9864951dce
Reviewed-by: stefank, dholmes, stuefe
974 lines
34 KiB
C++
974 lines
34 KiB
C++
/*
|
|
* Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "nmt/memTracker.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/globals.hpp"
|
|
#include "runtime/os.inline.hpp"
|
|
#include "runtime/thread.hpp"
|
|
#include "runtime/threads.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
#include "unittest.hpp"
|
|
#ifdef _WIN32
|
|
#include "os_windows.hpp"
|
|
#endif
|
|
|
|
using testing::HasSubstr;
|
|
|
|
static size_t small_page_size() {
|
|
return os::vm_page_size();
|
|
}
|
|
|
|
static size_t large_page_size() {
|
|
const size_t large_page_size_example = 4 * M;
|
|
return os::page_size_for_region_aligned(large_page_size_example, 1);
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region) {
|
|
size_t large_page_example = 4 * M;
|
|
size_t large_page = os::page_size_for_region_aligned(large_page_example, 1);
|
|
|
|
size_t small_page = os::vm_page_size();
|
|
if (large_page > small_page) {
|
|
size_t num_small_in_large = large_page / small_page;
|
|
size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large);
|
|
ASSERT_EQ(page, small_page) << "Did not get a small page";
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_aligned) {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
|
|
if (large_page > small_page) {
|
|
size_t num_small_pages_in_large = large_page / small_page;
|
|
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
|
|
|
|
ASSERT_EQ(page, small_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_alignment) {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
if (large_page > small_page) {
|
|
const size_t unaligned_region = large_page + 17;
|
|
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
|
|
ASSERT_EQ(page, small_page);
|
|
|
|
const size_t num_pages = 5;
|
|
const size_t aligned_region = large_page * num_pages;
|
|
page = os::page_size_for_region_aligned(aligned_region, num_pages);
|
|
ASSERT_EQ(page, large_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_unaligned) {
|
|
if (UseLargePages) {
|
|
// Given exact page size, should return that page size.
|
|
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
|
|
size_t actual = os::page_size_for_region_unaligned(s, 1);
|
|
ASSERT_EQ(s, actual);
|
|
}
|
|
|
|
// Given slightly larger size than a page size, return the page size.
|
|
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
|
|
size_t actual = os::page_size_for_region_unaligned(s + 17, 1);
|
|
ASSERT_EQ(s, actual);
|
|
}
|
|
|
|
// Given a slightly smaller size than a page size,
|
|
// return the next smaller page size.
|
|
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
|
|
const size_t expected = os::page_sizes().next_smaller(s);
|
|
if (expected != 0) {
|
|
size_t actual = os::page_size_for_region_unaligned(s - 17, 1);
|
|
ASSERT_EQ(actual, expected);
|
|
}
|
|
}
|
|
|
|
// Return small page size for values less than a small page.
|
|
size_t small_page = os::page_sizes().smallest();
|
|
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
|
|
ASSERT_EQ(small_page, actual);
|
|
}
|
|
}
|
|
|
|
TEST(os, test_random) {
|
|
const double m = 2147483647;
|
|
double mean = 0.0, variance = 0.0, t;
|
|
const int reps = 10000;
|
|
unsigned int seed = 1;
|
|
|
|
// tty->print_cr("seed %ld for %ld repeats...", seed, reps);
|
|
int num;
|
|
for (int k = 0; k < reps; k++) {
|
|
// Use next_random so the calculation is stateless.
|
|
num = seed = os::next_random(seed);
|
|
double u = (double)num / m;
|
|
ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!";
|
|
|
|
// calculate mean and variance of the random sequence
|
|
mean += u;
|
|
variance += (u*u);
|
|
}
|
|
mean /= reps;
|
|
variance /= (reps - 1);
|
|
|
|
ASSERT_EQ(num, 1043618065) << "bad seed";
|
|
// tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
|
|
int intmean = (int)(mean*100);
|
|
ASSERT_EQ(intmean, 50);
|
|
// tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
|
|
int intvariance = (int)(variance*100);
|
|
ASSERT_EQ(intvariance, 33);
|
|
const double eps = 0.0001;
|
|
t = fabsd(mean - 0.5018);
|
|
ASSERT_LT(t, eps) << "bad mean";
|
|
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
|
|
ASSERT_LT(t, eps) << "bad variance";
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages,
|
|
"assert.min_pages > 0. failed: sanity") {
|
|
size_t region_size = 16 * os::vm_page_size();
|
|
os::page_size_for_region_aligned(region_size, 0); // should assert
|
|
}
|
|
#endif
|
|
|
|
static void do_test_print_hex_dump(address addr, size_t len, int unitsize, const char* expected) {
|
|
char buf[256];
|
|
buf[0] = '\0';
|
|
stringStream ss(buf, sizeof(buf));
|
|
os::print_hex_dump(&ss, addr, addr + len, unitsize);
|
|
// tty->print_cr("expected: %s", expected);
|
|
// tty->print_cr("result: %s", buf);
|
|
EXPECT_THAT(buf, HasSubstr(expected));
|
|
}
|
|
|
|
TEST_VM(os, test_print_hex_dump) {
|
|
const char* pattern [4] = {
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
"00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f",
|
|
"0100 0302 0504 0706 0908 0b0a 0d0c 0f0e",
|
|
"03020100 07060504 0b0a0908 0f0e0d0c",
|
|
"0706050403020100 0f0e0d0c0b0a0908"
|
|
#else
|
|
"00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f",
|
|
"0001 0203 0405 0607 0809 0a0b 0c0d 0e0f",
|
|
"00010203 04050607 08090a0b 0c0d0e0f",
|
|
"0001020304050607 08090a0b0c0d0e0f"
|
|
#endif
|
|
};
|
|
|
|
const char* pattern_not_readable [4] = {
|
|
"?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??",
|
|
"???? ???? ???? ???? ???? ???? ???? ????",
|
|
"???????? ???????? ???????? ????????",
|
|
"???????????????? ????????????????"
