40a2ce2033
Reviewed-by: bpb
301 lines
8.5 KiB
Java
301 lines
8.5 KiB
Java
/*
|
|
* Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 8136874
|
|
* @summary Tests for StrictMath.pow
|
|
*/
|
|
|
|
/**
|
|
* The tests in ../Math/PowTests.java test properties that should
|
|
* hold for any pow implementation, including the FDLIBM-based one
|
|
* required for StrictMath.pow. Therefore, the test cases in
|
|
* ../Math/PowTests.java are run against both the Math and
|
|
* StrictMath versions of pow. The role of this test is to verify
|
|
* that the FDLIBM pow algorithm is being used by running golden
|
|
* file tests on values that may vary from one conforming pow
|
|
* implementation to another.
|
|
*/
|
|
|
|
public class PowTests {
|
|
private PowTests(){}
|
|
|
|
private static final double INFINITY = Double.POSITIVE_INFINITY;
|
|
|
|
public static void main(String... args) {
|
|
int failures = 0;
|
|
|
|
failures += testPow();
|
|
|
|
if (failures > 0) {
|
|
System.err.println("Testing pow incurred "
|
|
+ failures + " failures.");
|
|
throw new RuntimeException();
|
|
}
|
|
}
|
|
|
|
private static int testPow() {
|
|
int failures = 0;
|
|
|
|
double [][] testCases = {
|
|
// Probe near decision points of the fdlibm algorithm
|
|
|
|
{0x1.00000_0000_0001p1, // |x| > 1.0
|
|
INFINITY, // infinity
|
|
INFINITY // 0
|
|
},
|
|
|
|
|
|
{0x1.fffffp-1, // |x| = 0.9999995231628418
|
|
0x1.0p31, // 2^31
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0p31, // 2^31
|
|
0.0 // 0
|
|
},
|
|
|
|
{-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0p31, // 2^31
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.fffffp-1, // |x| = 0.9999995231628418
|
|
0x1.0000000000001p31, // nextUp(2^31)
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.fffffp-1, // |x| = 0.9999995231628418
|
|
0x1.0p31 + 1.0, // 2^31 + 1, odd integer
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.fffffp-1, // |x| = 0.9999995231628418
|
|
0x1.0p31 + 2.0, // 2^31 + 2, even integer
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0000000000001p31, // nextUp(2^31)
|
|
0.0 // 0
|
|
},
|
|
|
|
{-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0000000000001p31, // nextUp(2^31)
|
|
Double.NaN // 0
|
|
},
|
|
|
|
{-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0p31 + 1.0, // 2^31 + 1, odd integer
|
|
-0.0 // 0
|
|
},
|
|
|
|
{-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418
|
|
0x1.0p31 + 2.0, // 2^31 + 2, even integer
|
|
0.0 // 0
|
|
},
|
|
|
|
{0x1.0000000000001p0, // nextUp(1)
|
|
0x1.0000000000001p31, // nextUp(2^31)
|
|
0x1.00000800002p0
|
|
},
|
|
|
|
{0x1.0000000000001p0, // nextUp(1)
|
|
-0x1.0000000000001p31, // -nextUp(2^31)
|
|
0x1.fffff000004p-1
|
|
},
|
|
|
|
{-0x1.0000000000001p0, // -nextUp(1)
|
|
-0x1.0000000000001p31, // -nextUp(2^31)
|
|
Double.NaN
|
|
},
|
|
|
|
{-0x1.0000000000001p0, // -nextUp(1)
|
|
0x1.0p31 + 1.0, // 2^31 + 1, odd integer
|
|
-0x1.0000080000201p0
|
|
},
|
|
|
|
{-0x1.0000000000001p0, // -nextUp(1)
|
|
0x1.0p31 + 2.0, // 2^31 + 2, even integer
|
|
0x1.0000080000202p0
|
|
},
|
|
|
|
{0x1.00000_ffff_ffffp0,
|
|
0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
// Huge y, |y| > 0x1.00000_ffff_ffffp31 ~2**31 is a decision point
|
|
|
|
// First y = 0x1.00001_0000_0000p31
|
|
{0x1.fffff_ffff_ffffp-1,
|
|
0x1.00001_0000_0000p31,
|
|
0x1.fffff7ffff9p-1
|
|
},
|
|
|
|
{0x1.fffff_ffff_fffep-1,
|
|
0x1.00001_0000_0000p31,
|
|
0x1.ffffefffff4p-1
|
|
},
|
|
|
|
{0x1.fffff_0000_0000p-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
// Cycle through decision points on x values
|
|
|
|
{0x1.fffff_0000_0000p-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{-0x1.fffff_0000_0000p-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{0x1.ffffe_ffff_ffffp-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{-0x1.ffffe_ffff_ffffp-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{0x1.00000_ffff_ffffp0,
|
|
0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
|
|
{0x1.00001_0000_0000p0,
|
|
0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
{-0x1.00000_ffff_ffffp0,
|
|
0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
|
|
{-0x1.00001_0000_0000p0,
|
|
0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
// Now y = -0x1.00001_0000_0000p31
|
|
|
|
{0x1.fffff_0000_0000p-1,
|
|
-0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
{-0x1.fffff_0000_0000p-1,
|
|
0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{0x1.ffffe_ffff_ffffp-1,
|
|
-0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
{-0x1.ffffe_ffff_ffffp-1,
|
|
-0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
{0x1.00000_ffff_ffffp0,
|
|
-0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
|
|
{0x1.00001_0000_0000p0,
|
|
-0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
{-0x1.00000_ffff_ffffp0,
|
|
-0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
|
|
{-0x1.00001_0000_0000p0,
|
|
-0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
//-----------------------
|
|
|
|
{0x1.ffffe_ffff_ffffp-1,
|
|
-0x1.00001_0000_0000p31,
|
|
INFINITY
|
|
},
|
|
|
|
{0x1.00001_0000_0000p0,
|
|
-0x1.00001_0000_0000p31,
|
|
0.0
|
|
},
|
|
|
|
|
|
{0x1.0000000000002p0, // 1.0000000000000004
|
|
0x1.f4add4p30, // 2.1E9
|
|
0x1.00000fa56f1a6p0 // 1.0000009325877754
|
|
},
|
|
|
|
// Verify no early overflow
|
|
{0x1.0000000000002p0, // 1.0000000000000004
|
|
0x1.0642acp31, // 2.2E9
|
|
0x1.000010642b465p0, // 1.0000009769967388
|
|
},
|
|
|
|
// Verify proper overflow
|
|
{0x1.0000000000002p0, // 1.0000000000000004
|
|
0x1.62e42fefa39fp60, // 1.59828858065033216E18
|
|
0x1.ffffffffffd9fp1023, // 1.7976931348621944E308
|
|
},
|
|
|
|
};
|
|
|
|
for (double[] testCase: testCases)
|
|
failures += testPowCase(testCase[0], testCase[1], testCase[2]);
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int testPowCase(double input1, double input2, double expected) {
|
|
int failures = 0;
|
|
failures += Tests.test("StrictMath.pow(double)", input1, input2,
|
|
StrictMath::pow, expected);
|
|
return failures;
|
|
}
|
|
}
|