jdk-24/src/hotspot/share/interpreter/templateInterpreterGenerator.cpp
2017-09-12 19:03:39 +02:00

478 lines
20 KiB
C++

/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateInterpreter.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#ifndef CC_INTERP
# define __ _masm->
TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
_unimplemented_bytecode = NULL;
_illegal_bytecode_sequence = NULL;
generate_all();
}
static const BasicType types[Interpreter::number_of_result_handlers] = {
T_BOOLEAN,
T_CHAR ,
T_BYTE ,
T_SHORT ,
T_INT ,
T_LONG ,
T_VOID ,
T_FLOAT ,
T_DOUBLE ,
T_OBJECT
};
void TemplateInterpreterGenerator::generate_all() {
{ CodeletMark cm(_masm, "slow signature handler");
AbstractInterpreter::_slow_signature_handler = generate_slow_signature_handler();
}
{ CodeletMark cm(_masm, "error exits");
_unimplemented_bytecode = generate_error_exit("unimplemented bytecode");
_illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
}
#ifndef PRODUCT
if (TraceBytecodes) {
CodeletMark cm(_masm, "bytecode tracing support");
Interpreter::_trace_code =
EntryPoint(
generate_trace_code(btos),
generate_trace_code(ztos),
generate_trace_code(ctos),
generate_trace_code(stos),
generate_trace_code(atos),
generate_trace_code(itos),
generate_trace_code(ltos),
generate_trace_code(ftos),
generate_trace_code(dtos),
generate_trace_code(vtos)
);
}
#endif // !PRODUCT
{ CodeletMark cm(_masm, "return entry points");
const int index_size = sizeof(u2);
for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
Interpreter::_return_entry[i] =
EntryPoint(
generate_return_entry_for(itos, i, index_size),
generate_return_entry_for(itos, i, index_size),
generate_return_entry_for(itos, i, index_size),
generate_return_entry_for(itos, i, index_size),
generate_return_entry_for(atos, i, index_size),
generate_return_entry_for(itos, i, index_size),
generate_return_entry_for(ltos, i, index_size),
generate_return_entry_for(ftos, i, index_size),
generate_return_entry_for(dtos, i, index_size),
generate_return_entry_for(vtos, i, index_size)
);
}
}
{ CodeletMark cm(_masm, "invoke return entry points");
// These states are in order specified in TosState, except btos/ztos/ctos/stos are
// really the same as itos since there is no top of stack optimization for these types
const TosState states[] = {itos, itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos, ilgl};
const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
TosState state = states[i];
assert(state != ilgl, "states array is wrong above");
Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
}
}
{ CodeletMark cm(_masm, "earlyret entry points");
Interpreter::_earlyret_entry =
EntryPoint(
generate_earlyret_entry_for(btos),
generate_earlyret_entry_for(ztos),
generate_earlyret_entry_for(ctos),
generate_earlyret_entry_for(stos),
generate_earlyret_entry_for(atos),
generate_earlyret_entry_for(itos),
generate_earlyret_entry_for(ltos),
generate_earlyret_entry_for(ftos),
generate_earlyret_entry_for(dtos),
generate_earlyret_entry_for(vtos)
);
}
{ CodeletMark cm(_masm, "deoptimization entry points");
for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
Interpreter::_deopt_entry[i] =
EntryPoint(
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(atos, i),
generate_deopt_entry_for(itos, i),
generate_deopt_entry_for(ltos, i),
generate_deopt_entry_for(ftos, i),
generate_deopt_entry_for(dtos, i),
generate_deopt_entry_for(vtos, i)
);
}
}
{ CodeletMark cm(_masm, "result handlers for native calls");
// The various result converter stublets.