|
|
};
|
|
|
|
// On AIX, zero page is readable.
|
|
address unreadable =
|
|
#ifdef AIX
|
|
(address) 0xFFFFFFFFFFFF0000ULL;
|
|
#else
|
|
(address) 0
|
|
#endif
|
|
;
|
|
|
|
ResourceMark rm;
|
|
char buf[64];
|
|
stringStream ss(buf, sizeof(buf));
|
|
outputStream* out = &ss;
|
|
// outputStream* out = tty; // enable for printout
|
|
|
|
// Test dumping unreadable memory
|
|
// Exclude test for Windows for now, since it needs SEH handling to work which cannot be
|
|
// guaranteed when we call directly into VM code. (see JDK-8220220)
|
|
#ifndef _WIN32
|
|
do_test_print_hex_dump(unreadable, 100, 1, pattern_not_readable[0]);
|
|
do_test_print_hex_dump(unreadable, 100, 2, pattern_not_readable[1]);
|
|
do_test_print_hex_dump(unreadable, 100, 4, pattern_not_readable[2]);
|
|
do_test_print_hex_dump(unreadable, 100, 8, pattern_not_readable[3]);
|
|
#endif
|
|
|
|
// Test dumping readable memory
|
|
address arr = (address)os::malloc(100, mtInternal);
|
|
for (u1 c = 0; c < 100; c++) {
|
|
arr[c] = c;
|
|
}
|
|
|
|
// properly aligned
|
|
do_test_print_hex_dump(arr, 100, 1, pattern[0]);
|
|
do_test_print_hex_dump(arr, 100, 2, pattern[1]);
|
|
do_test_print_hex_dump(arr, 100, 4, pattern[2]);
|
|
do_test_print_hex_dump(arr, 100, 8, pattern[3]);
|
|
|
|
// Not properly aligned. Should automatically down-align by unitsize
|
|
do_test_print_hex_dump(arr + 1, 100, 2, pattern[1]);
|
|
do_test_print_hex_dump(arr + 1, 100, 4, pattern[2]);
|
|
do_test_print_hex_dump(arr + 1, 100, 8, pattern[3]);
|
|
|
|
os::free(arr);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Test os::vsnprintf and friends.
|
|
|
|
static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) {
|
|
if (expect_count || ((size_t)expected < limit)) {
|
|
ASSERT_EQ(expected, actual);
|
|
} else {
|
|
ASSERT_GT(0, actual);
|
|
}
|
|
}
|
|
|
|
// PrintFn is expected to be int (*)(char*, size_t, const char*, ...).
|
|
// But jio_snprintf is a C-linkage function with that signature, which
|
|
// has a different type on some platforms (like Solaris).
|
|
template<typename PrintFn>
|
|
static void test_snprintf(PrintFn pf, bool expect_count) {
|
|
const char expected[] = "abcdefghijklmnopqrstuvwxyz";
|
|
const int expected_len = sizeof(expected) - 1;
|
|
const size_t padding_size = 10;
|
|
char buffer[2 * (sizeof(expected) + padding_size)];
|
|
char check_buffer[sizeof(buffer)];
|
|
const char check_char = '1'; // Something not in expected.
|
|
memset(check_buffer, check_char, sizeof(check_buffer));
|
|
const size_t sizes_to_test[] = {
|
|
sizeof(buffer) - padding_size, // Fits, with plenty of space to spare.
|
|
sizeof(buffer)/2, // Fits, with space to spare.
|
|
sizeof(buffer)/4, // Doesn't fit.
|
|
sizeof(expected) + padding_size + 1, // Fits, with a little room to spare
|
|
sizeof(expected) + padding_size, // Fits exactly.
|
|
sizeof(expected) + padding_size - 1, // Doesn't quite fit.
|
|
2, // One char + terminating NUL.
|
|
1, // Only space for terminating NUL.
|
|
0 }; // No space at all.
|
|
for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) {
|
|
memset(buffer, check_char, sizeof(buffer)); // To catch stray writes.
