fdd7fde740
Reviewed-by: jmasa, pliden
1368 lines
50 KiB
C++
1368 lines
50 KiB
C++
/*
|
|
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "code/codeCacheExtensions.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/virtualspace.hpp"
|
|
#include "oops/markOop.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "services/memTracker.hpp"
|
|
|
|
// ReservedSpace
|
|
|
|
// Dummy constructor
|
|
ReservedSpace::ReservedSpace() : _base(NULL), _size(0), _noaccess_prefix(0),
|
|
_alignment(0), _special(false), _executable(false) {
|
|
}
|
|
|
|
ReservedSpace::ReservedSpace(size_t size, size_t preferred_page_size) {
|
|
bool has_preferred_page_size = preferred_page_size != 0;
|
|
// Want to use large pages where possible and pad with small pages.
|
|
size_t page_size = has_preferred_page_size ? preferred_page_size : os::page_size_for_region_unaligned(size, 1);
|
|
bool large_pages = page_size != (size_t)os::vm_page_size();
|
|
size_t alignment;
|
|
if (large_pages && has_preferred_page_size) {
|
|
alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
|
|
// ReservedSpace initialization requires size to be aligned to the given
|
|
// alignment. Align the size up.
|
|
size = align_size_up(size, alignment);
|
|
} else {
|
|
// Don't force the alignment to be large page aligned,
|
|
// since that will waste memory.
|
|
alignment = os::vm_allocation_granularity();
|
|
}
|
|
initialize(size, alignment, large_pages, NULL, false);
|
|
}
|
|
|
|
ReservedSpace::ReservedSpace(size_t size, size_t alignment,
|
|
bool large,
|
|
char* requested_address) {
|
|
initialize(size, alignment, large, requested_address, false);
|
|
}
|
|
|
|
ReservedSpace::ReservedSpace(size_t size, size_t alignment,
|
|
bool large,
|
|
bool executable) {
|
|
initialize(size, alignment, large, NULL, executable);
|
|
}
|
|
|
|
// Helper method.
|
|
static bool failed_to_reserve_as_requested(char* base, char* requested_address,
|
|
const size_t size, bool special)
|
|
{
|
|
if (base == requested_address || requested_address == NULL)
|
|
return false; // did not fail
|
|
|
|
if (base != NULL) {
|
|
// Different reserve address may be acceptable in other cases
|
|
// but for compressed oops heap should be at requested address.
|
|
assert(UseCompressedOops, "currently requested address used only for compressed oops");
|
|
log_debug(gc, heap, coops)("Reserved memory not at requested address: " PTR_FORMAT " vs " PTR_FORMAT, p2i(base), p2i(requested_address));
|
|
// OS ignored requested address. Try different address.
|
|
if (special) {
|
|
if (!os::release_memory_special(base, size)) {
|
|
fatal("os::release_memory_special failed");
|
|
}
|
|
} else {
|
|
if (!os::release_memory(base, size)) {
|
|
fatal("os::release_memory failed");
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
|
|
char* requested_address,
|
|
bool executable) {
|
|
const size_t granularity = os::vm_allocation_granularity();
|
|
assert((size & (granularity - 1)) == 0,
|
|
"size not aligned to os::vm_allocation_granularity()");
|
|
assert((alignment & (granularity - 1)) == 0,
|
|
"alignment not aligned to os::vm_allocation_granularity()");
|
|
assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
|
|
"not a power of 2");
|
|
|
|
alignment = MAX2(alignment, (size_t)os::vm_page_size());
|
|
|
|
_base = NULL;
|
|
_size = 0;
|
|
_special = false;
|
|
_executable = executable;
|
|
_alignment = 0;
|
|
_noaccess_prefix = 0;
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
|
|
// If OS doesn't support demand paging for large page memory, we need
|
|
// to use reserve_memory_special() to reserve and pin the entire region.
|
|
bool special = large && !os::can_commit_large_page_memory();
|
|
char* base = NULL;
|
|
|
|
if (special) {
|
|
|
|
base = os::reserve_memory_special(size, alignment, requested_address, executable);
|
|
|
|
if (base != NULL) {
|
|
if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
|
|
// OS ignored requested address. Try different address.
|
|
return;
|
|
}
|
|
// Check alignment constraints.
|
|
assert((uintptr_t) base % alignment == 0,
|
|
"Large pages returned a non-aligned address, base: "
|
|
PTR_FORMAT " alignment: " SIZE_FORMAT_HEX,
|
|
p2i(base), alignment);
|
|
_special = true;
|
|
} else {
|
|
// failed; try to reserve regular memory below
|
|
if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
|
|
log_debug(gc, heap, coops)("Reserve regular memory without large pages");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (base == NULL) {
|
|
// Optimistically assume that the OSes returns an aligned base pointer.
|
|
// When reserving a large address range, most OSes seem to align to at
|
|
// least 64K.
|
|
|
|
// If the memory was requested at a particular address, use
|
|
// os::attempt_reserve_memory_at() to avoid over mapping something
|
|
// important. If available space is not detected, return NULL.
|
|
|
|
if (requested_address != 0) {
|
|
base = os::attempt_reserve_memory_at(size, requested_address);
|
|
if (failed_to_reserve_as_requested(base, requested_address, size, false)) {
|
|
// OS ignored requested address. Try different address.
|
|
base = NULL;
|
|
}
|
|
} else {
|
|
base = os::reserve_memory(size, NULL, alignment);
|
|
}
|
|
|
|
if (base == NULL) return;
|
|
|
|
// Check alignment constraints
|
|
if ((((size_t)base) & (alignment - 1)) != 0) {
|
|
// Base not aligned, retry
|
|
if (!os::release_memory(base, size)) fatal("os::release_memory failed");
|
|
// Make sure that size is aligned
|
|
size = align_size_up(size, alignment);
|
|
base = os::reserve_memory_aligned(size, alignment);
|
|
|
|
if (requested_address != 0 &&
|
|
failed_to_reserve_as_requested(base, requested_address, size, false)) {
|
|
// As a result of the alignment constraints, the allocated base differs
|
|
// from the requested address. Return back to the caller who can
|
|
// take remedial action (like try again without a requested address).
