {
|
|
return _header._struct._bci;
|
|
}
|
|
|
|
void set_header(intptr_t value) {
|
|
_header._bits = value;
|
|
}
|
|
intptr_t header() {
|
|
return _header._bits;
|
|
}
|
|
void set_cell_at(int index, intptr_t value) {
|
|
_cells[index] = value;
|
|
}
|
|
void release_set_cell_at(int index, intptr_t value) {
|
|
OrderAccess::release_store_ptr(&_cells[index], value);
|
|
}
|
|
intptr_t cell_at(int index) const {
|
|
return _cells[index];
|
|
}
|
|
|
|
void set_flag_at(int flag_number) {
|
|
assert(flag_number < flag_limit, "oob");
|
|
_header._struct._flags |= (0x1 << flag_number);
|
|
}
|
|
bool flag_at(int flag_number) const {
|
|
assert(flag_number < flag_limit, "oob");
|
|
return (_header._struct._flags & (0x1 << flag_number)) != 0;
|
|
}
|
|
|
|
// Low-level support for code generation.
|
|
static ByteSize header_offset() {
|
|
return byte_offset_of(DataLayout, _header);
|
|
}
|
|
static ByteSize tag_offset() {
|
|
return byte_offset_of(DataLayout, _header._struct._tag);
|
|
}
|
|
static ByteSize flags_offset() {
|
|
return byte_offset_of(DataLayout, _header._struct._flags);
|
|
}
|
|
static ByteSize bci_offset() {
|
|
return byte_offset_of(DataLayout, _header._struct._bci);
|
|
}
|
|
static ByteSize cell_offset(int index) {
|
|
return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
|
|
}
|
|
#ifdef CC_INTERP
|
|
static int cell_offset_in_bytes(int index) {
|
|
return (int)offset_of(DataLayout, _cells[index]);
|
|
}
|
|
#endif // CC_INTERP
|
|
// Return a value which, when or-ed as a byte into _flags, sets the flag.
|
|
static int flag_number_to_byte_constant(int flag_number) {
|
|
assert(0 <= flag_number && flag_number < flag_limit, "oob");
|
|
DataLayout temp; temp.set_header(0);
|
|
temp.set_flag_at(flag_number);
|
|
return temp._header._struct._flags;
|
|
}
|
|
// Return a value which, when or-ed as a word into _header, sets the flag.
|
|
static intptr_t flag_mask_to_header_mask(int byte_constant) {
|
|
DataLayout temp; temp.set_header(0);
|
|
temp._header._struct._flags = byte_constant;
|
|
return temp._header._bits;
|
|
}
|
|
|
|
ProfileData* data_in();
|
|
|
|
// GC support
|
|
void clean_weak_klass_links(BoolObjectClosure* cl);
|
|
|
|
// Redefinition support
|
|
void clean_weak_method_links();
|
|
};
|
|
|
|
|
|
// ProfileData class hierarchy
|
|
class ProfileData;
|
|
class BitData;
|
|
class CounterData;
|
|
class ReceiverTypeData;
|
|
class VirtualCallData;
|
|
class VirtualCallTypeData;
|
|
class RetData;
|
|
class CallTypeData;
|
|
class JumpData;
|
|
class BranchData;
|
|
class ArrayData;
|
|
class MultiBranchData;
|
|
class ArgInfoData;
|
|
class ParametersTypeData;
|
|
class SpeculativeTrapData;
|
|
|
|
// ProfileData
|
|
//
|
|
// A ProfileData object is created to refer to a section of profiling
|
|
// data in a structured way.
|
|
class ProfileData : public ResourceObj {
|
|
friend class TypeEntries;
|
|
friend class ReturnTypeEntry;
|
|
friend class TypeStackSlotEntries;
|
|
private:
|
|
enum {
|
|
tab_width_one = 16,
|
|
tab_width_two = 36
|
|
};
|
|
|
|
// This is a pointer to a section of profiling data.
|
|
DataLayout* _data;
|
|
|
|
char* print_data_on_helper(const MethodData* md) const;
|
|
|
|
protected:
|
|
DataLayout* data() { return _data; }
|
|
const DataLayout* data() const { return _data; }
|
|
|
|
enum {
|
|
cell_size = DataLayout::cell_size
|
|
};
|
|
|
|
public:
|
|
// How many cells are in this?
|
|
virtual int cell_count() const {
|
|
ShouldNotReachHere();
|
|
return -1;
|
|
}
|
|
|
|
// Return the size of this data.
|
|
int size_in_bytes() {
|
|
return DataLayout::compute_size_in_bytes(cell_count());
|
|
}
|
|
|
|
protected:
|
|
// Low-level accessors for underlying data
|
|
void set_intptr_at(int index, intptr_t value) {
|
|
assert(0 <= index && index < cell_count(), "oob");
|
|
data()->set_cell_at(index, value);
|
|
}
|
|
void release_set_intptr_at(int index, intptr_t value) {
|
|
assert(0 <= index && index < cell_count(), "oob");
|
|
data()->release_set_cell_at(index, value);
|
|
}
|
|
intptr_t intptr_at(int index) const {
|
|
assert(0 <= index && index < cell_count(), "oob");
|
|
return data()->cell_at(index);
|
|
}
|
|
void set_uint_at(int index, uint value) {
|
|
set_intptr_at(index, (intptr_t) value);
|
|
}
|
|
void release_set_uint_at(int index, uint value) {
|
|
release_set_intptr_at(index, (intptr_t) value);
|
|
}
|
|
uint uint_at(int index) const {
|
|
return (uint)intptr_at(index);
|
|
}
|
|
void set_int_at(int index, int value) {
|
|
set_intptr_at(index, (intptr_t) value);
|
|
}
|
|
void release_set_int_at(int index, int value) {
|
|
release_set_intptr_at(index, (intptr_t) value);
|
|
}
|
|
int int_at(int index) const {
|
|
return (int)intptr_at(index);
|
|
}
|
|
int int_at_unchecked(int index) const {
|
|
return (int)data()->cell_at(index);
|
|
}
|
|
void set_oop_at(int index, oop value) {
|
|
set_intptr_at(index, cast_from_oop<intptr_t>(value));
|
|
}
|
|
oop oop_at(int index) const {
|
|
return cast_to_oop(intptr_at(index));
|
|
}
|
|
|
|
void set_flag_at(int flag_number) {
|
|
data()->set_flag_at(flag_number);
|
|
}
|
|
bool flag_at(int flag_number) const {
|
|
return data()->flag_at(flag_number);
|
|
}
|
|
|
|
// two convenient imports for use by subclasses:
|
|
static ByteSize cell_offset(int index) {
|
|
return DataLayout::cell_offset(index);
|
|
}
|
|
static int flag_number_to_byte_constant(int flag_number) {
|
|
return DataLayout::flag_number_to_byte_constant(flag_number);
|
|
}
|
|
|
|
ProfileData(DataLayout* data) {
|
|
_data = data;
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
// Static low level accessors for DataLayout with ProfileData's semantics.
|
|
|
|
static int cell_offset_in_bytes(int index) {
|
|
return DataLayout::cell_offset_in_bytes(index);
|
|
}
|
|
|
|
static void increment_uint_at_no_overflow(DataLayout* layout, int index,
|
|
int inc = DataLayout::counter_increment) {
|
|
uint count = ((uint)layout->cell_at(index)) + inc;
|
|
if (count == 0) return;
|
|
layout->set_cell_at(index, (intptr_t) count);
|
|
}
|
|
|
|
static int int_at(DataLayout* layout, int index) {
|
|
return (int)layout->cell_at(index);
|
|
}
|
|
|
|
static int uint_at(DataLayout* layout, int index) {
|
|
return (uint)layout->cell_at(index);
|
|
}
|
|
|
|
static oop oop_at(DataLayout* layout, int index) {
|
|
return cast_to_oop(layout->cell_at(index));
|
|
}
|
|
|
|
static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
|
|
layout->set_cell_at(index, (intptr_t) value);
|
|
}
|
|
|
|
static void set_flag_at(DataLayout* layout, int flag_number) {
|
|
layout->set_flag_at(flag_number);
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
public:
|
|
// Constructor for invalid ProfileData.