|
|
size_t test_size = sizes_to_test[i];
|
|
ResourceMark rm;
|
|
stringStream s;
|
|
s.print("test_size: " SIZE_FORMAT, test_size);
|
|
SCOPED_TRACE(s.as_string());
|
|
size_t prefix_size = padding_size;
|
|
guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant");
|
|
size_t write_size = MIN2(sizeof(expected), test_size);
|
|
size_t suffix_size = sizeof(buffer) - prefix_size - write_size;
|
|
char* write_start = buffer + prefix_size;
|
|
char* write_end = write_start + write_size;
|
|
|
|
int result = pf(write_start, test_size, "%s", expected);
|
|
|
|
check_snprintf_result(expected_len, test_size, result, expect_count);
|
|
|
|
// Verify expected output.
|
|
if (test_size > 0) {
|
|
ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1));
|
|
// Verify terminating NUL of output.
|
|
ASSERT_EQ('\0', write_start[write_size - 1]);
|
|
} else {
|
|
guarantee(test_size == 0, "invariant");
|
|
guarantee(write_size == 0, "invariant");
|
|
guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant");
|
|
guarantee(write_start == write_end, "invariant");
|
|
}
|
|
|
|
// Verify no scribbling on prefix or suffix.
|
|
ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size));
|
|
ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size));
|
|
}
|
|
|
|
// Special case of 0-length buffer with empty (except for terminator) output.
|
|
check_snprintf_result(0, 0, pf(NULL, 0, "%s", ""), expect_count);
|
|
check_snprintf_result(0, 0, pf(NULL, 0, ""), expect_count);
|
|
}
|
|
|
|
// This is probably equivalent to os::snprintf, but we're being
|
|
// explicit about what we're testing here.
|
|
static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
int result = os::vsnprintf(buf, len, fmt, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
TEST_VM(os, vsnprintf) {
|
|
test_snprintf(vsnprintf_wrapper, true);
|
|
}
|
|
|
|
TEST_VM(os, snprintf) {
|
|
test_snprintf(os::snprintf, true);
|
|
}
|
|
|
|
// These are declared in jvm.h; test here, with related functions.
|
|
extern "C" {
|
|
int jio_vsnprintf(char*, size_t, const char*, va_list);
|
|
int jio_snprintf(char*, size_t, const char*, ...);
|
|
}
|
|
|
|
// This is probably equivalent to jio_snprintf, but we're being
|
|
// explicit about what we're testing here.
|
|
static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
int result = jio_vsnprintf(buf, len, fmt, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
TEST_VM(os, jio_vsnprintf) {
|
|
test_snprintf(jio_vsnprintf_wrapper, false);
|
|
}
|
|
|
|
TEST_VM(os, jio_snprintf) {
|
|
test_snprintf(jio_snprintf, false);
|
|
}
|
|
|
|
#ifdef __APPLE__
|
|
// Not all macOS versions can use os::reserve_memory (i.e. anon_mmap) API
|
|
// to reserve executable memory, so before attempting to use it,
|
|
// we need to verify that we can do so by asking for a tiny executable
|
|
// memory chunk.
|
|
static inline bool can_reserve_executable_memory(void) {
|
|
bool executable = true;
|
|
size_t len = 128;
|
|
char* p = os::reserve_memory(len, executable);
|
|
bool exec_supported = (p != NULL);
|
|
if (exec_supported) {
|
|
os::release_memory(p, len);
|
|
}
|
|
return exec_supported;
|
|
}
|
|
#endif
|
|
|
|
// Test that os::release_memory() can deal with areas containing multiple mappings.
|
|
#define PRINT_MAPPINGS(s) { tty->print_cr("%s", s); os::print_memory_mappings((char*)p, total_range_len, tty); tty->cr(); }
|
|
//#define PRINT_MAPPINGS
|
|
|
|
// Release a range allocated with reserve_multiple carefully, to not trip mapping
|
|
// asserts on Windows in os::release_memory()
|
|
static void carefully_release_multiple(address start, int num_stripes, size_t stripe_len) {
|
|
for (int stripe = 0; stripe < num_stripes; stripe++) {
|
|
address q = start + (stripe * stripe_len);
|
|
EXPECT_TRUE(os::release_memory((char*)q, stripe_len));
|
|
}
|
|
}
|
|
|
|
#ifndef _AIX // JDK-8257041
|
|
// Reserve an area consisting of multiple mappings
|
|
// (from multiple calls to os::reserve_memory)
|
|
static address reserve_multiple(int num_stripes, size_t stripe_len) {
|
|
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
|
|
|
|
#ifdef __APPLE__
|
|
// Workaround: try reserving executable memory to figure out
|
|
// if such operation is supported on this macOS version
|
|
const bool exec_supported = can_reserve_executable_memory();
|
|
#endif
|
|
|
|
address p = NULL;
|
|
for (int tries = 0; tries < 256 && p == NULL; tries ++) {
|
|
size_t total_range_len = num_stripes * stripe_len;
|
|
// Reserve a large contiguous area to get the address space...