int is_generated[Interpreter::number_of_result_handlers];
memset(is_generated, 0, sizeof(is_generated));
for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
BasicType type = types[i];
if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
}
}
}
{ CodeletMark cm(_masm, "safepoint entry points");
Interpreter::_safept_entry =
EntryPoint(
generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ztos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
);
}
{ CodeletMark cm(_masm, "exception handling");
// (Note: this is not safepoint safe because thread may return to compiled code)
generate_throw_exception();
}
{ CodeletMark cm(_masm, "throw exception entrypoints");
Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
Interpreter::_throw_ArrayStoreException_entry = generate_klass_exception_handler("java/lang/ArrayStoreException" );
Interpreter::_throw_ArithmeticException_entry = generate_exception_handler("java/lang/ArithmeticException" , "/ by zero");
Interpreter::_throw_ClassCastException_entry = generate_ClassCastException_handler();
Interpreter::_throw_NullPointerException_entry = generate_exception_handler("java/lang/NullPointerException" , NULL );
Interpreter::_throw_StackOverflowError_entry = generate_StackOverflowError_handler();
}
#define method_entry(kind) \
{ CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \
Interpreter::update_cds_entry_table(Interpreter::kind); \
}
// all non-native method kinds
method_entry(zerolocals)
method_entry(zerolocals_synchronized)
method_entry(empty)
method_entry(accessor)
method_entry(abstract)
method_entry(java_lang_math_sin )
method_entry(java_lang_math_cos )
method_entry(java_lang_math_tan )
method_entry(java_lang_math_abs )
method_entry(java_lang_math_sqrt )
method_entry(java_lang_math_log )
method_entry(java_lang_math_log10)
method_entry(java_lang_math_exp )
method_entry(java_lang_math_pow )
method_entry(java_lang_math_fmaF )
method_entry(java_lang_math_fmaD )
method_entry(java_lang_ref_reference_get)
AbstractInterpreter::initialize_method_handle_entries();
// all native method kinds (must be one contiguous block)
Interpreter::_native_entry_begin = Interpreter::code()->code_end();
method_entry(native)
method_entry(native_synchronized)
Interpreter::_native_entry_end = Interpreter::code()->code_end();
method_entry(java_util_zip_CRC32_update)
method_entry(java_util_zip_CRC32_updateBytes)
method_entry(java_util_zip_CRC32_updateByteBuffer)
method_entry(java_util_zip_CRC32C_updateBytes)
method_entry(java_util_zip_CRC32C_updateDirectByteBuffer)
method_entry(java_lang_Float_intBitsToFloat);
method_entry(java_lang_Float_floatToRawIntBits);
method_entry(java_lang_Double_longBitsToDouble);
method_entry(java_lang_Double_doubleToRawLongBits);
#undef method_entry
// Bytecodes
set_entry_points_for_all_bytes();
// installation of code in other places in the runtime
// (ExcutableCodeManager calls not needed to copy the entries)
set_safepoints_for_all_bytes();
}
//------------------------------------------------------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
address entry = __ pc();
__ stop(msg);
return entry;
}
//------------------------------------------------------------------------------------------------------------------------
void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
for (int i = 0; i < DispatchTable::length; i++) {
Bytecodes::Code code = (Bytecodes::Code)i;
if (Bytecodes::is_defined(code)) {
set_entry_points(code);
} else {
set_unimplemented(i);
}
}
}
void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
for (int i = 0; i < DispatchTable::length; i++) {
Bytecodes::Code code = (Bytecodes::Code)i;
if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
}
}
void TemplateInterpreterGenerator::set_unimplemented(int i) {
address e = _unimplemented_bytecode;
EntryPoint entry(e, e, e, e, e, e, e, e, e, e);
Interpreter::_normal_table.set_entry(i, entry);
Interpreter::_wentry_point[i] = _unimplemented_bytecode;
}
void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
CodeletMark cm(_masm, Bytecodes::name(code), code);
// initialize entry points
assert(_unimplemented_bytecode != NULL, "should have been generated before");
assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
address bep = _illegal_bytecode_sequence;
address zep = _illegal_bytecode_sequence;
address cep = _illegal_bytecode_sequence;
address sep = _illegal_bytecode_sequence;
address aep = _illegal_bytecode_sequence;
address iep = _illegal_bytecode_sequence;
address lep = _illegal_bytecode_sequence;
address fep = _illegal_bytecode_sequence;
address dep = _illegal_bytecode_sequence;
address vep = _unimplemented_bytecode;
address wep = _unimplemented_bytecode;
// code for short & wide version of bytecode
if (Bytecodes::is_defined(code)) {
Template* t = TemplateTable::template_for(code);
assert(t->is_valid(), "just checking");
set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
}
if (Bytecodes::wide_is_defined(code)) {
Template* t = TemplateTable::template_for_wide(code);
assert(t->is_valid(), "just checking");
set_wide_entry_point(t, wep);
}
// set entry points
EntryPoint entry(bep, zep, cep, sep, aep, iep, lep, fep, dep, vep);
Interpreter::_normal_table.set_entry(code, entry);
Interpreter::_wentry_point[code] = wep;
}
void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
assert(t->is_valid(), "template must exist");
assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
wep = __ pc(); generate_and_dispatch(t);
}
void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
assert(t->is_valid(), "template must exist");
switch (t->tos_in()) {
case btos:
case ztos:
case ctos:
case stos:
ShouldNotReachHere(); // btos/ctos/stos should use itos.