|
|
ProfileData();
|
|
|
|
u2 bci() const {
|
|
return data()->bci();
|
|
}
|
|
|
|
address dp() {
|
|
return (address)_data;
|
|
}
|
|
|
|
int trap_state() const {
|
|
return data()->trap_state();
|
|
}
|
|
void set_trap_state(int new_state) {
|
|
data()->set_trap_state(new_state);
|
|
}
|
|
|
|
// Type checking
|
|
virtual bool is_BitData() const { return false; }
|
|
virtual bool is_CounterData() const { return false; }
|
|
virtual bool is_JumpData() const { return false; }
|
|
virtual bool is_ReceiverTypeData()const { return false; }
|
|
virtual bool is_VirtualCallData() const { return false; }
|
|
virtual bool is_RetData() const { return false; }
|
|
virtual bool is_BranchData() const { return false; }
|
|
virtual bool is_ArrayData() const { return false; }
|
|
virtual bool is_MultiBranchData() const { return false; }
|
|
virtual bool is_ArgInfoData() const { return false; }
|
|
virtual bool is_CallTypeData() const { return false; }
|
|
virtual bool is_VirtualCallTypeData()const { return false; }
|
|
virtual bool is_ParametersTypeData() const { return false; }
|
|
virtual bool is_SpeculativeTrapData()const { return false; }
|
|
|
|
|
|
BitData* as_BitData() const {
|
|
assert(is_BitData(), "wrong type");
|
|
return is_BitData() ? (BitData*) this : NULL;
|
|
}
|
|
CounterData* as_CounterData() const {
|
|
assert(is_CounterData(), "wrong type");
|
|
return is_CounterData() ? (CounterData*) this : NULL;
|
|
}
|
|
JumpData* as_JumpData() const {
|
|
assert(is_JumpData(), "wrong type");
|
|
return is_JumpData() ? (JumpData*) this : NULL;
|
|
}
|
|
ReceiverTypeData* as_ReceiverTypeData() const {
|
|
assert(is_ReceiverTypeData(), "wrong type");
|
|
return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
|
|
}
|
|
VirtualCallData* as_VirtualCallData() const {
|
|
assert(is_VirtualCallData(), "wrong type");
|
|
return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
|
|
}
|
|
RetData* as_RetData() const {
|
|
assert(is_RetData(), "wrong type");
|
|
return is_RetData() ? (RetData*) this : NULL;
|
|
}
|
|
BranchData* as_BranchData() const {
|
|
assert(is_BranchData(), "wrong type");
|
|
return is_BranchData() ? (BranchData*) this : NULL;
|
|
}
|
|
ArrayData* as_ArrayData() const {
|
|
assert(is_ArrayData(), "wrong type");
|
|
return is_ArrayData() ? (ArrayData*) this : NULL;
|
|
}
|
|
MultiBranchData* as_MultiBranchData() const {
|
|
assert(is_MultiBranchData(), "wrong type");
|
|
return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
|
|
}
|
|
ArgInfoData* as_ArgInfoData() const {
|
|
assert(is_ArgInfoData(), "wrong type");
|
|
return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
|
|
}
|
|
CallTypeData* as_CallTypeData() const {
|
|
assert(is_CallTypeData(), "wrong type");
|
|
return is_CallTypeData() ? (CallTypeData*)this : NULL;
|
|
}
|
|
VirtualCallTypeData* as_VirtualCallTypeData() const {
|
|
assert(is_VirtualCallTypeData(), "wrong type");
|
|
return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
|
|
}
|
|
ParametersTypeData* as_ParametersTypeData() const {
|
|
assert(is_ParametersTypeData(), "wrong type");
|
|
return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
|
|
}
|
|
SpeculativeTrapData* as_SpeculativeTrapData() const {
|
|
assert(is_SpeculativeTrapData(), "wrong type");
|
|
return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
|
|
}
|
|
|
|
|
|
// Subclass specific initialization
|
|
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
|
|
|
|
// GC support
|
|
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
|
|
|
|
// Redefinition support
|
|
virtual void clean_weak_method_links() {}
|
|
|
|
// CI translation: ProfileData can represent both MethodDataOop data
|
|
// as well as CIMethodData data. This function is provided for translating
|
|
// an oop in a ProfileData to the ci equivalent. Generally speaking,
|
|
// most ProfileData don't require any translation, so we provide the null
|
|
// translation here, and the required translators are in the ci subclasses.
|
|
virtual void translate_from(const ProfileData* data) {}
|
|
|
|
virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
void print_data_on(outputStream* st, const MethodData* md) const;
|
|
|
|
void print_shared(outputStream* st, const char* name, const char* extra) const;
|
|
void tab(outputStream* st, bool first = false) const;
|
|
};
|
|
|
|
// BitData
|
|
//
|
|
// A BitData holds a flag or two in its header.
|
|
class BitData : public ProfileData {
|
|
protected:
|
|
enum {
|
|
// null_seen:
|
|
// saw a null operand (cast/aastore/instanceof)
|
|
null_seen_flag = DataLayout::first_flag + 0
|
|
};
|
|
enum { bit_cell_count = 0 }; // no additional data fields needed.
|
|
public:
|
|
BitData(DataLayout* layout) : ProfileData(layout) {
|
|
}
|
|
|
|
virtual bool is_BitData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return bit_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Accessor
|
|
|
|
// The null_seen flag bit is specially known to the interpreter.
|
|
// Consulting it allows the compiler to avoid setting up null_check traps.
|
|
bool null_seen() { return flag_at(null_seen_flag); }
|
|
void set_null_seen() { set_flag_at(null_seen_flag); }
|
|
|
|
|
|
// Code generation support
|
|
static int null_seen_byte_constant() {
|
|
return flag_number_to_byte_constant(null_seen_flag);
|
|
}
|
|
|
|
static ByteSize bit_data_size() {
|
|
return cell_offset(bit_cell_count);
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static int bit_data_size_in_bytes() {
|
|
return cell_offset_in_bytes(bit_cell_count);
|
|
}
|
|
|
|
static void set_null_seen(DataLayout* layout) {
|
|
set_flag_at(layout, null_seen_flag);
|
|
}
|
|
|
|
static DataLayout* advance(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// CounterData
|
|
//
|
|
// A CounterData corresponds to a simple counter.
|
|
class CounterData : public BitData {
|
|
protected:
|
|
enum {
|
|
count_off,
|
|
counter_cell_count
|
|
};
|
|
public:
|
|
CounterData(DataLayout* layout) : BitData(layout) {}
|
|
|
|
virtual bool is_CounterData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return counter_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessor
|
|
uint count() const {
|
|
return uint_at(count_off);
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize count_offset() {
|
|
return cell_offset(count_off);
|
|
}
|
|
static ByteSize counter_data_size() {
|
|
return cell_offset(counter_cell_count);
|
|
}
|
|
|
|
void set_count(uint count) {
|
|
set_uint_at(count_off, count);
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static int counter_data_size_in_bytes() {
|
|
return cell_offset_in_bytes(counter_cell_count);
|
|
}
|
|
|
|
static void increment_count_no_overflow(DataLayout* layout) {
|
|
increment_uint_at_no_overflow(layout, count_off);
|
|
}
|
|
|
|
// Support counter decrementation at checkcast / subtype check failed.
|
|
static void decrement_count(DataLayout* layout) {
|
|
increment_uint_at_no_overflow(layout, count_off, -1);
|
|
}
|
|
|
|
static DataLayout* advance(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// JumpData
|
|
//
|
|
// A JumpData is used to access profiling information for a direct
|
|
// branch. It is a counter, used for counting the number of branches,
|
|
// plus a data displacement, used for realigning the data pointer to
|
|
// the corresponding target bci.
|
|
class JumpData : public ProfileData {
|
|
protected:
|
|
enum {
|
|
taken_off_set,
|
|
displacement_off_set,
|
|
jump_cell_count
|
|
};
|
|
|
|
void set_displacement(int displacement) {
|
|
set_int_at(displacement_off_set, displacement);
|
|
}
|
|
|
|
public:
|
|
JumpData(DataLayout* layout) : ProfileData(layout) {
|
|
assert(layout->tag() == DataLayout::jump_data_tag ||
|
|
layout->tag() == DataLayout::branch_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_JumpData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return jump_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessor
|
|
uint taken() const {
|
|
return uint_at(taken_off_set);
|
|
}
|
|
|
|
void set_taken(uint cnt) {
|
|
set_uint_at(taken_off_set, cnt);
|
|
}
|
|
|
|
// Saturating counter
|
|
uint inc_taken() {
|
|
uint cnt = taken() + 1;
|
|
// Did we wrap? Will compiler screw us??
|
|
if (cnt == 0) cnt--;
|
|
set_uint_at(taken_off_set, cnt);
|
|
return cnt;
|
|
}
|
|
|
|
int displacement() const {
|
|
return int_at(displacement_off_set);
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize taken_offset() {
|
|
return cell_offset(taken_off_set);
|
|
}
|
|
|
|
static ByteSize displacement_offset() {
|
|
return cell_offset(displacement_off_set);
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static void increment_taken_count_no_overflow(DataLayout* layout) {
|
|
increment_uint_at_no_overflow(layout, taken_off_set);
|
|
}
|
|
|
|
static DataLayout* advance_taken(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
|
|
}
|
|
|
|
static uint taken_count(DataLayout* layout) {
|
|
return (uint) uint_at(layout, taken_off_set);
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
// Specific initialization.
|
|
void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// Entries in a ProfileData object to record types: it can either be
|
|
// none (no profile), unknown (conflicting profile data) or a klass if
|
|
// a single one is seen. Whether a null reference was seen is also
|
|
// recorded. No counter is associated with the type and a single type
|
|
// is tracked (unlike VirtualCallData).
|
|
class TypeEntries {
|
|
|
|
public:
|
|
|
|
// A single cell is used to record information for a type:
|
|
// - the cell is initialized to 0
|
|
// - when a type is discovered it is stored in the cell
|
|
// - bit zero of the cell is used to record whether a null reference
|
|
// was encountered or not
|
|
// - bit 1 is set to record a conflict in the type information
|
|
|
|
enum {
|
|
null_seen = 1,
|
|
type_mask = ~null_seen,
|
|
type_unknown = 2,
|
|
status_bits = null_seen | type_unknown,
|
|
type_klass_mask = ~status_bits
|
|
};
|
|
|
|
// what to initialize a cell to
|
|
static intptr_t type_none() {
|
|
return 0;
|
|
}
|
|
|
|
// null seen = bit 0 set?