|
|
p = (address)os::reserve_memory(total_range_len);
|
|
EXPECT_NE(p, (address)NULL);
|
|
// .. release it...
|
|
EXPECT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
// ... re-reserve in the same spot multiple areas...
|
|
for (int stripe = 0; stripe < num_stripes; stripe++) {
|
|
address q = p + (stripe * stripe_len);
|
|
// Commit, alternatingly with or without exec permission,
|
|
// to prevent kernel from folding these mappings.
|
|
#ifdef __APPLE__
|
|
const bool executable = exec_supported ? (stripe % 2 == 0) : false;
|
|
#else
|
|
const bool executable = stripe % 2 == 0;
|
|
#endif
|
|
q = (address)os::attempt_reserve_memory_at((char*)q, stripe_len, executable);
|
|
if (q == NULL) {
|
|
// Someone grabbed that area concurrently. Cleanup, then retry.
|
|
tty->print_cr("reserve_multiple: retry (%d)...", stripe);
|
|
carefully_release_multiple(p, stripe, stripe_len);
|
|
p = NULL;
|
|
} else {
|
|
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, executable));
|
|
}
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
#endif // !AIX
|
|
|
|
// Reserve an area with a single call to os::reserve_memory,
|
|
// with multiple committed and uncommitted regions
|
|
static address reserve_one_commit_multiple(int num_stripes, size_t stripe_len) {
|
|
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
|
|
size_t total_range_len = num_stripes * stripe_len;
|
|
address p = (address)os::reserve_memory(total_range_len);
|
|
EXPECT_NE(p, (address)NULL);
|
|
for (int stripe = 0; stripe < num_stripes; stripe++) {
|
|
address q = p + (stripe * stripe_len);
|
|
if (stripe % 2 == 0) {
|
|
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, false));
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
struct NUMASwitcher {
|
|
const bool _b;
|
|
NUMASwitcher(bool v): _b(UseNUMAInterleaving) { UseNUMAInterleaving = v; }
|
|
~NUMASwitcher() { UseNUMAInterleaving = _b; }
|
|
};
|
|
#endif
|
|
|
|
#ifndef _AIX // JDK-8257041
|
|
TEST_VM(os, release_multi_mappings) {
|
|
|
|
// With NMT enabled, this will trigger JDK-8263464. For now disable the test if NMT=on.
|
|
if (MemTracker::tracking_level() > NMT_off) {
|
|
return;
|
|
}
|
|
|
|
// Test that we can release an area created with multiple reservation calls
|
|
// What we do:
|
|
// A) we reserve 6 small segments (stripes) adjacent to each other. We commit
|
|
// them with alternating permissions to prevent the kernel from folding them into
|
|
// a single segment.
|
|
// -stripe-stripe-stripe-stripe-stripe-stripe-
|
|
// B) we release the middle four stripes with a single os::release_memory call. This
|
|
// tests that os::release_memory indeed works across multiple segments created with
|
|
// multiple os::reserve calls.
|
|
// -stripe-___________________________-stripe-
|
|
// C) Into the now vacated address range between the first and the last stripe, we
|
|
// re-reserve a new memory range. We expect this to work as a proof that the address
|
|
// range was really released by the single release call (B).
|
|
//
|
|
// Note that this is inherently racy. Between (B) and (C), some other thread may have
|
|
// reserved something into the hole in the meantime. Therefore we keep that range small and
|
|
// entrenched between the first and last stripe, which reduces the chance of some concurrent
|
|
// thread grabbing that memory.
|
|
|
|
const size_t stripe_len = os::vm_allocation_granularity();
|
|
const int num_stripes = 6;
|
|
const size_t total_range_len = stripe_len * num_stripes;
|
|
|
|
// reserve address space...
|
|
address p = reserve_multiple(num_stripes, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
|
|
// .. release the middle stripes...
|
|
address p_middle_stripes = p + stripe_len;
|
|
const size_t middle_stripe_len = (num_stripes - 2) * stripe_len;
|
|
{
|
|
// On Windows, temporarily switch on UseNUMAInterleaving to allow release_memory to release
|
|
// multiple mappings in one go (otherwise we assert, which we test too, see death test below).
|
|
WINDOWS_ONLY(NUMASwitcher b(true);)
|
|
ASSERT_TRUE(os::release_memory((char*)p_middle_stripes, middle_stripe_len));
|
|
}
|
|
PRINT_MAPPINGS("B");
|
|
|
|
// ...re-reserve the middle stripes. This should work unless release silently failed.
|
|
address p2 = (address)os::attempt_reserve_memory_at((char*)p_middle_stripes, middle_stripe_len);
|
|
ASSERT_EQ(p2, p_middle_stripes);
|
|
PRINT_MAPPINGS("C");
|
|
|
|
// Clean up. Release all mappings.
|
|
{
|
|
WINDOWS_ONLY(NUMASwitcher b(true);) // allow release_memory to release multiple regions
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
}
|
|
}
|
|
#endif // !AIX
|
|
|
|
#ifdef _WIN32
|
|
// On Windows, test that we recognize bad ranges.