break;
case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); break;
default : ShouldNotReachHere(); break;
}
}
//------------------------------------------------------------------------------------------------------------------------
void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
if (PrintBytecodeHistogram) histogram_bytecode(t);
#ifndef PRODUCT
// debugging code
if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
if (PrintBytecodePairHistogram) histogram_bytecode_pair(t);
if (TraceBytecodes) trace_bytecode(t);
if (StopInterpreterAt > 0) stop_interpreter_at();
__ verify_FPU(1, t->tos_in());
#endif // !PRODUCT
int step = 0;
if (!t->does_dispatch()) {
step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
if (tos_out == ilgl) tos_out = t->tos_out();
// compute bytecode size
assert(step > 0, "just checkin'");
// setup stuff for dispatching next bytecode
if (ProfileInterpreter && VerifyDataPointer
&& MethodData::bytecode_has_profile(t->bytecode())) {
__ verify_method_data_pointer();
}
__ dispatch_prolog(tos_out, step);
}
// generate template
t->generate(_masm);
// advance
if (t->does_dispatch()) {
#ifdef ASSERT
// make sure execution doesn't go beyond this point if code is broken
__ should_not_reach_here();
#endif // ASSERT
} else {
// dispatch to next bytecode
__ dispatch_epilog(tos_out, step);
}
}
// Generate method entries
address TemplateInterpreterGenerator::generate_method_entry(
AbstractInterpreter::MethodKind kind) {
// determine code generation flags
bool native = false;
bool synchronized = false;
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : native = true; break;
case Interpreter::native_synchronized : native = true; synchronized = true; break;
case Interpreter::empty : break;
case Interpreter::accessor : break;
case Interpreter::abstract : entry_point = generate_abstract_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp : // fall thru
case Interpreter::java_lang_math_fmaD : // fall thru
case Interpreter::java_lang_math_fmaF : entry_point = generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get
: entry_point = generate_Reference_get_entry(); break;
case Interpreter::java_util_zip_CRC32_update
: native = true; entry_point = generate_CRC32_update_entry(); break;
case Interpreter::java_util_zip_CRC32_updateBytes
: // fall thru
case Interpreter::java_util_zip_CRC32_updateByteBuffer
: native = true; entry_point = generate_CRC32_updateBytes_entry(kind); break;
case Interpreter::java_util_zip_CRC32C_updateBytes
: // fall thru
case Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer
: entry_point = generate_CRC32C_updateBytes_entry(kind); break;
#ifdef IA32
// On x86_32 platforms, a special entry is generated for the following four methods.
// On other platforms the normal entry is used to enter these methods.
case Interpreter::java_lang_Float_intBitsToFloat
: native = true; entry_point = generate_Float_intBitsToFloat_entry(); break;
case Interpreter::java_lang_Float_floatToRawIntBits
: native = true; entry_point = generate_Float_floatToRawIntBits_entry(); break;
case Interpreter::java_lang_Double_longBitsToDouble
: native = true; entry_point = generate_Double_longBitsToDouble_entry(); break;
case Interpreter::java_lang_Double_doubleToRawLongBits
: native = true; entry_point = generate_Double_doubleToRawLongBits_entry(); break;
#else
case Interpreter::java_lang_Float_intBitsToFloat:
case Interpreter::java_lang_Float_floatToRawIntBits:
case Interpreter::java_lang_Double_longBitsToDouble:
case Interpreter::java_lang_Double_doubleToRawLongBits:
native = true;
break;
#endif // !IA32
default:
fatal("unexpected method kind: %d", kind);
break;
}
if (entry_point) {
return entry_point;
}
// We expect the normal and native entry points to be generated first so we can reuse them.
if (native) {
entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::native_synchronized : Interpreter::native);
if (entry_point == NULL) {
entry_point = generate_native_entry(synchronized);
}
} else {
entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::zerolocals_synchronized : Interpreter::zerolocals);
if (entry_point == NULL) {
entry_point = generate_normal_entry(synchronized);
}
}
return entry_point;
}
#endif // !CC_INTERP