|
|
static bool was_null_seen(intptr_t v) {
|
|
return (v & null_seen) != 0;
|
|
}
|
|
|
|
// conflicting type information = bit 1 set?
|
|
static bool is_type_unknown(intptr_t v) {
|
|
return (v & type_unknown) != 0;
|
|
}
|
|
|
|
// not type information yet = all bits cleared, ignoring bit 0?
|
|
static bool is_type_none(intptr_t v) {
|
|
return (v & type_mask) == 0;
|
|
}
|
|
|
|
// recorded type: cell without bit 0 and 1
|
|
static intptr_t klass_part(intptr_t v) {
|
|
intptr_t r = v & type_klass_mask;
|
|
return r;
|
|
}
|
|
|
|
// type recorded
|
|
static Klass* valid_klass(intptr_t k) {
|
|
if (!is_type_none(k) &&
|
|
!is_type_unknown(k)) {
|
|
Klass* res = (Klass*)klass_part(k);
|
|
assert(res != NULL, "invalid");
|
|
return res;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static intptr_t with_status(intptr_t k, intptr_t in) {
|
|
return k | (in & status_bits);
|
|
}
|
|
|
|
static intptr_t with_status(Klass* k, intptr_t in) {
|
|
return with_status((intptr_t)k, in);
|
|
}
|
|
|
|
static void print_klass(outputStream* st, intptr_t k);
|
|
|
|
// GC support
|
|
static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
|
|
|
|
protected:
|
|
// ProfileData object these entries are part of
|
|
ProfileData* _pd;
|
|
// offset within the ProfileData object where the entries start
|
|
const int _base_off;
|
|
|
|
TypeEntries(int base_off)
|
|
: _base_off(base_off), _pd(NULL) {}
|
|
|
|
void set_intptr_at(int index, intptr_t value) {
|
|
_pd->set_intptr_at(index, value);
|
|
}
|
|
|
|
intptr_t intptr_at(int index) const {
|
|
return _pd->intptr_at(index);
|
|
}
|
|
|
|
public:
|
|
void set_profile_data(ProfileData* pd) {
|
|
_pd = pd;
|
|
}
|
|
};
|
|
|
|
// Type entries used for arguments passed at a call and parameters on
|
|
// method entry. 2 cells per entry: one for the type encoded as in
|
|
// TypeEntries and one initialized with the stack slot where the
|
|
// profiled object is to be found so that the interpreter can locate
|
|
// it quickly.
|
|
class TypeStackSlotEntries : public TypeEntries {
|
|
|
|
private:
|
|
enum {
|
|
stack_slot_entry,
|
|
type_entry,
|
|
per_arg_cell_count
|
|
};
|
|
|
|
// offset of cell for stack slot for entry i within ProfileData object
|
|
int stack_slot_offset(int i) const {
|
|
return _base_off + stack_slot_local_offset(i);
|
|
}
|
|
|
|
const int _number_of_entries;
|
|
|
|
// offset of cell for type for entry i within ProfileData object
|
|
int type_offset_in_cells(int i) const {
|
|
return _base_off + type_local_offset(i);
|
|
}
|
|
|
|
public:
|
|
|
|
TypeStackSlotEntries(int base_off, int nb_entries)
|
|
: TypeEntries(base_off), _number_of_entries(nb_entries) {}
|
|
|
|
static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
|
|
|
|
void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
|
|
|
|
int number_of_entries() const { return _number_of_entries; }
|
|
|
|
// offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
|
|
static int stack_slot_local_offset(int i) {
|
|
return i * per_arg_cell_count + stack_slot_entry;
|
|
}
|
|
|
|
// offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
|
|
static int type_local_offset(int i) {
|
|
return i * per_arg_cell_count + type_entry;
|
|
}
|
|
|
|
// stack slot for entry i
|
|
uint stack_slot(int i) const {
|
|
assert(i >= 0 && i < _number_of_entries, "oob");
|
|
return _pd->uint_at(stack_slot_offset(i));
|
|
}
|
|
|
|
// set stack slot for entry i
|
|
void set_stack_slot(int i, uint num) {
|
|
assert(i >= 0 && i < _number_of_entries, "oob");
|
|
_pd->set_uint_at(stack_slot_offset(i), num);
|
|
}
|
|
|
|
// type for entry i
|
|
intptr_t type(int i) const {
|
|
assert(i >= 0 && i < _number_of_entries, "oob");
|
|
return _pd->intptr_at(type_offset_in_cells(i));
|
|
}
|
|
|
|
// set type for entry i
|
|
void set_type(int i, intptr_t k) {
|
|
assert(i >= 0 && i < _number_of_entries, "oob");
|
|
_pd->set_intptr_at(type_offset_in_cells(i), k);
|
|
}
|
|
|
|
static ByteSize per_arg_size() {
|
|
return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
|
|
}
|
|
|
|
static int per_arg_count() {
|
|
return per_arg_cell_count;
|
|
}
|
|
|
|
ByteSize type_offset(int i) const {
|
|
return DataLayout::cell_offset(type_offset_in_cells(i));
|
|
}
|
|
|
|
// GC support
|
|
void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
|
|
|
|
void print_data_on(outputStream* st) const;
|
|
};
|
|
|
|
// Type entry used for return from a call. A single cell to record the
|
|
// type.
|
|
class ReturnTypeEntry : public TypeEntries {
|
|
|
|
private:
|
|
enum {
|
|
cell_count = 1
|
|
};
|
|
|
|
public:
|
|
ReturnTypeEntry(int base_off)
|
|
: TypeEntries(base_off) {}
|
|
|
|
void post_initialize() {
|
|
set_type(type_none());
|
|
}
|
|
|
|
intptr_t type() const {
|
|
return _pd->intptr_at(_base_off);
|
|
}
|
|
|
|
void set_type(intptr_t k) {
|
|
_pd->set_intptr_at(_base_off, k);
|
|
}
|
|
|
|
static int static_cell_count() {
|
|
return cell_count;
|
|
}
|
|
|
|
static ByteSize size() {
|
|
return in_ByteSize(cell_count * DataLayout::cell_size);
|
|
}
|
|
|
|
ByteSize type_offset() {
|
|
return DataLayout::cell_offset(_base_off);
|
|
}
|
|
|
|
// GC support
|
|
void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
|
|
|
|
void print_data_on(outputStream* st) const;
|
|
};
|
|
|
|
// Entries to collect type information at a call: contains arguments
|
|
// (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
|
|
// number of cells. Because the number of cells for the return type is
|
|
// smaller than the number of cells for the type of an arguments, the
|
|
// number of cells is used to tell how many arguments are profiled and
|
|
// whether a return value is profiled. See has_arguments() and
|
|
// has_return().
|
|
class TypeEntriesAtCall {
|
|
private:
|
|
static int stack_slot_local_offset(int i) {
|
|
return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
|
|
}
|
|
|
|
static int argument_type_local_offset(int i) {
|
|
return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
|
|
}
|
|
|
|
public:
|
|
|
|
static int header_cell_count() {
|
|
return 1;
|
|
}
|
|
|
|
static int cell_count_local_offset() {
|
|
return 0;
|
|
}
|
|
|
|
static int compute_cell_count(BytecodeStream* stream);
|
|
|
|
static void initialize(DataLayout* dl, int base, int cell_count) {
|
|
int off = base + cell_count_local_offset();
|
|
dl->set_cell_at(off, cell_count - base - header_cell_count());
|
|
}
|
|
|
|
static bool arguments_profiling_enabled();
|
|
static bool return_profiling_enabled();
|
|
|
|
// Code generation support
|
|
static ByteSize cell_count_offset() {
|
|
return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
|
|
}
|
|
|
|
static ByteSize args_data_offset() {
|
|
return in_ByteSize(header_cell_count() * DataLayout::cell_size);
|
|
}
|
|
|
|
static ByteSize stack_slot_offset(int i) {
|
|
return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
|
|
}
|
|
|
|
static ByteSize argument_type_offset(int i) {
|
|
return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
|
|
}
|
|
|
|
static ByteSize return_only_size() {
|
|
return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
|
|
}
|
|
|
|
};
|
|
|
|
// CallTypeData
|
|
//
|
|
// A CallTypeData is used to access profiling information about a non
|
|
// virtual call for which we collect type information about arguments
|
|
// and return value.