|
|
// On debug this would assert. Test that too.
|
|
// On other platforms, we are unable to recognize bad ranges.
|
|
#ifdef ASSERT
|
|
TEST_VM_ASSERT_MSG(os, release_bad_ranges, ".*bad release") {
|
|
#else
|
|
TEST_VM(os, release_bad_ranges) {
|
|
#endif
|
|
char* p = os::reserve_memory(4 * M);
|
|
ASSERT_NE(p, (char*)NULL);
|
|
// Release part of range
|
|
ASSERT_FALSE(os::release_memory(p, M));
|
|
// Release part of range
|
|
ASSERT_FALSE(os::release_memory(p + M, M));
|
|
// Release more than the range (explicitly switch off NUMA here
|
|
// to make os::release_memory() test more strictly and to not
|
|
// accidentally release neighbors)
|
|
{
|
|
NUMASwitcher b(false);
|
|
ASSERT_FALSE(os::release_memory(p, M * 5));
|
|
ASSERT_FALSE(os::release_memory(p - M, M * 5));
|
|
ASSERT_FALSE(os::release_memory(p - M, M * 6));
|
|
}
|
|
|
|
ASSERT_TRUE(os::release_memory(p, 4 * M)); // Release for real
|
|
ASSERT_FALSE(os::release_memory(p, 4 * M)); // Again, should fail
|
|
}
|
|
#endif // _WIN32
|
|
|
|
TEST_VM(os, release_one_mapping_multi_commits) {
|
|
// Test that we can release an area consisting of interleaved
|
|
// committed and uncommitted regions:
|
|
const size_t stripe_len = 4 * M;
|
|
const int num_stripes = 4;
|
|
const size_t total_range_len = stripe_len * num_stripes;
|
|
|
|
// reserve address space...
|
|
address p = reserve_one_commit_multiple(num_stripes, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
|
|
// .. release it...
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
|
|
// re-reserve it. This should work unless release failed.
|
|
address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len);
|
|
ASSERT_EQ(p2, p);
|
|
PRINT_MAPPINGS("C");
|
|
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("D");
|
|
}
|
|
|
|
static void test_show_mappings(address start, size_t size) {
|
|
// Note: should this overflow, thats okay. stream will silently truncate. Does not matter for the test.
|
|
const size_t buflen = 4 * M;
|
|
char* buf = NEW_C_HEAP_ARRAY(char, buflen, mtInternal);
|
|
buf[0] = '\0';
|
|
stringStream ss(buf, buflen);
|
|
if (start != nullptr) {
|
|
os::print_memory_mappings((char*)start, size, &ss);
|
|
} else {
|
|
os::print_memory_mappings(&ss); // prints full address space
|
|
}
|
|
// Still an empty implementation on MacOS and AIX
|
|
#if defined(LINUX) || defined(_WIN32)
|
|
EXPECT_NE(buf[0], '\0');
|
|
#endif
|
|
// buf[buflen - 1] = '\0';
|
|
// tty->print_raw(buf);
|
|
FREE_C_HEAP_ARRAY(char, buf);
|
|
}
|
|
|
|
TEST_VM(os, show_mappings_small_range) {
|
|
test_show_mappings((address)0x100000, 2 * G);
|
|
}
|
|
|
|
TEST_VM(os, show_mappings_full_range) {
|
|
// Reserve a small range and fill it with a marker string, should show up
|
|
// on implementations displaying range snippets
|
|
char* p = os::reserve_memory(1 * M, false, mtInternal);
|
|
if (p != nullptr) {
|
|
if (os::commit_memory(p, 1 * M, false)) {
|
|
strcpy(p, "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
|
|
}
|
|
}
|
|
test_show_mappings(nullptr, 0);
|
|
if (p != nullptr) {
|
|
os::release_memory(p, 1 * M);
|
|
}
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
// Test os::win32::find_mapping
|
|
TEST_VM(os, find_mapping_simple) {
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
// Some obvious negatives
|
|
ASSERT_FALSE(os::win32::find_mapping((address)NULL, &mapping_info));
|
|
ASSERT_FALSE(os::win32::find_mapping((address)4711, &mapping_info));
|
|
|
|
// A simple allocation
|
|
{
|
|
address p = (address)os::reserve_memory(total_range_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p);
|
|
ASSERT_EQ(mapping_info.regions, 1);
|
|
ASSERT_EQ(mapping_info.size, total_range_len);
|
|
ASSERT_EQ(mapping_info.committed_size, 0);
|
|
}
|
|
// Test just outside the allocation
|
|
if (os::win32::find_mapping(p - 1, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, find_mapping_2) {
|
|
// A more complex allocation, consisting of multiple regions.