|
|
assert(_base == NULL, "should be");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// Done
|
|
_base = base;
|
|
_size = size;
|
|
_alignment = alignment;
|
|
}
|
|
|
|
|
|
ReservedSpace::ReservedSpace(char* base, size_t size, size_t alignment,
|
|
bool special, bool executable) {
|
|
assert((size % os::vm_allocation_granularity()) == 0,
|
|
"size not allocation aligned");
|
|
_base = base;
|
|
_size = size;
|
|
_alignment = alignment;
|
|
_noaccess_prefix = 0;
|
|
_special = special;
|
|
_executable = executable;
|
|
}
|
|
|
|
|
|
ReservedSpace ReservedSpace::first_part(size_t partition_size, size_t alignment,
|
|
bool split, bool realloc) {
|
|
assert(partition_size <= size(), "partition failed");
|
|
if (split) {
|
|
os::split_reserved_memory(base(), size(), partition_size, realloc);
|
|
}
|
|
ReservedSpace result(base(), partition_size, alignment, special(),
|
|
executable());
|
|
return result;
|
|
}
|
|
|
|
|
|
ReservedSpace
|
|
ReservedSpace::last_part(size_t partition_size, size_t alignment) {
|
|
assert(partition_size <= size(), "partition failed");
|
|
ReservedSpace result(base() + partition_size, size() - partition_size,
|
|
alignment, special(), executable());
|
|
return result;
|
|
}
|
|
|
|
|
|
size_t ReservedSpace::page_align_size_up(size_t size) {
|
|
return align_size_up(size, os::vm_page_size());
|
|
}
|
|
|
|
|
|
size_t ReservedSpace::page_align_size_down(size_t size) {
|
|
return align_size_down(size, os::vm_page_size());
|
|
}
|
|
|
|
|
|
size_t ReservedSpace::allocation_align_size_up(size_t size) {
|
|
return align_size_up(size, os::vm_allocation_granularity());
|
|
}
|
|
|
|
|
|
size_t ReservedSpace::allocation_align_size_down(size_t size) {
|
|
return align_size_down(size, os::vm_allocation_granularity());
|
|
}
|
|
|
|
|
|
void ReservedSpace::release() {
|
|
if (is_reserved()) {
|
|
char *real_base = _base - _noaccess_prefix;
|
|
const size_t real_size = _size + _noaccess_prefix;
|
|
if (special()) {
|
|
os::release_memory_special(real_base, real_size);
|
|
} else{
|
|
os::release_memory(real_base, real_size);
|
|
}
|
|
_base = NULL;
|
|
_size = 0;
|
|
_noaccess_prefix = 0;
|
|
_alignment = 0;
|
|
_special = false;
|
|
_executable = false;
|
|
}
|
|
}
|
|
|
|
static size_t noaccess_prefix_size(size_t alignment) {
|
|
return lcm(os::vm_page_size(), alignment);
|
|
}
|
|
|
|
void ReservedHeapSpace::establish_noaccess_prefix() {
|
|
assert(_alignment >= (size_t)os::vm_page_size(), "must be at least page size big");
|
|
_noaccess_prefix = noaccess_prefix_size(_alignment);
|
|
|
|
if (base() && base() + _size > (char *)OopEncodingHeapMax) {
|
|
if (true
|
|
WIN64_ONLY(&& !UseLargePages)
|
|
AIX_ONLY(&& os::vm_page_size() != SIZE_64K)) {
|
|
// Protect memory at the base of the allocated region.
|
|
// If special, the page was committed (only matters on windows)
|
|
if (!os::protect_memory(_base, _noaccess_prefix, os::MEM_PROT_NONE, _special)) {
|
|
fatal("cannot protect protection page");
|
|
}
|
|
log_debug(gc, heap, coops)("Protected page at the reserved heap base: "
|
|
PTR_FORMAT " / " INTX_FORMAT " bytes",
|
|
p2i(_base),
|
|
_noaccess_prefix);
|
|
assert(Universe::narrow_oop_use_implicit_null_checks() == true, "not initialized?");
|
|
} else {
|
|
Universe::set_narrow_oop_use_implicit_null_checks(false);
|
|
}
|
|
}
|
|
|
|
_base += _noaccess_prefix;
|
|
_size -= _noaccess_prefix;
|
|
assert(((uintptr_t)_base % _alignment == 0), "must be exactly of required alignment");
|
|
}
|
|
|
|
// Tries to allocate memory of size 'size' at address requested_address with alignment 'alignment'.
|
|
// Does not check whether the reserved memory actually is at requested_address, as the memory returned
|
|
// might still fulfill the wishes of the caller.
|
|
// Assures the memory is aligned to 'alignment'.
|
|
// NOTE: If ReservedHeapSpace already points to some reserved memory this is freed, first.
|
|
void ReservedHeapSpace::try_reserve_heap(size_t size,
|
|
size_t alignment,
|
|
bool large,
|
|
char* requested_address) {
|
|
if (_base != NULL) {
|
|
// We tried before, but we didn't like the address delivered.
|
|
release();
|
|
}
|
|
|
|
// If OS doesn't support demand paging for large page memory, we need
|
|
// to use reserve_memory_special() to reserve and pin the entire region.
|
|
bool special = large && !os::can_commit_large_page_memory();
|
|
char* base = NULL;
|
|
|
|
log_trace(gc, heap, coops)("Trying to allocate at address " PTR_FORMAT
|
|
" heap of size " SIZE_FORMAT_HEX,
|
|
p2i(requested_address),
|
|
size);
|
|
|
|
if (special) {
|
|
base = os::reserve_memory_special(size, alignment, requested_address, false);
|
|
|
|
if (base != NULL) {
|
|
// Check alignment constraints.
|
|
assert((uintptr_t) base % alignment == 0,
|
|
"Large pages returned a non-aligned address, base: "
|
|
PTR_FORMAT " alignment: " SIZE_FORMAT_HEX,
|
|
p2i(base), alignment);
|
|
_special = true;
|
|
}
|
|
}
|
|
|
|
if (base == NULL) {
|
|
// Failed; try to reserve regular memory below
|
|
if (UseLargePages && (!FLAG_IS_DEFAULT(UseLargePages) ||
|
|
!FLAG_IS_DEFAULT(LargePageSizeInBytes))) {
|
|
log_debug(gc, heap, coops)("Reserve regular memory without large pages");
|
|
}
|
|
|
|
// Optimistically assume that the OSes returns an aligned base pointer.
|
|
// When reserving a large address range, most OSes seem to align to at
|
|
// least 64K.
|
|
|
|
// If the memory was requested at a particular address, use
|
|
// os::attempt_reserve_memory_at() to avoid over mapping something
|
|
// important. If available space is not detected, return NULL.
|
|
|
|
if (requested_address != 0) {
|
|
base = os::attempt_reserve_memory_at(size, requested_address);
|
|
} else {
|
|
base = os::reserve_memory(size, NULL, alignment);
|
|
}
|
|
}
|
|
if (base == NULL) { return; }
|
|
|
|
// Done
|
|
_base = base;
|
|
_size = size;
|
|
_alignment = alignment;
|
|
|
|
// Check alignment constraints
|
|
if ((((size_t)base) & (alignment - 1)) != 0) {
|
|
// Base not aligned, retry.
|
|
release();
|
|
}
|
|
}
|
|
|
|
void ReservedHeapSpace::try_reserve_range(char *highest_start,
|
|
char *lowest_start,
|
|
size_t attach_point_alignment,
|
|
char *aligned_heap_base_min_address,
|
|
char *upper_bound,
|
|
size_t size,
|
|
size_t alignment,
|
|
bool large) {
|
|
const size_t attach_range = highest_start - lowest_start;
|
|
// Cap num_attempts at possible number.
|
|
// At least one is possible even for 0 sized attach range.
|
|
const uint64_t num_attempts_possible = (attach_range / attach_point_alignment) + 1;
|
|
const uint64_t num_attempts_to_try = MIN2((uint64_t)HeapSearchSteps, num_attempts_possible);
|
|
|
|
const size_t stepsize = (attach_range == 0) ? // Only one try.