|
|
class CallTypeData : public CounterData {
|
|
private:
|
|
// entries for arguments if any
|
|
TypeStackSlotEntries _args;
|
|
// entry for return type if any
|
|
ReturnTypeEntry _ret;
|
|
|
|
int cell_count_global_offset() const {
|
|
return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
|
|
}
|
|
|
|
// number of cells not counting the header
|
|
int cell_count_no_header() const {
|
|
return uint_at(cell_count_global_offset());
|
|
}
|
|
|
|
void check_number_of_arguments(int total) {
|
|
assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
|
|
}
|
|
|
|
public:
|
|
CallTypeData(DataLayout* layout) :
|
|
CounterData(layout),
|
|
_args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
|
|
_ret(cell_count() - ReturnTypeEntry::static_cell_count())
|
|
{
|
|
assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
|
|
// Some compilers (VC++) don't want this passed in member initialization list
|
|
_args.set_profile_data(this);
|
|
_ret.set_profile_data(this);
|
|
}
|
|
|
|
const TypeStackSlotEntries* args() const {
|
|
assert(has_arguments(), "no profiling of arguments");
|
|
return &_args;
|
|
}
|
|
|
|
const ReturnTypeEntry* ret() const {
|
|
assert(has_return(), "no profiling of return value");
|
|
return &_ret;
|
|
}
|
|
|
|
virtual bool is_CallTypeData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return -1;
|
|
}
|
|
|
|
static int compute_cell_count(BytecodeStream* stream) {
|
|
return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
|
|
}
|
|
|
|
static void initialize(DataLayout* dl, int cell_count) {
|
|
TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
|
|
}
|
|
|
|
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
virtual int cell_count() const {
|
|
return CounterData::static_cell_count() +
|
|
TypeEntriesAtCall::header_cell_count() +
|
|
int_at_unchecked(cell_count_global_offset());
|
|
}
|
|
|
|
int number_of_arguments() const {
|
|
return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
|
|
}
|
|
|
|
void set_argument_type(int i, Klass* k) {
|
|
assert(has_arguments(), "no arguments!");
|
|
intptr_t current = _args.type(i);
|
|
_args.set_type(i, TypeEntries::with_status(k, current));
|
|
}
|
|
|
|
void set_return_type(Klass* k) {
|
|
assert(has_return(), "no return!");
|
|
intptr_t current = _ret.type();
|
|
_ret.set_type(TypeEntries::with_status(k, current));
|
|
}
|
|
|
|
// An entry for a return value takes less space than an entry for an
|
|
// argument so if the number of cells exceeds the number of cells
|
|
// needed for an argument, this object contains type information for
|
|
// at least one argument.
|
|
bool has_arguments() const {
|
|
bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
|
|
assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
|
|
return res;
|
|
}
|
|
|
|
// An entry for a return value takes less space than an entry for an
|
|
// argument, so if the remainder of the number of cells divided by
|
|
// the number of cells for an argument is not null, a return value
|
|
// is profiled in this object.
|
|
bool has_return() const {
|
|
bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
|
|
assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
|
|
return res;
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize args_data_offset() {
|
|
return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
|
|
}
|
|
|
|
ByteSize argument_type_offset(int i) {
|
|
return _args.type_offset(i);
|
|
}
|
|
|
|
ByteSize return_type_offset() {
|
|
return _ret.type_offset();
|
|
}
|
|
|
|
// GC support
|
|
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
|
|
if (has_arguments()) {
|
|
_args.clean_weak_klass_links(is_alive_closure);
|
|
}
|
|
if (has_return()) {
|
|
_ret.clean_weak_klass_links(is_alive_closure);
|
|
}
|
|
}
|
|
|
|
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// ReceiverTypeData
|
|
//
|
|
// A ReceiverTypeData is used to access profiling information about a
|
|
// dynamic type check. It consists of a counter which counts the total times
|
|
// that the check is reached, and a series of (Klass*, count) pairs
|
|
// which are used to store a type profile for the receiver of the check.
|
|
class ReceiverTypeData : public CounterData {
|
|
protected:
|
|
enum {
|
|
receiver0_offset = counter_cell_count,
|
|
count0_offset,
|
|
receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
|
|
};
|
|
|
|
public:
|
|
ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
|
|
assert(layout->tag() == DataLayout::receiver_type_data_tag ||
|
|
layout->tag() == DataLayout::virtual_call_data_tag ||
|
|
layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_ReceiverTypeData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessors
|
|
static uint row_limit() {
|
|
return TypeProfileWidth;
|
|
}
|
|
static int receiver_cell_index(uint row) {
|
|
return receiver0_offset + row * receiver_type_row_cell_count;
|
|
}
|
|
static int receiver_count_cell_index(uint row) {
|
|
return count0_offset + row * receiver_type_row_cell_count;
|
|
}
|
|
|
|
Klass* receiver(uint row) const {
|
|
assert(row < row_limit(), "oob");
|
|
|
|
Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
|
|
assert(recv == NULL || recv->is_klass(), "wrong type");
|
|
return recv;
|
|
}
|
|
|
|
void set_receiver(uint row, Klass* k) {
|
|
assert((uint)row < row_limit(), "oob");
|
|
set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
|
|
}
|
|
|
|
uint receiver_count(uint row) const {
|
|
assert(row < row_limit(), "oob");
|
|
return uint_at(receiver_count_cell_index(row));
|
|
}
|
|
|
|
void set_receiver_count(uint row, uint count) {
|
|
assert(row < row_limit(), "oob");
|
|
set_uint_at(receiver_count_cell_index(row), count);
|
|
}
|
|
|
|
void clear_row(uint row) {
|
|
assert(row < row_limit(), "oob");
|
|
// Clear total count - indicator of polymorphic call site.
|
|
// The site may look like as monomorphic after that but
|
|
// it allow to have more accurate profiling information because
|
|
// there was execution phase change since klasses were unloaded.
|
|
// If the site is still polymorphic then MDO will be updated
|
|
// to reflect it. But it could be the case that the site becomes
|
|
// only bimorphic. Then keeping total count not 0 will be wrong.
|
|
// Even if we use monomorphic (when it is not) for compilation
|
|
// we will only have trap, deoptimization and recompile again
|
|
// with updated MDO after executing method in Interpreter.
|
|
// An additional receiver will be recorded in the cleaned row
|
|
// during next call execution.
|
|
//
|
|
// Note: our profiling logic works with empty rows in any slot.
|
|
// We do sorting a profiling info (ciCallProfile) for compilation.
|
|
//
|
|
set_count(0);
|
|
set_receiver(row, NULL);
|
|
set_receiver_count(row, 0);
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize receiver_offset(uint row) {
|
|
return cell_offset(receiver_cell_index(row));
|
|
}
|
|
static ByteSize receiver_count_offset(uint row) {
|
|
return cell_offset(receiver_count_cell_index(row));
|
|
}
|
|
static ByteSize receiver_type_data_size() {
|
|
return cell_offset(static_cell_count());
|
|
}
|
|
|
|
// GC support
|
|
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
|
|
|
|
#ifdef CC_INTERP
|
|
static int receiver_type_data_size_in_bytes() {
|
|
return cell_offset_in_bytes(static_cell_count());
|
|
}
|
|
|
|
static Klass *receiver_unchecked(DataLayout* layout, uint row) {
|
|
Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
|
|
return recv;
|
|
}
|
|
|
|
static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
|
|
const int num_rows = row_limit();
|
|
// Receiver already exists?
|
|
for (int row = 0; row < num_rows; row++) {
|
|
if (receiver_unchecked(layout, row) == rcvr) {
|
|
increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
|
|
return;
|
|
}
|
|
}
|
|
// New receiver, find a free slot.
|
|
for (int row = 0; row < num_rows; row++) {
|
|
if (receiver_unchecked(layout, row) == NULL) {
|
|
set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
|
|
increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
|
|
return;
|
|
}
|
|
}
|
|
// Receiver did not match any saved receiver and there is no empty row for it.
|
|
// Increment total counter to indicate polymorphic case.
|
|
increment_count_no_overflow(layout);
|
|
}
|
|
|
|
static DataLayout* advance(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
void print_receiver_data_on(outputStream* st) const;
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// VirtualCallData
|
|
//
|
|
// A VirtualCallData is used to access profiling information about a
|
|
// virtual call. For now, it has nothing more than a ReceiverTypeData.
|
|
class VirtualCallData : public ReceiverTypeData {
|
|
public:
|
|
VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
|
|
assert(layout->tag() == DataLayout::virtual_call_data_tag ||
|
|
layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_VirtualCallData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
// At this point we could add more profile state, e.g., for arguments.
|
|
// But for now it's the same size as the base record type.
|
|
return ReceiverTypeData::static_cell_count();
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessors
|
|
static ByteSize virtual_call_data_size() {
|
|
return cell_offset(static_cell_count());
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static int virtual_call_data_size_in_bytes() {
|
|
return cell_offset_in_bytes(static_cell_count());
|
|
}
|
|
|
|
static DataLayout* advance(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// VirtualCallTypeData
|
|
//
|
|
// A VirtualCallTypeData is used to access profiling information about
|
|
// a virtual call for which we collect type information about
|
|
// arguments and return value.