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
const size_t stripe_len = total_range_len / 4;
|
|
address p = reserve_one_commit_multiple(4, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p);
|
|
ASSERT_EQ(mapping_info.regions, 4);
|
|
ASSERT_EQ(mapping_info.size, total_range_len);
|
|
ASSERT_EQ(mapping_info.committed_size, total_range_len / 2);
|
|
}
|
|
// Test just outside the allocation
|
|
if (os::win32::find_mapping(p - 1, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
|
|
TEST_VM(os, find_mapping_3) {
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
// A more complex case, consisting of multiple allocations.
|
|
{
|
|
const size_t stripe_len = total_range_len / 4;
|
|
address p = reserve_multiple(4, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("E");
|
|
for (int stripe = 0; stripe < 4; stripe++) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + (stripe * stripe_len), &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p + (stripe * stripe_len));
|
|
ASSERT_EQ(mapping_info.regions, 1);
|
|
ASSERT_EQ(mapping_info.size, stripe_len);
|
|
ASSERT_EQ(mapping_info.committed_size, stripe_len);
|
|
}
|
|
carefully_release_multiple(p, 4, stripe_len);
|
|
PRINT_MAPPINGS("F");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
}
|
|
#endif // _WIN32
|
|
|
|
TEST_VM(os, os_pagesizes) {
|
|
ASSERT_EQ(os::min_page_size(), 4 * K);
|
|
ASSERT_LE(os::min_page_size(), os::vm_page_size());
|
|
// The vm_page_size should be the smallest in the set of allowed page sizes
|
|
// (contract says "default" page size but a lot of code actually assumes
|
|
// this to be the smallest page size; notable, deliberate exception is
|
|
// AIX which can have smaller page sizes but those are not part of the
|
|
// page_sizes() set).
|
|
ASSERT_EQ(os::page_sizes().smallest(), os::vm_page_size());
|
|
// The large page size, if it exists, shall be part of the set
|
|
if (UseLargePages) {
|
|
ASSERT_GT(os::large_page_size(), os::vm_page_size());
|
|
ASSERT_TRUE(os::page_sizes().contains(os::large_page_size()));
|
|
}
|
|
os::page_sizes().print_on(tty);
|
|
tty->cr();
|
|
}
|
|
|
|
static const int min_page_size_log2 = exact_log2(os::min_page_size());
|
|
static const int max_page_size_log2 = (int)BitsPerWord;
|
|
|
|
TEST_VM(os, pagesizes_test_range) {
|
|
for (int bit = min_page_size_log2; bit < max_page_size_log2; bit++) {
|
|
for (int bit2 = min_page_size_log2; bit2 < max_page_size_log2; bit2++) {
|
|
const size_t s = (size_t)1 << bit;
|
|
const size_t s2 = (size_t)1 << bit2;
|
|
os::PageSizes pss;
|
|
ASSERT_EQ((size_t)0, pss.smallest());
|
|
ASSERT_EQ((size_t)0, pss.largest());
|
|
// one size set
|
|
pss.add(s);
|
|
ASSERT_TRUE(pss.contains(s));
|
|
ASSERT_EQ(s, pss.smallest());
|
|
ASSERT_EQ(s, pss.largest());
|
|
ASSERT_EQ(pss.next_larger(s), (size_t)0);
|
|
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
|
|
// two set
|
|
pss.add(s2);
|
|
ASSERT_TRUE(pss.contains(s2));
|
|
if (s2 < s) {
|
|
ASSERT_EQ(s2, pss.smallest());
|
|
ASSERT_EQ(s, pss.largest());
|
|
ASSERT_EQ(pss.next_larger(s2), (size_t)s);
|
|
ASSERT_EQ(pss.next_smaller(s2), (size_t)0);
|
|
ASSERT_EQ(pss.next_larger(s), (size_t)0);
|
|
ASSERT_EQ(pss.next_smaller(s), (size_t)s2);
|
|
} else if (s2 > s) {
|
|
ASSERT_EQ(s, pss.smallest());
|
|
ASSERT_EQ(s2, pss.largest());
|
|
ASSERT_EQ(pss.next_larger(s), (size_t)s2);
|
|
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
|
|
ASSERT_EQ(pss.next_larger(s2), (size_t)0);
|
|
ASSERT_EQ(pss.next_smaller(s2), (size_t)s);
|
|
}
|
|
for (int bit3 = min_page_size_log2; bit3 < max_page_size_log2; bit3++) {
|
|
const size_t s3 = (size_t)1 << bit3;
|
|
ASSERT_EQ(s3 == s || s3 == s2, pss.contains(s3));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, pagesizes_test_print) {
|
|
os::PageSizes pss;
|
|
const size_t sizes[] = { 16 * K, 64 * K, 128 * K, 1 * M, 4 * M, 1 * G, 2 * G, 0 };
|
|
static const char* const expected = "16k, 64k, 128k, 1M, 4M, 1G, 2G";
|
|
for (int i = 0; sizes[i] != 0; i++) {
|
|
pss.add(sizes[i]);
|
|
}
|
|
char buffer[256];
|
|
stringStream ss(buffer, sizeof(buffer));
|
|
pss.print_on(&ss);
|
|
EXPECT_STREQ(expected, buffer);
|
|
}
|
|
|
|
TEST_VM(os, dll_address_to_function_and_library_name) {
|
|
char tmp[1024];
|
|
char output[1024];
|
|
stringStream st(output, sizeof(output));
|
|
|
|
#define EXPECT_CONTAINS(haystack, needle) \
|
|
EXPECT_THAT(haystack, HasSubstr(needle));
|
|
#define EXPECT_DOES_NOT_CONTAIN(haystack, needle) \
|
|
EXPECT_THAT(haystack, Not(HasSubstr(needle)));
|
|
// #define LOG(...) tty->print_cr(__VA_ARGS__); // enable if needed
|
|
#define LOG(...)