|
|
(size_t) highest_start : align_size_up(attach_range / num_attempts_to_try, attach_point_alignment);
|
|
|
|
// Try attach points from top to bottom.
|
|
char* attach_point = highest_start;
|
|
while (attach_point >= lowest_start &&
|
|
attach_point <= highest_start && // Avoid wrap around.
|
|
((_base == NULL) ||
|
|
(_base < aligned_heap_base_min_address || _base + size > upper_bound))) {
|
|
try_reserve_heap(size, alignment, large, attach_point);
|
|
attach_point -= stepsize;
|
|
}
|
|
}
|
|
|
|
#define SIZE_64K ((uint64_t) UCONST64( 0x10000))
|
|
#define SIZE_256M ((uint64_t) UCONST64( 0x10000000))
|
|
#define SIZE_32G ((uint64_t) UCONST64( 0x800000000))
|
|
|
|
// Helper for heap allocation. Returns an array with addresses
|
|
// (OS-specific) which are suited for disjoint base mode. Array is
|
|
// NULL terminated.
|
|
static char** get_attach_addresses_for_disjoint_mode() {
|
|
static uint64_t addresses[] = {
|
|
2 * SIZE_32G,
|
|
3 * SIZE_32G,
|
|
4 * SIZE_32G,
|
|
8 * SIZE_32G,
|
|
10 * SIZE_32G,
|
|
1 * SIZE_64K * SIZE_32G,
|
|
2 * SIZE_64K * SIZE_32G,
|
|
3 * SIZE_64K * SIZE_32G,
|
|
4 * SIZE_64K * SIZE_32G,
|
|
16 * SIZE_64K * SIZE_32G,
|
|
32 * SIZE_64K * SIZE_32G,
|
|
34 * SIZE_64K * SIZE_32G,
|
|
0
|
|
};
|
|
|
|
// Sort out addresses smaller than HeapBaseMinAddress. This assumes
|
|
// the array is sorted.
|
|
uint i = 0;
|
|
while (addresses[i] != 0 &&
|
|
(addresses[i] < OopEncodingHeapMax || addresses[i] < HeapBaseMinAddress)) {
|
|
i++;
|
|
}
|
|
uint start = i;
|
|
|
|
// Avoid more steps than requested.
|
|
i = 0;
|
|
while (addresses[start+i] != 0) {
|
|
if (i == HeapSearchSteps) {
|
|
addresses[start+i] = 0;
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return (char**) &addresses[start];
|
|
}
|
|
|
|
void ReservedHeapSpace::initialize_compressed_heap(const size_t size, size_t alignment, bool large) {
|
|
guarantee(size + noaccess_prefix_size(alignment) <= OopEncodingHeapMax,
|
|
"can not allocate compressed oop heap for this size");
|
|
guarantee(alignment == MAX2(alignment, (size_t)os::vm_page_size()), "alignment too small");
|
|
assert(HeapBaseMinAddress > 0, "sanity");
|
|
|
|
const size_t granularity = os::vm_allocation_granularity();
|
|
assert((size & (granularity - 1)) == 0,
|
|
"size not aligned to os::vm_allocation_granularity()");
|
|
assert((alignment & (granularity - 1)) == 0,
|
|
"alignment not aligned to os::vm_allocation_granularity()");
|
|
assert(alignment == 0 || is_power_of_2((intptr_t)alignment),
|
|
"not a power of 2");
|
|
|
|
// The necessary attach point alignment for generated wish addresses.
|
|
// This is needed to increase the chance of attaching for mmap and shmat.
|
|
const size_t os_attach_point_alignment =
|
|
AIX_ONLY(SIZE_256M) // Known shm boundary alignment.
|
|
NOT_AIX(os::vm_allocation_granularity());
|
|
const size_t attach_point_alignment = lcm(alignment, os_attach_point_alignment);
|
|
|
|
char *aligned_heap_base_min_address = (char *)align_ptr_up((void *)HeapBaseMinAddress, alignment);
|
|
size_t noaccess_prefix = ((aligned_heap_base_min_address + size) > (char*)OopEncodingHeapMax) ?
|
|
noaccess_prefix_size(alignment) : 0;
|
|
|
|
// Attempt to alloc at user-given address.
|
|
if (!FLAG_IS_DEFAULT(HeapBaseMinAddress)) {
|
|
try_reserve_heap(size + noaccess_prefix, alignment, large, aligned_heap_base_min_address);
|
|
if (_base != aligned_heap_base_min_address) { // Enforce this exact address.
|
|
release();
|
|
}
|
|
}
|
|
|
|
// Keep heap at HeapBaseMinAddress.
|
|
if (_base == NULL) {
|
|
|
|
// Try to allocate the heap at addresses that allow efficient oop compression.
|
|
// Different schemes are tried, in order of decreasing optimization potential.
|
|
//
|
|
// For this, try_reserve_heap() is called with the desired heap base addresses.
|
|
// A call into the os layer to allocate at a given address can return memory
|
|
// at a different address than requested. Still, this might be memory at a useful
|
|
// address. try_reserve_heap() always returns this allocated memory, as only here
|
|
// the criteria for a good heap are checked.
|
|
|
|
// Attempt to allocate so that we can run without base and scale (32-Bit unscaled compressed oops).
|
|
// Give it several tries from top of range to bottom.
|
|
if (aligned_heap_base_min_address + size <= (char *)UnscaledOopHeapMax) {
|
|
|
|
// Calc address range within we try to attach (range of possible start addresses).
|
|
char* const highest_start = (char *)align_ptr_down((char *)UnscaledOopHeapMax - size, attach_point_alignment);
|
|
char* const lowest_start = (char *)align_ptr_up(aligned_heap_base_min_address, attach_point_alignment);
|
|
try_reserve_range(highest_start, lowest_start, attach_point_alignment,
|
|
aligned_heap_base_min_address, (char *)UnscaledOopHeapMax, size, alignment, large);
|
|
}
|
|
|
|
// zerobased: Attempt to allocate in the lower 32G.
|
|
// But leave room for the compressed class pointers, which is allocated above
|
|
// the heap.
|
|
char *zerobased_max = (char *)OopEncodingHeapMax;
|
|
const size_t class_space = align_size_up(CompressedClassSpaceSize, alignment);
|
|
// For small heaps, save some space for compressed class pointer
|
|
// space so it can be decoded with no base.
|
|
if (UseCompressedClassPointers && !UseSharedSpaces &&
|
|
OopEncodingHeapMax <= KlassEncodingMetaspaceMax &&
|
|
(uint64_t)(aligned_heap_base_min_address + size + class_space) <= KlassEncodingMetaspaceMax) {
|
|
zerobased_max = (char *)OopEncodingHeapMax - class_space;
|
|
}
|
|
|
|
// Give it several tries from top of range to bottom.
|
|
if (aligned_heap_base_min_address + size <= zerobased_max && // Zerobased theoretical possible.
|
|
((_base == NULL) || // No previous try succeeded.
|
|
(_base + size > zerobased_max))) { // Unscaled delivered an arbitrary address.
|
|
|
|
// Calc address range within we try to attach (range of possible start addresses).
|
|
char *const highest_start = (char *)align_ptr_down(zerobased_max - size, attach_point_alignment);
|
|
// Need to be careful about size being guaranteed to be less
|
|
// than UnscaledOopHeapMax due to type constraints.