|
|
class VirtualCallTypeData : public VirtualCallData {
|
|
private:
|
|
// entries for arguments if any
|
|
TypeStackSlotEntries _args;
|
|
// entry for return type if any
|
|
ReturnTypeEntry _ret;
|
|
|
|
int cell_count_global_offset() const {
|
|
return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
|
|
}
|
|
|
|
// number of cells not counting the header
|
|
int cell_count_no_header() const {
|
|
return uint_at(cell_count_global_offset());
|
|
}
|
|
|
|
void check_number_of_arguments(int total) {
|
|
assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
|
|
}
|
|
|
|
public:
|
|
VirtualCallTypeData(DataLayout* layout) :
|
|
VirtualCallData(layout),
|
|
_args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
|
|
_ret(cell_count() - ReturnTypeEntry::static_cell_count())
|
|
{
|
|
assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
|
|
// Some compilers (VC++) don't want this passed in member initialization list
|
|
_args.set_profile_data(this);
|
|
_ret.set_profile_data(this);
|
|
}
|
|
|
|
const TypeStackSlotEntries* args() const {
|
|
assert(has_arguments(), "no profiling of arguments");
|
|
return &_args;
|
|
}
|
|
|
|
const ReturnTypeEntry* ret() const {
|
|
assert(has_return(), "no profiling of return value");
|
|
return &_ret;
|
|
}
|
|
|
|
virtual bool is_VirtualCallTypeData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return -1;
|
|
}
|
|
|
|
static int compute_cell_count(BytecodeStream* stream) {
|
|
return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
|
|
}
|
|
|
|
static void initialize(DataLayout* dl, int cell_count) {
|
|
TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
|
|
}
|
|
|
|
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
virtual int cell_count() const {
|
|
return VirtualCallData::static_cell_count() +
|
|
TypeEntriesAtCall::header_cell_count() +
|
|
int_at_unchecked(cell_count_global_offset());
|
|
}
|
|
|
|
int number_of_arguments() const {
|
|
return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
|
|
}
|
|
|
|
void set_argument_type(int i, Klass* k) {
|
|
assert(has_arguments(), "no arguments!");
|
|
intptr_t current = _args.type(i);
|
|
_args.set_type(i, TypeEntries::with_status(k, current));
|
|
}
|
|
|
|
void set_return_type(Klass* k) {
|
|
assert(has_return(), "no return!");
|
|
intptr_t current = _ret.type();
|
|
_ret.set_type(TypeEntries::with_status(k, current));
|
|
}
|
|
|
|
// An entry for a return value takes less space than an entry for an
|
|
// argument, so if the remainder of the number of cells divided by
|
|
// the number of cells for an argument is not null, a return value
|
|
// is profiled in this object.
|
|
bool has_return() const {
|
|
bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
|
|
assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
|
|
return res;
|
|
}
|
|
|
|
// An entry for a return value takes less space than an entry for an
|
|
// argument so if the number of cells exceeds the number of cells
|
|
// needed for an argument, this object contains type information for
|
|
// at least one argument.
|
|
bool has_arguments() const {
|
|
bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
|
|
assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
|
|
return res;
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize args_data_offset() {
|
|
return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
|
|
}
|
|
|
|
ByteSize argument_type_offset(int i) {
|
|
return _args.type_offset(i);
|
|
}
|
|
|
|
ByteSize return_type_offset() {
|
|
return _ret.type_offset();
|
|
}
|
|
|
|
// GC support
|
|
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
|
|
ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
|
|
if (has_arguments()) {
|
|
_args.clean_weak_klass_links(is_alive_closure);
|
|
}
|
|
if (has_return()) {
|
|
_ret.clean_weak_klass_links(is_alive_closure);
|
|
}
|
|
}
|
|
|
|
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// RetData
|
|
//
|
|
// A RetData is used to access profiling information for a ret bytecode.
|
|
// It is composed of a count of the number of times that the ret has
|
|
// been executed, followed by a series of triples of the form
|
|
// (bci, count, di) which count the number of times that some bci was the
|
|
// target of the ret and cache a corresponding data displacement.
|
|
class RetData : public CounterData {
|
|
protected:
|
|
enum {
|
|
bci0_offset = counter_cell_count,
|
|
count0_offset,
|
|
displacement0_offset,
|
|
ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
|
|
};
|
|
|
|
void set_bci(uint row, int bci) {
|
|
assert((uint)row < row_limit(), "oob");
|
|
set_int_at(bci0_offset + row * ret_row_cell_count, bci);
|
|
}
|
|
void release_set_bci(uint row, int bci) {
|
|
assert((uint)row < row_limit(), "oob");
|
|
// 'release' when setting the bci acts as a valid flag for other
|
|
// threads wrt bci_count and bci_displacement.
|
|
release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
|
|
}
|
|
void set_bci_count(uint row, uint count) {
|
|
assert((uint)row < row_limit(), "oob");
|
|
set_uint_at(count0_offset + row * ret_row_cell_count, count);
|
|
}
|
|
void set_bci_displacement(uint row, int disp) {
|
|
set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
|
|
}
|
|
|
|
public:
|
|
RetData(DataLayout* layout) : CounterData(layout) {
|
|
assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_RetData() const { return true; }
|
|
|
|
enum {
|
|
no_bci = -1 // value of bci when bci1/2 are not in use.
|
|
};
|
|
|
|
static int static_cell_count() {
|
|
return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
static uint row_limit() {
|
|
return BciProfileWidth;
|
|
}
|
|
static int bci_cell_index(uint row) {
|
|
return bci0_offset + row * ret_row_cell_count;
|
|
}
|
|
static int bci_count_cell_index(uint row) {
|
|
return count0_offset + row * ret_row_cell_count;
|
|
}
|
|
static int bci_displacement_cell_index(uint row) {
|
|
return displacement0_offset + row * ret_row_cell_count;
|
|
}
|
|
|
|
// Direct accessors
|
|
int bci(uint row) const {
|
|
return int_at(bci_cell_index(row));
|
|
}
|
|
uint bci_count(uint row) const {
|
|
return uint_at(bci_count_cell_index(row));
|
|
}
|
|
int bci_displacement(uint row) const {
|
|
return int_at(bci_displacement_cell_index(row));
|
|
}
|
|
|
|
// Interpreter Runtime support
|
|
address fixup_ret(int return_bci, MethodData* mdo);
|
|
|
|
// Code generation support
|
|
static ByteSize bci_offset(uint row) {
|
|
return cell_offset(bci_cell_index(row));
|
|
}
|
|
static ByteSize bci_count_offset(uint row) {
|
|
return cell_offset(bci_count_cell_index(row));
|
|
}
|
|
static ByteSize bci_displacement_offset(uint row) {
|
|
return cell_offset(bci_displacement_cell_index(row));
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static DataLayout* advance(MethodData *md, int bci);
|
|
#endif // CC_INTERP
|
|
|
|
// Specific initialization.
|
|
void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// BranchData
|
|
//
|
|
// A BranchData is used to access profiling data for a two-way branch.
|
|
// It consists of taken and not_taken counts as well as a data displacement
|
|
// for the taken case.
|
|
class BranchData : public JumpData {
|
|
protected:
|
|
enum {
|
|
not_taken_off_set = jump_cell_count,
|
|
branch_cell_count
|
|
};
|
|
|
|
void set_displacement(int displacement) {
|
|
set_int_at(displacement_off_set, displacement);
|
|
}
|
|
|
|
public:
|
|
BranchData(DataLayout* layout) : JumpData(layout) {
|
|
assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_BranchData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return branch_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessor
|
|
uint not_taken() const {
|
|
return uint_at(not_taken_off_set);
|
|
}
|
|
|
|
void set_not_taken(uint cnt) {
|
|
set_uint_at(not_taken_off_set, cnt);
|
|
}
|
|
|
|
uint inc_not_taken() {
|
|
uint cnt = not_taken() + 1;
|
|
// Did we wrap? Will compiler screw us??
|
|
if (cnt == 0) cnt--;
|
|
set_uint_at(not_taken_off_set, cnt);
|
|
return cnt;
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize not_taken_offset() {
|
|
return cell_offset(not_taken_off_set);
|
|
}
|
|
static ByteSize branch_data_size() {
|
|
return cell_offset(branch_cell_count);
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static int branch_data_size_in_bytes() {
|
|
return cell_offset_in_bytes(branch_cell_count);
|
|
}
|
|
|
|
static void increment_not_taken_count_no_overflow(DataLayout* layout) {
|
|
increment_uint_at_no_overflow(layout, not_taken_off_set);
|
|
}
|
|
|
|
static DataLayout* advance_not_taken(DataLayout* layout) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
// Specific initialization.
|
|
void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// ArrayData
|
|
//
|
|
// A ArrayData is a base class for accessing profiling data which does
|
|
// not have a statically known size. It consists of an array length
|
|
// and an array start.
|
|
class ArrayData : public ProfileData {
|
|
protected:
|
|
friend class DataLayout;
|
|
|
|
enum {
|
|
array_len_off_set,
|
|
array_start_off_set
|
|
};
|
|
|
|
uint array_uint_at(int index) const {
|
|
int aindex = index + array_start_off_set;
|
|
return uint_at(aindex);
|
|
}
|
|
int array_int_at(int index) const {
|
|
int aindex = index + array_start_off_set;
|
|
return int_at(aindex);
|
|
}
|
|
oop array_oop_at(int index) const {
|
|
int aindex = index + array_start_off_set;
|
|
return oop_at(aindex);
|
|
}
|
|
void array_set_int_at(int index, int value) {
|
|
int aindex = index + array_start_off_set;
|
|
set_int_at(aindex, value);
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
// Static low level accessors for DataLayout with ArrayData's semantics.
|
|
|
|
static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
|
|
int aindex = index + array_start_off_set;
|
|
increment_uint_at_no_overflow(layout, aindex);
|
|
}
|
|
|
|
static int array_int_at(DataLayout* layout, int index) {
|
|
int aindex = index + array_start_off_set;
|
|
return int_at(layout, aindex);
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
// Code generation support for subclasses.