|
|
|
|
// Invalid addresses
|
|
LOG("os::print_function_and_library_name(st, -1) expects FALSE.");
|
|
address addr = (address)(intptr_t)-1;
|
|
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
|
|
LOG("os::print_function_and_library_name(st, NULL) expects FALSE.");
|
|
addr = NULL;
|
|
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
|
|
|
|
// Valid addresses
|
|
// Test with or without shorten-paths, demangle, and scratch buffer
|
|
for (int i = 0; i < 16; i++) {
|
|
const bool shorten_paths = (i & 1) != 0;
|
|
const bool demangle = (i & 2) != 0;
|
|
const bool strip_arguments = (i & 4) != 0;
|
|
const bool provide_scratch_buffer = (i & 8) != 0;
|
|
LOG("shorten_paths=%d, demangle=%d, strip_arguments=%d, provide_scratch_buffer=%d",
|
|
shorten_paths, demangle, strip_arguments, provide_scratch_buffer);
|
|
|
|
// Should show os::min_page_size in libjvm
|
|
addr = CAST_FROM_FN_PTR(address, Threads::create_vm);
|
|
st.reset();
|
|
EXPECT_TRUE(os::print_function_and_library_name(&st, addr,
|
|
provide_scratch_buffer ? tmp : NULL,
|
|
sizeof(tmp),
|
|
shorten_paths, demangle,
|
|
strip_arguments));
|
|
EXPECT_CONTAINS(output, "Threads");
|
|
EXPECT_CONTAINS(output, "create_vm");
|
|
EXPECT_CONTAINS(output, "jvm"); // "jvm.dll" or "libjvm.so" or similar
|
|
LOG("%s", output);
|
|
|
|
// Test truncation on scratch buffer
|
|
if (provide_scratch_buffer) {
|
|
st.reset();
|
|
tmp[10] = 'X';
|
|
EXPECT_TRUE(os::print_function_and_library_name(&st, addr, tmp, 10,
|
|
shorten_paths, demangle));
|
|
EXPECT_EQ(tmp[10], 'X');
|
|
LOG("%s", output);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Not a regex! Very primitive, just match:
|
|
// "d" - digit
|
|
// "a" - ascii
|
|
// "." - everything
|
|
// rest must match
|
|
static bool very_simple_string_matcher(const char* pattern, const char* s) {
|
|
const size_t lp = strlen(pattern);
|
|
const size_t ls = strlen(s);
|
|
if (ls < lp) {
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < lp; i ++) {
|
|
switch (pattern[i]) {
|
|
case '.': continue;
|
|
case 'd': if (!isdigit(s[i])) return false; break;
|
|
case 'a': if (!isascii(s[i])) return false; break;
|
|
default: if (s[i] != pattern[i]) return false; break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TEST_VM(os, iso8601_time) {
|
|
char buffer[os::iso8601_timestamp_size + 1]; // + space for canary
|
|
buffer[os::iso8601_timestamp_size] = 'X'; // canary
|
|
const char* result = NULL;
|
|
// YYYY-MM-DDThh:mm:ss.mmm+zzzz
|
|
const char* const pattern_utc = "dddd-dd-dd.dd:dd:dd.ddd.0000";
|
|
const char* const pattern_local = "dddd-dd-dd.dd:dd:dd.ddd.dddd";
|
|
|
|
result = os::iso8601_time(buffer, sizeof(buffer), true);
|
|
tty->print_cr("%s", result);
|
|
EXPECT_EQ(result, buffer);
|
|
EXPECT_TRUE(very_simple_string_matcher(pattern_utc, result));
|
|
|
|
result = os::iso8601_time(buffer, sizeof(buffer), false);
|
|
tty->print_cr("%s", result);
|
|
EXPECT_EQ(result, buffer);
|
|
EXPECT_TRUE(very_simple_string_matcher(pattern_local, result));
|
|
|
|
// Test with explicit timestamps
|
|
result = os::iso8601_time(0, buffer, sizeof(buffer), true);
|
|
tty->print_cr("%s", result);
|
|
EXPECT_EQ(result, buffer);
|
|
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.000+0000", result));
|
|
|
|
result = os::iso8601_time(17, buffer, sizeof(buffer), true);
|
|
tty->print_cr("%s", result);
|
|
EXPECT_EQ(result, buffer);
|
|
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.017+0000", result));
|
|
|
|
// Canary should still be intact
|
|
EXPECT_EQ(buffer[os::iso8601_timestamp_size], 'X');
|
|
}
|
|
|
|
TEST_VM(os, is_first_C_frame) {
|
|
#if !defined(_WIN32) && !defined(ZERO) && !defined(__thumb__)
|
|
frame invalid_frame;
|
|
EXPECT_TRUE(os::is_first_C_frame(&invalid_frame)); // the frame has zeroes for all values
|
|
|
|
frame cur_frame = os::current_frame(); // this frame has to have a sender
|
|
EXPECT_FALSE(os::is_first_C_frame(&cur_frame));
|
|
#endif // _WIN32
|
|
}
|
|
|
|
#ifdef __GLIBC__
|
|
TEST_VM(os, trim_native_heap) {
|
|
EXPECT_TRUE(os::can_trim_native_heap());
|
|
os::size_change_t sc;
|
|
sc.before = sc.after = (size_t)-1;
|
|
EXPECT_TRUE(os::trim_native_heap(&sc));
|
|
tty->print_cr(SIZE_FORMAT "->" SIZE_FORMAT, sc.before, sc.after);
|
|
// Regardless of whether we freed memory, both before and after
|
|
// should be somewhat believable numbers (RSS).