|
|
char *lowest_start = aligned_heap_base_min_address;
|
|
uint64_t unscaled_end = UnscaledOopHeapMax - size;
|
|
if (unscaled_end < UnscaledOopHeapMax) { // unscaled_end wrapped if size is large
|
|
lowest_start = MAX2(lowest_start, (char*)unscaled_end);
|
|
}
|
|
lowest_start = (char *)align_ptr_up(lowest_start, attach_point_alignment);
|
|
try_reserve_range(highest_start, lowest_start, attach_point_alignment,
|
|
aligned_heap_base_min_address, zerobased_max, size, alignment, large);
|
|
}
|
|
|
|
// Now we go for heaps with base != 0. We need a noaccess prefix to efficiently
|
|
// implement null checks.
|
|
noaccess_prefix = noaccess_prefix_size(alignment);
|
|
|
|
// Try to attach at addresses that are aligned to OopEncodingHeapMax. Disjointbase mode.
|
|
char** addresses = get_attach_addresses_for_disjoint_mode();
|
|
int i = 0;
|
|
while (addresses[i] && // End of array not yet reached.
|
|
((_base == NULL) || // No previous try succeeded.
|
|
(_base + size > (char *)OopEncodingHeapMax && // Not zerobased or unscaled address.
|
|
!Universe::is_disjoint_heap_base_address((address)_base)))) { // Not disjoint address.
|
|
char* const attach_point = addresses[i];
|
|
assert(attach_point >= aligned_heap_base_min_address, "Flag support broken");
|
|
try_reserve_heap(size + noaccess_prefix, alignment, large, attach_point);
|
|
i++;
|
|
}
|
|
|
|
// Last, desperate try without any placement.
|
|
if (_base == NULL) {
|
|
log_trace(gc, heap, coops)("Trying to allocate at address NULL heap of size " SIZE_FORMAT_HEX, size + noaccess_prefix);
|
|
initialize(size + noaccess_prefix, alignment, large, NULL, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment, bool large) : ReservedSpace() {
|
|
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
|
|
// Heap size should be aligned to alignment, too.
|
|
guarantee(is_size_aligned(size, alignment), "set by caller");
|
|
|
|
if (UseCompressedOops) {
|
|
initialize_compressed_heap(size, alignment, large);
|
|
if (_size > size) {
|
|
// We allocated heap with noaccess prefix.
|
|
// It can happen we get a zerobased/unscaled heap with noaccess prefix,
|
|
// if we had to try at arbitrary address.
|
|
establish_noaccess_prefix();
|
|
}
|
|
} else {
|
|
initialize(size, alignment, large, NULL, false);
|
|
}
|
|
|
|
assert(markOopDesc::encode_pointer_as_mark(_base)->decode_pointer() == _base,
|
|
"area must be distinguishable from marks for mark-sweep");
|
|
assert(markOopDesc::encode_pointer_as_mark(&_base[size])->decode_pointer() == &_base[size],
|
|
"area must be distinguishable from marks for mark-sweep");
|
|
|
|
if (base() > 0) {
|
|
MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
|
|
}
|
|
}
|
|
|
|
// Reserve space for code segment. Same as Java heap only we mark this as
|
|
// executable.
|
|
ReservedCodeSpace::ReservedCodeSpace(size_t r_size,
|
|
size_t rs_align,
|
|
bool large) :
|
|
ReservedSpace(r_size, rs_align, large, /*executable*/ CodeCacheExtensions::support_dynamic_code()) {
|
|
MemTracker::record_virtual_memory_type((address)base(), mtCode);
|
|
}
|
|
|
|
// VirtualSpace
|
|
|
|
VirtualSpace::VirtualSpace() {
|
|
_low_boundary = NULL;
|
|
_high_boundary = NULL;
|
|
_low = NULL;
|
|
_high = NULL;
|
|
_lower_high = NULL;
|
|
_middle_high = NULL;
|
|
_upper_high = NULL;
|
|
_lower_high_boundary = NULL;
|
|
_middle_high_boundary = NULL;
|
|
_upper_high_boundary = NULL;
|
|
_lower_alignment = 0;
|
|
_middle_alignment = 0;
|
|
_upper_alignment = 0;
|
|
_special = false;
|
|
_executable = false;
|
|
}
|
|
|
|
|
|
bool VirtualSpace::initialize(ReservedSpace rs, size_t committed_size) {
|
|
const size_t max_commit_granularity = os::page_size_for_region_unaligned(rs.size(), 1);
|
|
return initialize_with_granularity(rs, committed_size, max_commit_granularity);
|
|
}
|
|
|
|
bool VirtualSpace::initialize_with_granularity(ReservedSpace rs, size_t committed_size, size_t max_commit_granularity) {
|
|
if(!rs.is_reserved()) return false; // allocation failed.
|
|
assert(_low_boundary == NULL, "VirtualSpace already initialized");
|
|
assert(max_commit_granularity > 0, "Granularity must be non-zero.");
|
|
|
|
_low_boundary = rs.base();
|
|
_high_boundary = low_boundary() + rs.size();
|
|
|
|
_low = low_boundary();
|
|
_high = low();
|
|
|
|
_special = rs.special();
|
|
_executable = rs.executable();
|
|
|
|
// When a VirtualSpace begins life at a large size, make all future expansion
|
|
// and shrinking occur aligned to a granularity of large pages. This avoids
|
|
// fragmentation of physical addresses that inhibits the use of large pages
|
|
// by the OS virtual memory system. Empirically, we see that with a 4MB
|
|
// page size, the only spaces that get handled this way are codecache and
|
|
// the heap itself, both of which provide a substantial performance
|
|
// boost in many benchmarks when covered by large pages.
|
|
//
|
|
// No attempt is made to force large page alignment at the very top and
|
|
// bottom of the space if they are not aligned so already.
|
|
_lower_alignment = os::vm_page_size();
|
|
_middle_alignment = max_commit_granularity;
|
|
_upper_alignment = os::vm_page_size();
|
|
|
|
// End of each region
|
|
_lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment());
|
|
_middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment());
|
|
_upper_high_boundary = high_boundary();
|
|
|
|
// High address of each region
|
|
_lower_high = low_boundary();
|
|
_middle_high = lower_high_boundary();
|
|
_upper_high = middle_high_boundary();
|
|
|
|
// commit to initial size
|
|
if (committed_size > 0) {
|
|
if (!expand_by(committed_size)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
VirtualSpace::~VirtualSpace() {
|
|
release();
|
|
}
|
|
|
|
|
|
void VirtualSpace::release() {
|
|
// This does not release memory it never reserved.