|
|
static ByteSize array_element_offset(int index) {
|
|
return cell_offset(array_start_off_set + index);
|
|
}
|
|
|
|
public:
|
|
ArrayData(DataLayout* layout) : ProfileData(layout) {}
|
|
|
|
virtual bool is_ArrayData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return -1;
|
|
}
|
|
|
|
int array_len() const {
|
|
return int_at_unchecked(array_len_off_set);
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return array_len() + 1;
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize array_len_offset() {
|
|
return cell_offset(array_len_off_set);
|
|
}
|
|
static ByteSize array_start_offset() {
|
|
return cell_offset(array_start_off_set);
|
|
}
|
|
};
|
|
|
|
// MultiBranchData
|
|
//
|
|
// A MultiBranchData is used to access profiling information for
|
|
// a multi-way branch (*switch bytecodes). It consists of a series
|
|
// of (count, displacement) pairs, which count the number of times each
|
|
// case was taken and specify the data displacment for each branch target.
|
|
class MultiBranchData : public ArrayData {
|
|
protected:
|
|
enum {
|
|
default_count_off_set,
|
|
default_disaplacement_off_set,
|
|
case_array_start
|
|
};
|
|
enum {
|
|
relative_count_off_set,
|
|
relative_displacement_off_set,
|
|
per_case_cell_count
|
|
};
|
|
|
|
void set_default_displacement(int displacement) {
|
|
array_set_int_at(default_disaplacement_off_set, displacement);
|
|
}
|
|
void set_displacement_at(int index, int displacement) {
|
|
array_set_int_at(case_array_start +
|
|
index * per_case_cell_count +
|
|
relative_displacement_off_set,
|
|
displacement);
|
|
}
|
|
|
|
public:
|
|
MultiBranchData(DataLayout* layout) : ArrayData(layout) {
|
|
assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_MultiBranchData() const { return true; }
|
|
|
|
static int compute_cell_count(BytecodeStream* stream);
|
|
|
|
int number_of_cases() const {
|
|
int alen = array_len() - 2; // get rid of default case here.
|
|
assert(alen % per_case_cell_count == 0, "must be even");
|
|
return (alen / per_case_cell_count);
|
|
}
|
|
|
|
uint default_count() const {
|
|
return array_uint_at(default_count_off_set);
|
|
}
|
|
int default_displacement() const {
|
|
return array_int_at(default_disaplacement_off_set);
|
|
}
|
|
|
|
uint count_at(int index) const {
|
|
return array_uint_at(case_array_start +
|
|
index * per_case_cell_count +
|
|
relative_count_off_set);
|
|
}
|
|
int displacement_at(int index) const {
|
|
return array_int_at(case_array_start +
|
|
index * per_case_cell_count +
|
|
relative_displacement_off_set);
|
|
}
|
|
|
|
// Code generation support
|
|
static ByteSize default_count_offset() {
|
|
return array_element_offset(default_count_off_set);
|
|
}
|
|
static ByteSize default_displacement_offset() {
|
|
return array_element_offset(default_disaplacement_off_set);
|
|
}
|
|
static ByteSize case_count_offset(int index) {
|
|
return case_array_offset() +
|
|
(per_case_size() * index) +
|
|
relative_count_offset();
|
|
}
|
|
static ByteSize case_array_offset() {
|
|
return array_element_offset(case_array_start);
|
|
}
|
|
static ByteSize per_case_size() {
|
|
return in_ByteSize(per_case_cell_count) * cell_size;
|
|
}
|
|
static ByteSize relative_count_offset() {
|
|
return in_ByteSize(relative_count_off_set) * cell_size;
|
|
}
|
|
static ByteSize relative_displacement_offset() {
|
|
return in_ByteSize(relative_displacement_off_set) * cell_size;
|
|
}
|
|
|
|
#ifdef CC_INTERP
|
|
static void increment_count_no_overflow(DataLayout* layout, int index) {
|
|
if (index == -1) {
|
|
increment_array_uint_at_no_overflow(layout, default_count_off_set);
|
|
} else {
|
|
increment_array_uint_at_no_overflow(layout, case_array_start +
|
|
index * per_case_cell_count +
|
|
relative_count_off_set);
|
|
}
|
|
}
|
|
|
|
static DataLayout* advance(DataLayout* layout, int index) {
|
|
if (index == -1) {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
|
|
} else {
|
|
return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
|
|
index * per_case_cell_count +
|
|
relative_displacement_off_set));
|
|
}
|
|
}
|
|
#endif // CC_INTERP
|
|
|
|
// Specific initialization.
|
|
void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
class ArgInfoData : public ArrayData {
|
|
|
|
public:
|
|
ArgInfoData(DataLayout* layout) : ArrayData(layout) {
|
|
assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_ArgInfoData() const { return true; }
|
|
|
|
|
|
int number_of_args() const {
|
|
return array_len();
|
|
}
|
|
|
|
uint arg_modified(int arg) const {
|
|
return array_uint_at(arg);
|
|
}
|
|
|
|
void set_arg_modified(int arg, uint val) {
|
|
array_set_int_at(arg, val);
|
|
}
|
|
|
|
void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// ParametersTypeData
|
|
//
|
|
// A ParametersTypeData is used to access profiling information about
|
|
// types of parameters to a method
|
|
class ParametersTypeData : public ArrayData {
|
|
|
|
private:
|
|
TypeStackSlotEntries _parameters;
|
|
|
|
static int stack_slot_local_offset(int i) {
|
|
assert_profiling_enabled();
|
|
return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
|
|
}
|
|
|
|
static int type_local_offset(int i) {
|
|
assert_profiling_enabled();
|
|
return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
|
|
}
|
|
|
|
static bool profiling_enabled();
|
|
static void assert_profiling_enabled() {
|
|
assert(profiling_enabled(), "method parameters profiling should be on");
|
|
}
|
|
|
|
public:
|
|
ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
|
|
assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
|
|
// Some compilers (VC++) don't want this passed in member initialization list
|
|
_parameters.set_profile_data(this);
|
|
}
|
|
|
|
static int compute_cell_count(Method* m);
|
|
|
|
virtual bool is_ParametersTypeData() const { return true; }
|
|
|
|
virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
|
|
|
|
int number_of_parameters() const {
|
|
return array_len() / TypeStackSlotEntries::per_arg_count();
|
|
}
|
|
|
|
const TypeStackSlotEntries* parameters() const { return &_parameters; }
|
|
|
|
uint stack_slot(int i) const {
|
|
return _parameters.stack_slot(i);
|
|
}
|
|
|
|
void set_type(int i, Klass* k) {
|
|
intptr_t current = _parameters.type(i);
|
|
_parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
|
|
}
|
|
|
|
virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
|
|
_parameters.clean_weak_klass_links(is_alive_closure);
|
|
}
|
|
|
|
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
|
|
static ByteSize stack_slot_offset(int i) {
|
|
return cell_offset(stack_slot_local_offset(i));
|
|
}
|
|
|
|
static ByteSize type_offset(int i) {
|
|
return cell_offset(type_local_offset(i));
|
|
}
|
|
};
|
|
|
|
// SpeculativeTrapData
|
|
//
|
|
// A SpeculativeTrapData is used to record traps due to type
|
|
// speculation. It records the root of the compilation: that type
|
|
// speculation is wrong in the context of one compilation (for
|
|
// method1) doesn't mean it's wrong in the context of another one (for
|
|
// method2). Type speculation could have more/different data in the
|
|
// context of the compilation of method2 and it's worthwhile to try an
|
|
// optimization that failed for compilation of method1 in the context
|
|
// of compilation of method2.
|
|
// Space for SpeculativeTrapData entries is allocated from the extra
|
|
// data space in the MDO. If we run out of space, the trap data for
|
|
// the ProfileData at that bci is updated.
|
|
class SpeculativeTrapData : public ProfileData {
|
|
protected:
|
|
enum {
|
|
speculative_trap_method,
|
|
speculative_trap_cell_count
|
|
};
|
|
public:
|
|
SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
|
|
assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
|
|
}
|
|
|
|
virtual bool is_SpeculativeTrapData() const { return true; }
|
|
|
|
static int static_cell_count() {
|
|
return speculative_trap_cell_count;
|
|
}
|
|
|
|
virtual int cell_count() const {
|
|
return static_cell_count();
|
|
}
|
|
|
|
// Direct accessor
|
|
Method* method() const {
|
|
return (Method*)intptr_at(speculative_trap_method);
|
|
}
|
|
|
|
void set_method(Method* m) {
|
|
set_intptr_at(speculative_trap_method, (intptr_t)m);
|
|
}
|
|
|
|
static ByteSize method_offset() {
|
|
return cell_offset(speculative_trap_method);
|
|
}
|
|
|
|
virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
|
|
};
|
|
|
|
// MethodData*
|
|
//
|
|
// A MethodData* holds information which has been collected about
|
|
// a method. Its layout looks like this:
|
|
//
|
|
// -----------------------------
|
|
// | header |
|
|
// | klass |
|
|
// -----------------------------
|
|
// | method |
|
|
// | size of the MethodData* |
|
|
// -----------------------------
|
|
// | Data entries... |
|
|
// | (variable size) |
|
|
// | |
|
|
// . .