|
|
const size_t min = 5 * M;
|
|
const size_t max = LP64_ONLY(20 * G) NOT_LP64(3 * G);
|
|
ASSERT_LE(min, sc.before);
|
|
ASSERT_GT(max, sc.before);
|
|
ASSERT_LE(min, sc.after);
|
|
ASSERT_GT(max, sc.after);
|
|
// Should also work
|
|
EXPECT_TRUE(os::trim_native_heap());
|
|
}
|
|
#else
|
|
TEST_VM(os, trim_native_heap) {
|
|
EXPECT_FALSE(os::can_trim_native_heap());
|
|
}
|
|
#endif // __GLIBC__
|
|
|
|
TEST_VM(os, open_O_CLOEXEC) {
|
|
#if !defined(_WIN32)
|
|
int fd = os::open("test_file.txt", O_RDWR | O_CREAT | O_TRUNC, 0666); // open will use O_CLOEXEC
|
|
EXPECT_TRUE(fd > 0);
|
|
int flags = ::fcntl(fd, F_GETFD);
|
|
EXPECT_TRUE((flags & FD_CLOEXEC) != 0); // if O_CLOEXEC worked, then FD_CLOEXEC should be ON
|
|
::close(fd);
|
|
#endif
|
|
}
|
|
|
|
TEST_VM(os, reserve_at_wish_address_shall_not_replace_mappings_smallpages) {
|
|
char* p1 = os::reserve_memory(M, false, mtTest);
|
|
ASSERT_NE(p1, nullptr);
|
|
char* p2 = os::attempt_reserve_memory_at(p1, M);
|
|
ASSERT_EQ(p2, nullptr); // should have failed
|
|
os::release_memory(p1, M);
|
|
}
|
|
|
|
TEST_VM(os, reserve_at_wish_address_shall_not_replace_mappings_largepages) {
|
|
if (UseLargePages && !os::can_commit_large_page_memory()) { // aka special
|
|
const size_t lpsz = os::large_page_size();
|
|
char* p1 = os::reserve_memory_aligned(lpsz, lpsz, false);
|
|
ASSERT_NE(p1, nullptr);
|
|
char* p2 = os::reserve_memory_special(lpsz, lpsz, lpsz, p1, false);
|
|
ASSERT_EQ(p2, nullptr); // should have failed
|
|
os::release_memory(p1, M);
|
|
} else {
|
|
tty->print_cr("Skipped.");
|
|
}
|
|
}
|
|
|
|
#ifdef AIX
|
|
// On Aix, we should fail attach attempts not aligned to segment boundaries (256m)
|
|
TEST_VM(os, aix_reserve_at_non_shmlba_aligned_address) {
|
|
if (Use64KPages && Use64KPagesThreshold == 0) {
|
|
char* p = os::attempt_reserve_memory_at((char*)0x1f00000, M);
|
|
ASSERT_EQ(p, nullptr); // should have failed
|
|
p = os::attempt_reserve_memory_at((char*)((64 * G) + M), M);
|
|
ASSERT_EQ(p, nullptr); // should have failed
|
|
}
|
|
}
|
|
#endif // AIX
|
|
|
|
TEST_VM(os, vm_min_address) {
|
|
size_t s = os::vm_min_address();
|
|
ASSERT_GE(s, M);
|
|
// Test upper limit. On Linux, its adjustable, so we just test for absurd values to prevent errors
|
|
// with high vm.mmap_min_addr settings.
|
|
#if defined(_LP64)
|
|
ASSERT_LE(s, NOT_LINUX(G * 4) LINUX_ONLY(G * 1024));
|
|
#endif
|
|
}
|
|
|