|
|
// Caller must release via rs.release();
|
|
_low_boundary = NULL;
|
|
_high_boundary = NULL;
|
|
_low = NULL;
|
|
_high = NULL;
|
|
_lower_high = NULL;
|
|
_middle_high = NULL;
|
|
_upper_high = NULL;
|
|
_lower_high_boundary = NULL;
|
|
_middle_high_boundary = NULL;
|
|
_upper_high_boundary = NULL;
|
|
_lower_alignment = 0;
|
|
_middle_alignment = 0;
|
|
_upper_alignment = 0;
|
|
_special = false;
|
|
_executable = false;
|
|
}
|
|
|
|
|
|
size_t VirtualSpace::committed_size() const {
|
|
return pointer_delta(high(), low(), sizeof(char));
|
|
}
|
|
|
|
|
|
size_t VirtualSpace::reserved_size() const {
|
|
return pointer_delta(high_boundary(), low_boundary(), sizeof(char));
|
|
}
|
|
|
|
|
|
size_t VirtualSpace::uncommitted_size() const {
|
|
return reserved_size() - committed_size();
|
|
}
|
|
|
|
size_t VirtualSpace::actual_committed_size() const {
|
|
// Special VirtualSpaces commit all reserved space up front.
|
|
if (special()) {
|
|
return reserved_size();
|
|
}
|
|
|
|
size_t committed_low = pointer_delta(_lower_high, _low_boundary, sizeof(char));
|
|
size_t committed_middle = pointer_delta(_middle_high, _lower_high_boundary, sizeof(char));
|
|
size_t committed_high = pointer_delta(_upper_high, _middle_high_boundary, sizeof(char));
|
|
|
|
#ifdef ASSERT
|
|
size_t lower = pointer_delta(_lower_high_boundary, _low_boundary, sizeof(char));
|
|
size_t middle = pointer_delta(_middle_high_boundary, _lower_high_boundary, sizeof(char));
|
|
size_t upper = pointer_delta(_upper_high_boundary, _middle_high_boundary, sizeof(char));
|
|
|
|
if (committed_high > 0) {
|
|
assert(committed_low == lower, "Must be");
|
|
assert(committed_middle == middle, "Must be");
|
|
}
|
|
|
|
if (committed_middle > 0) {
|
|
assert(committed_low == lower, "Must be");
|
|
}
|
|
if (committed_middle < middle) {
|
|
assert(committed_high == 0, "Must be");
|
|
}
|
|
|
|
if (committed_low < lower) {
|
|
assert(committed_high == 0, "Must be");
|
|
assert(committed_middle == 0, "Must be");
|
|
}
|
|
#endif
|
|
|
|
return committed_low + committed_middle + committed_high;
|
|
}
|
|
|
|
|
|
bool VirtualSpace::contains(const void* p) const {
|
|
return low() <= (const char*) p && (const char*) p < high();
|
|
}
|
|
|
|
static void pretouch_expanded_memory(void* start, void* end) {
|
|
assert(is_ptr_aligned(start, os::vm_page_size()), "Unexpected alignment");
|
|
assert(is_ptr_aligned(end, os::vm_page_size()), "Unexpected alignment");
|
|
|
|
os::pretouch_memory(start, end);
|
|
}
|
|
|
|
static bool commit_expanded(char* start, size_t size, size_t alignment, bool pre_touch, bool executable) {
|
|
if (os::commit_memory(start, size, alignment, executable)) {
|
|
if (pre_touch || AlwaysPreTouch) {
|
|
pretouch_expanded_memory(start, start + size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
debug_only(warning(
|
|
"INFO: os::commit_memory(" PTR_FORMAT ", " PTR_FORMAT
|
|
" size=" SIZE_FORMAT ", executable=%d) failed",
|
|
p2i(start), p2i(start + size), size, executable);)
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
First we need to determine if a particular virtual space is using large
|
|
pages. This is done at the initialize function and only virtual spaces
|
|
that are larger than LargePageSizeInBytes use large pages. Once we
|
|
have determined this, all expand_by and shrink_by calls must grow and
|
|
shrink by large page size chunks. If a particular request
|
|
is within the current large page, the call to commit and uncommit memory
|
|
can be ignored. In the case that the low and high boundaries of this
|
|
space is not large page aligned, the pages leading to the first large
|
|
page address and the pages after the last large page address must be
|
|
allocated with default pages.
|
|
*/
|
|
bool VirtualSpace::expand_by(size_t bytes, bool pre_touch) {
|
|
if (uncommitted_size() < bytes) {
|
|
return false;
|
|
}
|
|
|
|
if (special()) {
|
|
// don't commit memory if the entire space is pinned in memory
|
|
_high += bytes;
|
|
return true;
|
|
}
|
|
|
|
char* previous_high = high();
|
|
char* unaligned_new_high = high() + bytes;
|
|
assert(unaligned_new_high <= high_boundary(), "cannot expand by more than upper boundary");
|
|
|
|
// Calculate where the new high for each of the regions should be. If
|
|
// the low_boundary() and high_boundary() are LargePageSizeInBytes aligned
|
|
// then the unaligned lower and upper new highs would be the
|
|
// lower_high() and upper_high() respectively.
|
|
char* unaligned_lower_new_high = MIN2(unaligned_new_high, lower_high_boundary());
|
|
char* unaligned_middle_new_high = MIN2(unaligned_new_high, middle_high_boundary());
|
|
char* unaligned_upper_new_high = MIN2(unaligned_new_high, upper_high_boundary());
|
|
|
|
// Align the new highs based on the regions alignment. lower and upper
|
|
// alignment will always be default page size. middle alignment will be
|
|
// LargePageSizeInBytes if the actual size of the virtual space is in
|
|
// fact larger than LargePageSizeInBytes.
|
|
char* aligned_lower_new_high = (char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
|
|
char* aligned_middle_new_high = (char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
|
|
char* aligned_upper_new_high = (char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
|
|
|
|
// Determine which regions need to grow in this expand_by call.
|
|
// If you are growing in the lower region, high() must be in that
|
|
// region so calculate the size based on high(). For the middle and
|
|
// upper regions, determine the starting point of growth based on the
|
|
// location of high(). By getting the MAX of the region's low address
|
|
// (or the previous region's high address) and high(), we can tell if it
|
|
// is an intra or inter region growth.
|
|
size_t lower_needs = 0;
|
|
if (aligned_lower_new_high > lower_high()) {
|
|
lower_needs = pointer_delta(aligned_lower_new_high, lower_high(), sizeof(char));
|
|
}
|
|
size_t middle_needs = 0;
|
|
if (aligned_middle_new_high > middle_high()) {
|
|
middle_needs = pointer_delta(aligned_middle_new_high, middle_high(), sizeof(char));
|
|
}
|
|
size_t upper_needs = 0;
|
|
if (aligned_upper_new_high > upper_high()) {
|
|
upper_needs = pointer_delta(aligned_upper_new_high, upper_high(), sizeof(char));
|
|
}
|
|
|
|
// Check contiguity.