|
|
// . .
|
|
// . .
|
|
// | |
|
|
// -----------------------------
|
|
//
|
|
// The data entry area is a heterogeneous array of DataLayouts. Each
|
|
// DataLayout in the array corresponds to a specific bytecode in the
|
|
// method. The entries in the array are sorted by the corresponding
|
|
// bytecode. Access to the data is via resource-allocated ProfileData,
|
|
// which point to the underlying blocks of DataLayout structures.
|
|
//
|
|
// During interpretation, if profiling in enabled, the interpreter
|
|
// maintains a method data pointer (mdp), which points at the entry
|
|
// in the array corresponding to the current bci. In the course of
|
|
// intepretation, when a bytecode is encountered that has profile data
|
|
// associated with it, the entry pointed to by mdp is updated, then the
|
|
// mdp is adjusted to point to the next appropriate DataLayout. If mdp
|
|
// is NULL to begin with, the interpreter assumes that the current method
|
|
// is not (yet) being profiled.
|
|
//
|
|
// In MethodData* parlance, "dp" is a "data pointer", the actual address
|
|
// of a DataLayout element. A "di" is a "data index", the offset in bytes
|
|
// from the base of the data entry array. A "displacement" is the byte offset
|
|
// in certain ProfileData objects that indicate the amount the mdp must be
|
|
// adjusted in the event of a change in control flow.
|
|
//
|
|
|
|
CC_INTERP_ONLY(class BytecodeInterpreter;)
|
|
class CleanExtraDataClosure;
|
|
|
|
class MethodData : public Metadata {
|
|
friend class VMStructs;
|
|
CC_INTERP_ONLY(friend class BytecodeInterpreter;)
|
|
private:
|
|
friend class ProfileData;
|
|
|
|
// Back pointer to the Method*
|
|
Method* _method;
|
|
|
|
// Size of this oop in bytes
|
|
int _size;
|
|
|
|
// Cached hint for bci_to_dp and bci_to_data
|
|
int _hint_di;
|
|
|
|
Mutex _extra_data_lock;
|
|
|
|
MethodData(methodHandle method, int size, TRAPS);
|
|
public:
|
|
static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
|
|
MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
|
|
|
|
bool is_methodData() const volatile { return true; }
|
|
|
|
// Whole-method sticky bits and flags
|
|
enum {
|
|
_trap_hist_limit = 21, // decoupled from Deoptimization::Reason_LIMIT
|
|
_trap_hist_mask = max_jubyte,
|
|
_extra_data_count = 4 // extra DataLayout headers, for trap history
|
|
}; // Public flag values
|
|
private:
|
|
uint _nof_decompiles; // count of all nmethod removals
|
|
uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
|
|
uint _nof_overflow_traps; // trap count, excluding _trap_hist
|
|
union {
|
|
intptr_t _align;
|
|
u1 _array[_trap_hist_limit];
|
|
} _trap_hist;
|
|
|
|
// Support for interprocedural escape analysis, from Thomas Kotzmann.
|
|
intx _eflags; // flags on escape information
|
|
intx _arg_local; // bit set of non-escaping arguments
|
|
intx _arg_stack; // bit set of stack-allocatable arguments
|
|
intx _arg_returned; // bit set of returned arguments
|
|
|
|
int _creation_mileage; // method mileage at MDO creation
|
|
|
|
// How many invocations has this MDO seen?
|
|
// These counters are used to determine the exact age of MDO.
|
|
// We need those because in tiered a method can be concurrently
|
|
// executed at different levels.
|
|
InvocationCounter _invocation_counter;
|
|
// Same for backedges.
|
|
InvocationCounter _backedge_counter;
|
|
// Counter values at the time profiling started.
|
|
int _invocation_counter_start;
|
|
int _backedge_counter_start;
|
|
uint _tenure_traps;
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
// State of RTM code generation during compilation of the method
|
|
int _rtm_state;
|
|
#endif
|
|
|
|
// Number of loops and blocks is computed when compiling the first
|
|
// time with C1. It is used to determine if method is trivial.
|
|
short _num_loops;
|
|
short _num_blocks;
|
|
// Does this method contain anything worth profiling?
|
|
bool _would_profile;
|
|
|
|
// Size of _data array in bytes. (Excludes header and extra_data fields.)
|
|
int _data_size;
|
|
|
|
// data index for the area dedicated to parameters. -1 if no
|
|
// parameter profiling.
|
|
enum { no_parameters = -2, parameters_uninitialized = -1 };
|
|
int _parameters_type_data_di;
|
|
int parameters_size_in_bytes() const {
|
|
ParametersTypeData* param = parameters_type_data();
|
|
return param == NULL ? 0 : param->size_in_bytes();
|
|
}
|
|
|
|
// Beginning of the data entries
|
|
intptr_t _data[1];
|
|
|
|
// Helper for size computation
|
|
static int compute_data_size(BytecodeStream* stream);
|
|
static int bytecode_cell_count(Bytecodes::Code code);
|
|
static bool is_speculative_trap_bytecode(Bytecodes::Code code);
|
|
enum { no_profile_data = -1, variable_cell_count = -2 };
|
|
|
|
// Helper for initialization
|
|
DataLayout* data_layout_at(int data_index) const {
|
|
assert(data_index % sizeof(intptr_t) == 0, "unaligned");
|
|
return (DataLayout*) (((address)_data) + data_index);
|
|
}
|
|
|
|
// Initialize an individual data segment. Returns the size of
|
|
// the segment in bytes.
|
|
int initialize_data(BytecodeStream* stream, int data_index);
|
|
|
|
// Helper for data_at
|
|
DataLayout* limit_data_position() const {
|
|
return data_layout_at(_data_size);
|
|
}
|
|
bool out_of_bounds(int data_index) const {
|
|
return data_index >= data_size();
|
|
}
|
|
|
|
// Give each of the data entries a chance to perform specific
|
|
// data initialization.
|
|
void post_initialize(BytecodeStream* stream);
|
|
|
|
// hint accessors
|
|
int hint_di() const { return _hint_di; }
|
|
void set_hint_di(int di) {
|
|
assert(!out_of_bounds(di), "hint_di out of bounds");
|
|
_hint_di = di;
|
|
}
|
|
ProfileData* data_before(int bci) {
|
|
// avoid SEGV on this edge case
|
|
if (data_size() == 0)
|
|
return NULL;
|
|
int hint = hint_di();
|
|
if (data_layout_at(hint)->bci() <= bci)
|
|
return data_at(hint);
|
|
return first_data();
|
|
}
|
|
|
|
// What is the index of the first data entry?
|
|
int first_di() const { return 0; }
|
|
|
|
ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
|
|
// Find or create an extra ProfileData:
|
|
ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
|
|
|
|
// return the argument info cell
|
|
ArgInfoData *arg_info();
|
|
|
|
enum {
|
|
no_type_profile = 0,
|
|
type_profile_jsr292 = 1,
|
|
type_profile_all = 2
|
|
};
|
|
|
|
static bool profile_jsr292(methodHandle m, int bci);
|
|
static int profile_arguments_flag();
|
|
static bool profile_all_arguments();
|
|
static bool profile_arguments_for_invoke(methodHandle m, int bci);
|
|
static int profile_return_flag();
|
|
static bool profile_all_return();
|
|
static bool profile_return_for_invoke(methodHandle m, int bci);
|
|
static int profile_parameters_flag();
|
|
static bool profile_parameters_jsr292_only();
|
|
static bool profile_all_parameters();
|
|
|
|
void clean_extra_data(CleanExtraDataClosure* cl);
|
|
void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
|
|
void verify_extra_data_clean(CleanExtraDataClosure* cl);
|
|
|
|
public:
|
|
static int header_size() {
|
|
return sizeof(MethodData)/wordSize;
|
|
}
|
|
|
|
// Compute the size of a MethodData* before it is created.
|
|
static int compute_allocation_size_in_bytes(methodHandle method);
|
|
static int compute_allocation_size_in_words(methodHandle method);
|
|
static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
|
|
|
|
// Determine if a given bytecode can have profile information.