|
|
assert(low_boundary() <= lower_high() && lower_high() <= lower_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(lower_high_boundary() <= middle_high() && middle_high() <= middle_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(middle_high_boundary() <= upper_high() && upper_high() <= upper_high_boundary(),
|
|
"high address must be contained within the region");
|
|
|
|
// Commit regions
|
|
if (lower_needs > 0) {
|
|
assert(lower_high() + lower_needs <= lower_high_boundary(), "must not expand beyond region");
|
|
if (!commit_expanded(lower_high(), lower_needs, _lower_alignment, pre_touch, _executable)) {
|
|
return false;
|
|
}
|
|
_lower_high += lower_needs;
|
|
}
|
|
|
|
if (middle_needs > 0) {
|
|
assert(middle_high() + middle_needs <= middle_high_boundary(), "must not expand beyond region");
|
|
if (!commit_expanded(middle_high(), middle_needs, _middle_alignment, pre_touch, _executable)) {
|
|
return false;
|
|
}
|
|
_middle_high += middle_needs;
|
|
}
|
|
|
|
if (upper_needs > 0) {
|
|
assert(upper_high() + upper_needs <= upper_high_boundary(), "must not expand beyond region");
|
|
if (!commit_expanded(upper_high(), upper_needs, _upper_alignment, pre_touch, _executable)) {
|
|
return false;
|
|
}
|
|
_upper_high += upper_needs;
|
|
}
|
|
|
|
_high += bytes;
|
|
return true;
|
|
}
|
|
|
|
// A page is uncommitted if the contents of the entire page is deemed unusable.
|
|
// Continue to decrement the high() pointer until it reaches a page boundary
|
|
// in which case that particular page can now be uncommitted.
|
|
void VirtualSpace::shrink_by(size_t size) {
|
|
if (committed_size() < size)
|
|
fatal("Cannot shrink virtual space to negative size");
|
|
|
|
if (special()) {
|
|
// don't uncommit if the entire space is pinned in memory
|
|
_high -= size;
|
|
return;
|
|
}
|
|
|
|
char* unaligned_new_high = high() - size;
|
|
assert(unaligned_new_high >= low_boundary(), "cannot shrink past lower boundary");
|
|
|
|
// Calculate new unaligned address
|
|
char* unaligned_upper_new_high =
|
|
MAX2(unaligned_new_high, middle_high_boundary());
|
|
char* unaligned_middle_new_high =
|
|
MAX2(unaligned_new_high, lower_high_boundary());
|
|
char* unaligned_lower_new_high =
|
|
MAX2(unaligned_new_high, low_boundary());
|
|
|
|
// Align address to region's alignment
|
|
char* aligned_upper_new_high =
|
|
(char*) round_to((intptr_t) unaligned_upper_new_high, upper_alignment());
|
|
char* aligned_middle_new_high =
|
|
(char*) round_to((intptr_t) unaligned_middle_new_high, middle_alignment());
|
|
char* aligned_lower_new_high =
|
|
(char*) round_to((intptr_t) unaligned_lower_new_high, lower_alignment());
|
|
|
|
// Determine which regions need to shrink
|
|
size_t upper_needs = 0;
|
|
if (aligned_upper_new_high < upper_high()) {
|
|
upper_needs =
|
|
pointer_delta(upper_high(), aligned_upper_new_high, sizeof(char));
|
|
}
|
|
size_t middle_needs = 0;
|
|
if (aligned_middle_new_high < middle_high()) {
|
|
middle_needs =
|
|
pointer_delta(middle_high(), aligned_middle_new_high, sizeof(char));
|
|
}
|
|
size_t lower_needs = 0;
|
|
if (aligned_lower_new_high < lower_high()) {
|
|
lower_needs =
|
|
pointer_delta(lower_high(), aligned_lower_new_high, sizeof(char));
|
|
}
|
|
|
|
// Check contiguity.
|
|
assert(middle_high_boundary() <= upper_high() &&
|
|
upper_high() <= upper_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(lower_high_boundary() <= middle_high() &&
|
|
middle_high() <= middle_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(low_boundary() <= lower_high() &&
|
|
lower_high() <= lower_high_boundary(),
|
|
"high address must be contained within the region");
|
|
|
|
// Uncommit
|
|
if (upper_needs > 0) {
|
|
assert(middle_high_boundary() <= aligned_upper_new_high &&
|
|
aligned_upper_new_high + upper_needs <= upper_high_boundary(),
|
|
"must not shrink beyond region");
|
|
if (!os::uncommit_memory(aligned_upper_new_high, upper_needs)) {
|
|
debug_only(warning("os::uncommit_memory failed"));
|
|
return;
|
|
} else {
|
|
_upper_high -= upper_needs;
|
|
}
|
|
}
|
|
if (middle_needs > 0) {
|
|
assert(lower_high_boundary() <= aligned_middle_new_high &&
|
|
aligned_middle_new_high + middle_needs <= middle_high_boundary(),
|
|
"must not shrink beyond region");
|
|
if (!os::uncommit_memory(aligned_middle_new_high, middle_needs)) {
|
|
debug_only(warning("os::uncommit_memory failed"));
|
|
return;
|
|
} else {
|
|
_middle_high -= middle_needs;
|
|
}
|
|
}
|
|
if (lower_needs > 0) {
|
|
assert(low_boundary() <= aligned_lower_new_high &&
|
|
aligned_lower_new_high + lower_needs <= lower_high_boundary(),
|
|
"must not shrink beyond region");
|
|
if (!os::uncommit_memory(aligned_lower_new_high, lower_needs)) {
|
|
debug_only(warning("os::uncommit_memory failed"));
|
|
return;
|
|
} else {
|
|
_lower_high -= lower_needs;
|
|
}
|
|
}
|
|
|
|
_high -= size;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void VirtualSpace::check_for_contiguity() {
|
|
// Check contiguity.
|
|
assert(low_boundary() <= lower_high() &&
|
|
lower_high() <= lower_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(lower_high_boundary() <= middle_high() &&
|
|
middle_high() <= middle_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(middle_high_boundary() <= upper_high() &&
|
|
upper_high() <= upper_high_boundary(),
|
|
"high address must be contained within the region");
|
|
assert(low() >= low_boundary(), "low");
|
|
assert(low_boundary() <= lower_high_boundary(), "lower high boundary");
|
|
assert(upper_high_boundary() <= high_boundary(), "upper high boundary");
|
|
assert(high() <= upper_high(), "upper high");
|
|
}
|
|
|
|
void VirtualSpace::print_on(outputStream* out) {
|
|
out->print ("Virtual space:");
|
|
if (special()) out->print(" (pinned in memory)");
|
|
out->cr();
|
|
out->print_cr(" - committed: " SIZE_FORMAT, committed_size());
|
|
out->print_cr(" - reserved: " SIZE_FORMAT, reserved_size());
|
|
out->print_cr(" - [low, high]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", p2i(low()), p2i(high()));
|
|
out->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", p2i(low_boundary()), p2i(high_boundary()));
|
|
}
|
|
|
|
void VirtualSpace::print() {
|
|
print_on(tty);
|
|
}
|
|
|
|
/////////////// Unit tests ///////////////
|
|
|
|
#ifndef PRODUCT
|
|
|
|
#define test_log(...) \
|
|
do {\
|
|
if (VerboseInternalVMTests) { \
|
|
tty->print_cr(__VA_ARGS__); \
|
|
tty->flush(); \
|
|
}\
|
|
} while (false)
|
|
|
|
class TestReservedSpace : AllStatic {
|
|
public:
|
|
static void small_page_write(void* addr, size_t size) {
|
|
size_t page_size = os::vm_page_size();
|
|
|
|
char* end = (char*)addr + size;
|
|
for (char* p = (char*)addr; p < end; p += page_size) {
|
|
*p = 1;
|
|
}
|
|
}
|
|
|
|
static void release_memory_for_test(ReservedSpace rs) {
|
|
if (rs.special()) {
|
|
guarantee(os::release_memory_special(rs.base(), rs.size()), "Shouldn't fail");
|
|
} else {
|
|
guarantee(os::release_memory(rs.base(), rs.size()), "Shouldn't fail");
|
|
}
|
|
}
|
|
|
|
static void test_reserved_space1(size_t size, size_t alignment) {
|
|
test_log("test_reserved_space1(%p)", (void*) (uintptr_t) size);
|
|
|
|
assert(is_size_aligned(size, alignment), "Incorrect input parameters");
|
|
|
|
ReservedSpace rs(size, // size
|
|
alignment, // alignment
|
|
UseLargePages, // large
|
|
(char *)NULL); // requested_address
|
|
|
|
test_log(" rs.special() == %d", rs.special());
|
|
|
|
assert(rs.base() != NULL, "Must be");
|
|
assert(rs.size() == size, "Must be");
|
|
|
|
assert(is_ptr_aligned(rs.base(), alignment), "aligned sizes should always give aligned addresses");
|
|
assert(is_size_aligned(rs.size(), alignment), "aligned sizes should always give aligned addresses");
|
|
|
|
if (rs.special()) {
|
|
small_page_write(rs.base(), size);
|
|
}
|
|
|
|
release_memory_for_test(rs);
|
|
}
|
|
|
|
static void test_reserved_space2(size_t size) {
|
|
test_log("test_reserved_space2(%p)", (void*)(uintptr_t)size);
|
|
|
|
assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
|
|
|
|
ReservedSpace rs(size);
|
|
|
|
test_log(" rs.special() == %d", rs.special());
|
|
|
|
assert(rs.base() != NULL, "Must be");
|
|
assert(rs.size() == size, "Must be");
|
|
|
|
if (rs.special()) {
|
|
small_page_write(rs.base(), size);
|
|
}
|
|
|
|
release_memory_for_test(rs);
|
|
}
|
|
|
|
static void test_reserved_space3(size_t size, size_t alignment, bool maybe_large) {
|
|
test_log("test_reserved_space3(%p, %p, %d)",
|
|
(void*)(uintptr_t)size, (void*)(uintptr_t)alignment, maybe_large);
|
|
|
|
if (size < alignment) {
|
|
// Tests might set -XX:LargePageSizeInBytes=<small pages> and cause unexpected input arguments for this test.
|
|
assert((size_t)os::vm_page_size() == os::large_page_size(), "Test needs further refinement");
|
|
return;
|
|
}
|
|
|
|
assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
|
|
assert(is_size_aligned(size, alignment), "Must be at least aligned against alignment");
|
|
|
|
bool large = maybe_large && UseLargePages && size >= os::large_page_size();
|
|
|
|
ReservedSpace rs(size, alignment, large, false);
|
|
|
|
test_log(" rs.special() == %d", rs.special());
|
|
|
|
assert(rs.base() != NULL, "Must be");
|
|
assert(rs.size() == size, "Must be");
|
|
|
|
if (rs.special()) {
|
|
small_page_write(rs.base(), size);
|
|
}
|
|
|
|
release_memory_for_test(rs);
|
|
}
|
|
|
|
|
|
static void test_reserved_space1() {
|
|
size_t size = 2 * 1024 * 1024;
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
test_reserved_space1(size, ag);
|
|
test_reserved_space1(size * 2, ag);
|
|
test_reserved_space1(size * 10, ag);
|
|
}
|
|
|
|
static void test_reserved_space2() {
|
|
size_t size = 2 * 1024 * 1024;
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
test_reserved_space2(size * 1);
|
|
test_reserved_space2(size * 2);
|
|
test_reserved_space2(size * 10);
|
|
test_reserved_space2(ag);
|
|
test_reserved_space2(size - ag);
|
|
test_reserved_space2(size);
|
|
test_reserved_space2(size + ag);
|
|
test_reserved_space2(size * 2);
|
|
test_reserved_space2(size * 2 - ag);
|
|
test_reserved_space2(size * 2 + ag);
|
|
test_reserved_space2(size * 3);
|
|
test_reserved_space2(size * 3 - ag);
|
|
test_reserved_space2(size * 3 + ag);
|
|
test_reserved_space2(size * 10);
|
|
test_reserved_space2(size * 10 + size / 2);
|
|
}
|
|
|
|
static void test_reserved_space3() {
|
|
size_t ag = os::vm_allocation_granularity();
|
|
|
|
test_reserved_space3(ag, ag , false);
|
|
test_reserved_space3(ag * 2, ag , false);
|
|
test_reserved_space3(ag * 3, ag , false);
|
|
test_reserved_space3(ag * 2, ag * 2, false);
|
|
test_reserved_space3(ag * 4, ag * 2, false);
|
|
test_reserved_space3(ag * 8, ag * 2, false);
|
|
test_reserved_space3(ag * 4, ag * 4, false);
|
|
test_reserved_space3(ag * 8, ag * 4, false);
|
|
test_reserved_space3(ag * 16, ag * 4, false);
|
|
|
|
if (UseLargePages) {
|
|
size_t lp = os::large_page_size();
|
|
|
|
// Without large pages
|
|
test_reserved_space3(lp, ag * 4, false);
|
|
test_reserved_space3(lp * 2, ag * 4, false);
|
|
test_reserved_space3(lp * 4, ag * 4, false);
|
|
test_reserved_space3(lp, lp , false);
|
|
test_reserved_space3(lp * 2, lp , false);
|
|
test_reserved_space3(lp * 3, lp , false);
|
|
test_reserved_space3(lp * 2, lp * 2, false);
|
|
test_reserved_space3(lp * 4, lp * 2, false);
|
|
test_reserved_space3(lp * 8, lp * 2, false);
|
|
|
|
// With large pages
|
|
test_reserved_space3(lp, ag * 4 , true);
|
|
test_reserved_space3(lp * 2, ag * 4, true);
|
|
test_reserved_space3(lp * 4, ag * 4, true);
|
|
test_reserved_space3(lp, lp , true);
|
|
test_reserved_space3(lp * 2, lp , true);
|
|
test_reserved_space3(lp * 3, lp , true);
|
|
test_reserved_space3(lp * 2, lp * 2, true);
|
|
test_reserved_space3(lp * 4, lp * 2, true);
|
|
test_reserved_space3(lp * 8, lp * 2, true);
|
|
}
|
|
}
|
|
|
|