|
|
static bool bytecode_has_profile(Bytecodes::Code code) {
|
|
return bytecode_cell_count(code) != no_profile_data;
|
|
}
|
|
|
|
// reset into original state
|
|
void init();
|
|
|
|
// My size
|
|
int size_in_bytes() const { return _size; }
|
|
int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
|
|
#if INCLUDE_SERVICES
|
|
void collect_statistics(KlassSizeStats *sz) const;
|
|
#endif
|
|
|
|
int creation_mileage() const { return _creation_mileage; }
|
|
void set_creation_mileage(int x) { _creation_mileage = x; }
|
|
|
|
int invocation_count() {
|
|
if (invocation_counter()->carry()) {
|
|
return InvocationCounter::count_limit;
|
|
}
|
|
return invocation_counter()->count();
|
|
}
|
|
int backedge_count() {
|
|
if (backedge_counter()->carry()) {
|
|
return InvocationCounter::count_limit;
|
|
}
|
|
return backedge_counter()->count();
|
|
}
|
|
|
|
int invocation_count_start() {
|
|
if (invocation_counter()->carry()) {
|
|
return 0;
|
|
}
|
|
return _invocation_counter_start;
|
|
}
|
|
|
|
int backedge_count_start() {
|
|
if (backedge_counter()->carry()) {
|
|
return 0;
|
|
}
|
|
return _backedge_counter_start;
|
|
}
|
|
|
|
int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
|
|
int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
|
|
|
|
void reset_start_counters() {
|
|
_invocation_counter_start = invocation_count();
|
|
_backedge_counter_start = backedge_count();
|
|
}
|
|
|
|
InvocationCounter* invocation_counter() { return &_invocation_counter; }
|
|
InvocationCounter* backedge_counter() { return &_backedge_counter; }
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
int rtm_state() const {
|
|
return _rtm_state;
|
|
}
|
|
void set_rtm_state(RTMState rstate) {
|
|
_rtm_state = (int)rstate;
|
|
}
|
|
void atomic_set_rtm_state(RTMState rstate) {
|
|
Atomic::store((int)rstate, &_rtm_state);
|
|
}
|
|
|
|
static int rtm_state_offset_in_bytes() {
|
|
return offset_of(MethodData, _rtm_state);
|
|
}
|
|
#endif
|
|
|
|
void set_would_profile(bool p) { _would_profile = p; }
|
|
bool would_profile() const { return _would_profile; }
|
|
|
|
int num_loops() const { return _num_loops; }
|
|
void set_num_loops(int n) { _num_loops = n; }
|
|
int num_blocks() const { return _num_blocks; }
|
|
void set_num_blocks(int n) { _num_blocks = n; }
|
|
|
|
bool is_mature() const; // consult mileage and ProfileMaturityPercentage
|
|
static int mileage_of(Method* m);
|
|
|
|
// Support for interprocedural escape analysis, from Thomas Kotzmann.
|
|
enum EscapeFlag {
|
|
estimated = 1 << 0,
|
|
return_local = 1 << 1,
|
|
return_allocated = 1 << 2,
|
|
allocated_escapes = 1 << 3,
|
|
unknown_modified = 1 << 4
|
|
};
|
|
|
|
intx eflags() { return _eflags; }
|
|
intx arg_local() { return _arg_local; }
|
|
intx arg_stack() { return _arg_stack; }
|
|
intx arg_returned() { return _arg_returned; }
|
|
uint arg_modified(int a) { ArgInfoData *aid = arg_info();
|
|
assert(aid != NULL, "arg_info must be not null");
|
|
assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
|
|
return aid->arg_modified(a); }
|
|
|
|
void set_eflags(intx v) { _eflags = v; }
|
|
void set_arg_local(intx v) { _arg_local = v; }
|
|
void set_arg_stack(intx v) { _arg_stack = v; }
|
|
void set_arg_returned(intx v) { _arg_returned = v; }
|
|
void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
|
|
assert(aid != NULL, "arg_info must be not null");
|
|
assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
|
|
aid->set_arg_modified(a, v); }
|
|
|
|
void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
|
|
|
|
// Location and size of data area
|
|
address data_base() const {
|
|
return (address) _data;
|
|
}
|
|
int data_size() const {
|
|
return _data_size;
|
|
}
|
|
|
|
// Accessors
|
|
Method* method() const { return _method; }
|
|
|
|
// Get the data at an arbitrary (sort of) data index.
|
|
ProfileData* data_at(int data_index) const;
|
|
|
|
// Walk through the data in order.
|
|
ProfileData* first_data() const { return data_at(first_di()); }
|
|
ProfileData* next_data(ProfileData* current) const;
|
|
bool is_valid(ProfileData* current) const { return current != NULL; }
|
|
|
|
// Convert a dp (data pointer) to a di (data index).
|
|
int dp_to_di(address dp) const {
|
|
return dp - ((address)_data);
|
|
}
|
|
|
|
// bci to di/dp conversion.
|
|
address bci_to_dp(int bci);
|
|
int bci_to_di(int bci) {
|
|
return dp_to_di(bci_to_dp(bci));
|
|
}
|
|
|
|
// Get the data at an arbitrary bci, or NULL if there is none.
|
|
ProfileData* bci_to_data(int bci);
|
|
|
|
// Same, but try to create an extra_data record if one is needed:
|
|
ProfileData* allocate_bci_to_data(int bci, Method* m) {
|
|
ProfileData* data = NULL;
|
|
// If m not NULL, try to allocate a SpeculativeTrapData entry
|
|
if (m == NULL) {
|
|
data = bci_to_data(bci);
|
|
}
|
|
if (data != NULL) {
|
|
return data;
|
|
}
|
|
data = bci_to_extra_data(bci, m, true);
|
|
if (data != NULL) {
|
|
return data;
|
|
}
|
|
// If SpeculativeTrapData allocation fails try to allocate a
|
|
// regular entry
|
|
data = bci_to_data(bci);
|
|
if (data != NULL) {
|
|
return data;
|
|
}
|
|
return bci_to_extra_data(bci, NULL, true);
|
|
}
|
|
|
|
// Add a handful of extra data records, for trap tracking.
|
|
DataLayout* extra_data_base() const { return limit_data_position(); }
|
|
DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
|
|
DataLayout* args_data_limit() const { return (DataLayout*)((address)this + size_in_bytes() -
|
|
parameters_size_in_bytes()); }
|
|
int extra_data_size() const { return (address)extra_data_limit() - (address)extra_data_base(); }
|
|
static DataLayout* next_extra(DataLayout* dp);
|
|
|
|
// Return (uint)-1 for overflow.
|
|
uint trap_count(int reason) const {
|
|
assert((uint)reason < _trap_hist_limit, "oob");
|
|
return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
|
|
}
|
|
// For loops:
|
|
static uint trap_reason_limit() { return _trap_hist_limit; }
|
|
static uint trap_count_limit() { return _trap_hist_mask; }
|
|
uint inc_trap_count(int reason) {
|
|
// Count another trap, anywhere in this method.
|
|
assert(reason >= 0, "must be single trap");
|
|
if ((uint)reason < _trap_hist_limit) {
|
|
uint cnt1 = 1 + _trap_hist._array[reason];
|
|
if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
|
|
_trap_hist._array[reason] = cnt1;
|
|
return cnt1;
|
|
} else {
|
|
return _trap_hist_mask + (++_nof_overflow_traps);
|
|
}
|
|
} else {
|
|
// Could not represent the count in the histogram.
|
|
return (++_nof_overflow_traps);
|
|
}
|
|
}
|
|
|
|
uint overflow_trap_count() const {
|
|
return _nof_overflow_traps;
|
|
}
|
|
uint overflow_recompile_count() const {
|
|
return _nof_overflow_recompiles;
|
|
}
|
|
void inc_overflow_recompile_count() {
|
|
_nof_overflow_recompiles += 1;
|
|
}
|
|
uint decompile_count() const {
|
|
return _nof_decompiles;
|
|
}
|
|
void inc_decompile_count() {
|
|
_nof_decompiles += 1;
|
|
if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
|
|
method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
|
|
}
|
|
}
|
|
uint tenure_traps() const {
|
|
return _tenure_traps;
|
|
}
|
|
void inc_tenure_traps() {
|
|
_tenure_traps += 1;
|
|
}
|
|
|
|
// Return pointer to area dedicated to parameters in MDO
|
|
ParametersTypeData* parameters_type_data() const {
|
|
assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
|
|
return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
|
|
}
|
|
|
|
int parameters_type_data_di() const {
|
|
assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
|
|
return _parameters_type_data_di;
|
|
}
|
|
|
|
// Support for code generation
|
|
static ByteSize data_offset() {
|
|
return byte_offset_of(MethodData, _data[0]);
|
|
}
|
|
|
|
static ByteSize invocation_counter_offset() {
|
|
return byte_offset_of(MethodData, _invocation_counter);
|
|
}
|
|
static ByteSize backedge_counter_offset() {
|
|
return byte_offset_of(MethodData, _backedge_counter);
|
|
}
|
|
|
|
static ByteSize parameters_type_data_di_offset() {
|
|
return byte_offset_of(MethodData, _parameters_type_data_di);
|
|
}
|
|
|
|
// Deallocation support - no pointer fields to deallocate
|
|
void deallocate_contents(ClassLoaderData* loader_data) {}
|
|
|
|
// GC support
|
|
void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
|
|
|
|
// Printing
|
|
void print_on (outputStream* st) const;
|
|
void print_value_on(outputStream* st) const;
|
|
|
|
// printing support for method data
|
|
void print_data_on(outputStream* st) const;
|
|
|
|
const char* internal_name() const { return "{method data}"; }
|
|
|
|
// verification
|
|
void verify_on(outputStream* st);
|
|
void verify_data_on(outputStream* st);
|
|
|
|
static bool profile_parameters_for_method(methodHandle m);
|
|
static bool profile_arguments();
|
|
static bool profile_arguments_jsr292_only();
|
|
static bool profile_return();
|
|
static bool profile_parameters();
|
|
static bool profile_return_jsr292_only();
|
|
|
|
void clean_method_data(BoolObjectClosure* is_alive);
|
|
void clean_weak_method_links();
|
|
Mutex* extra_data_lock() { return &_extra_data_lock; }
|
|
};
|
|
|
|
#endif // SHARE_VM_OOPS_METHODDATAOOP_HPP
|