static void test_reserved_space() {
|
|
test_reserved_space1();
|
|
test_reserved_space2();
|
|
test_reserved_space3();
|
|
}
|
|
};
|
|
|
|
void TestReservedSpace_test() {
|
|
TestReservedSpace::test_reserved_space();
|
|
}
|
|
|
|
#define assert_equals(actual, expected) \
|
|
assert(actual == expected, \
|
|
"Got " SIZE_FORMAT " expected " \
|
|
SIZE_FORMAT, actual, expected);
|
|
|
|
#define assert_ge(value1, value2) \
|
|
assert(value1 >= value2, \
|
|
"'" #value1 "': " SIZE_FORMAT " '" \
|
|
#value2 "': " SIZE_FORMAT, value1, value2);
|
|
|
|
#define assert_lt(value1, value2) \
|
|
assert(value1 < value2, \
|
|
"'" #value1 "': " SIZE_FORMAT " '" \
|
|
#value2 "': " SIZE_FORMAT, value1, value2);
|
|
|
|
|
|
class TestVirtualSpace : AllStatic {
|
|
enum TestLargePages {
|
|
Default,
|
|
Disable,
|
|
Reserve,
|
|
Commit
|
|
};
|
|
|
|
static ReservedSpace reserve_memory(size_t reserve_size_aligned, TestLargePages mode) {
|
|
switch(mode) {
|
|
default:
|
|
case Default:
|
|
case Reserve:
|
|
return ReservedSpace(reserve_size_aligned);
|
|
case Disable:
|
|
case Commit:
|
|
return ReservedSpace(reserve_size_aligned,
|
|
os::vm_allocation_granularity(),
|
|
/* large */ false, /* exec */ false);
|
|
}
|
|
}
|
|
|
|
static bool initialize_virtual_space(VirtualSpace& vs, ReservedSpace rs, TestLargePages mode) {
|
|
switch(mode) {
|
|
default:
|
|
case Default:
|
|
case Reserve:
|
|
return vs.initialize(rs, 0);
|
|
case Disable:
|
|
return vs.initialize_with_granularity(rs, 0, os::vm_page_size());
|
|
case Commit:
|
|
return vs.initialize_with_granularity(rs, 0, os::page_size_for_region_unaligned(rs.size(), 1));
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void test_virtual_space_actual_committed_space(size_t reserve_size, size_t commit_size,
|
|
TestLargePages mode = Default) {
|
|
size_t granularity = os::vm_allocation_granularity();
|
|
size_t reserve_size_aligned = align_size_up(reserve_size, granularity);
|
|
|
|
ReservedSpace reserved = reserve_memory(reserve_size_aligned, mode);
|
|
|
|
assert(reserved.is_reserved(), "Must be");
|
|
|
|
VirtualSpace vs;
|
|
bool initialized = initialize_virtual_space(vs, reserved, mode);
|
|
assert(initialized, "Failed to initialize VirtualSpace");
|
|
|
|
vs.expand_by(commit_size, false);
|
|
|
|
if (vs.special()) {
|
|
assert_equals(vs.actual_committed_size(), reserve_size_aligned);
|
|
} else {
|
|
assert_ge(vs.actual_committed_size(), commit_size);
|
|
// Approximate the commit granularity.
|
|
// Make sure that we don't commit using large pages
|
|
// if large pages has been disabled for this VirtualSpace.
|
|
size_t commit_granularity = (mode == Disable || !UseLargePages) ?
|
|
os::vm_page_size() : os::large_page_size();
|
|
assert_lt(vs.actual_committed_size(), commit_size + commit_granularity);
|
|
}
|
|
|
|
reserved.release();
|
|
}
|
|
|
|
static void test_virtual_space_actual_committed_space_one_large_page() {
|
|
if (!UseLargePages) {
|
|
return;
|
|
}
|
|
|
|
size_t large_page_size = os::large_page_size();
|
|
|
|
ReservedSpace reserved(large_page_size, large_page_size, true, false);
|
|
|
|
assert(reserved.is_reserved(), "Must be");
|
|
|
|
VirtualSpace vs;
|
|
bool initialized = vs.initialize(reserved, 0);
|
|
assert(initialized, "Failed to initialize VirtualSpace");
|
|
|
|
vs.expand_by(large_page_size, false);
|
|
|
|
assert_equals(vs.actual_committed_size(), large_page_size);
|
|
|
|
reserved.release();
|
|
}
|
|
|
|
static void test_virtual_space_actual_committed_space() {
|
|
test_virtual_space_actual_committed_space(4 * K, 0);
|
|
test_virtual_space_actual_committed_space(4 * K, 4 * K);
|
|
test_virtual_space_actual_committed_space(8 * K, 0);
|
|
test_virtual_space_actual_committed_space(8 * K, 4 * K);
|
|
test_virtual_space_actual_committed_space(8 * K, 8 * K);
|
|
test_virtual_space_actual_committed_space(12 * K, 0);
|
|
test_virtual_space_actual_committed_space(12 * K, 4 * K);
|
|
test_virtual_space_actual_committed_space(12 * K, 8 * K);
|
|
test_virtual_space_actual_committed_space(12 * K, 12 * K);
|
|
test_virtual_space_actual_committed_space(64 * K, 0);
|
|
test_virtual_space_actual_committed_space(64 * K, 32 * K);
|
|
test_virtual_space_actual_committed_space(64 * K, 64 * K);
|
|
test_virtual_space_actual_committed_space(2 * M, 0);
|
|
test_virtual_space_actual_committed_space(2 * M, 4 * K);
|
|
test_virtual_space_actual_committed_space(2 * M, 64 * K);
|
|
test_virtual_space_actual_committed_space(2 * M, 1 * M);
|
|
test_virtual_space_actual_committed_space(2 * M, 2 * M);
|
|
test_virtual_space_actual_committed_space(10 * M, 0);
|
|
test_virtual_space_actual_committed_space(10 * M, 4 * K);
|
|
test_virtual_space_actual_committed_space(10 * M, 8 * K);
|
|
test_virtual_space_actual_committed_space(10 * M, 1 * M);
|
|
test_virtual_space_actual_committed_space(10 * M, 2 * M);
|
|
test_virtual_space_actual_committed_space(10 * M, 5 * M);
|
|
test_virtual_space_actual_committed_space(10 * M, 10 * M);
|
|
}
|
|
|
|
static void test_virtual_space_disable_large_pages() {
|
|
if (!UseLargePages) {
|
|
return;
|
|
}
|
|
// These test cases verify that if we force VirtualSpace to disable large pages
|
|
test_virtual_space_actual_committed_space(10 * M, 0, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 4 * K, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 8 * K, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 1 * M, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 2 * M, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 5 * M, Disable);
|
|
test_virtual_space_actual_committed_space(10 * M, 10 * M, Disable);
|
|
|
|
test_virtual_space_actual_committed_space(10 * M, 0, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 4 * K, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 8 * K, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 1 * M, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 2 * M, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 5 * M, Reserve);
|
|
test_virtual_space_actual_committed_space(10 * M, 10 * M, Reserve);
|
|
|
|
test_virtual_space_actual_committed_space(10 * M, 0, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 4 * K, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 8 * K, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 1 * M, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 2 * M, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 5 * M, Commit);
|
|
test_virtual_space_actual_committed_space(10 * M, 10 * M, Commit);
|
|
}
|
|
|
|
static void test_virtual_space() {
|
|
test_virtual_space_actual_committed_space();
|
|
test_virtual_space_actual_committed_space_one_large_page();
|
|
test_virtual_space_disable_large_pages();
|
|
}
|
|
};
|
|
|
|
void TestVirtualSpace_test() {
|
|
TestVirtualSpace::test_virtual_space();
|
|
}
|
|
|
|
#endif // PRODUCT
|
|
|
|
#endif
|