Andrew Haley 52b991b411 8130150: Implement BigInteger.montgomeryMultiply intrinsic
Add montgomeryMultiply intrinsics

Reviewed-by: kvn
2015-06-16 17:31:53 +01:00

278 lines
11 KiB
Java

//
// Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2015, Red Hat Inc. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.MethodType;
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Random;
/**
* @test
* @bug 8130150
* @library /testlibrary
* @summary Verify that the Montgomery multiply intrinsic works and correctly checks its arguments.
*/
public class MontgomeryMultiplyTest {
static final MethodHandles.Lookup lookup = MethodHandles.lookup();
static final MethodHandle montgomeryMultiplyHandle, montgomerySquareHandle;
static final MethodHandle bigIntegerConstructorHandle;
static final Field bigIntegerMagField;
static {
// Use reflection to gain access to the methods we want to test.
try {
Method m = BigInteger.class.getDeclaredMethod("montgomeryMultiply",
/*a*/int[].class, /*b*/int[].class, /*n*/int[].class, /*len*/int.class,
/*inv*/long.class, /*product*/int[].class);
m.setAccessible(true);
montgomeryMultiplyHandle = lookup.unreflect(m);
m = BigInteger.class.getDeclaredMethod("montgomerySquare",
/*a*/int[].class, /*n*/int[].class, /*len*/int.class,
/*inv*/long.class, /*product*/int[].class);
m.setAccessible(true);
montgomerySquareHandle = lookup.unreflect(m);
Constructor c
= BigInteger.class.getDeclaredConstructor(int.class, int[].class);
c.setAccessible(true);
bigIntegerConstructorHandle = lookup.unreflectConstructor(c);
bigIntegerMagField = BigInteger.class.getDeclaredField("mag");
bigIntegerMagField.setAccessible(true);
} catch (Throwable ex) {
throw new RuntimeException(ex);
}
}
// Invoke either BigInteger.montgomeryMultiply or BigInteger.montgomerySquare.
int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
int[] product) throws Throwable {
int[] result =
(a == b) ? (int[]) montgomerySquareHandle.invokeExact(a, n, len, inv, product)
: (int[]) montgomeryMultiplyHandle.invokeExact(a, b, n, len, inv, product);
return Arrays.copyOf(result, len);
}
// Invoke the private constructor BigInteger(int[]).
BigInteger newBigInteger(int[] val) throws Throwable {
return (BigInteger) bigIntegerConstructorHandle.invokeExact(1, val);
}
// Get the private field BigInteger.mag
int[] mag(BigInteger n) {
try {
return (int[]) bigIntegerMagField.get(n);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
// Montgomery multiplication
// Calculate a * b * r^-1 mod n)
//
// R is a power of the word size
// N' = R^-1 mod N
//
// T := ab
// m := (T mod R)N' mod R [so 0 <= m < R]
// t := (T + mN)/R
// if t >= N then return t - N else return t
//
BigInteger montgomeryMultiply(BigInteger a, BigInteger b, BigInteger N,
int len, BigInteger n_prime)
throws Throwable {
BigInteger T = a.multiply(b);
BigInteger R = BigInteger.ONE.shiftLeft(len*32);
BigInteger mask = R.subtract(BigInteger.ONE);
BigInteger m = (T.and(mask)).multiply(n_prime);
m = m.and(mask); // i.e. m.mod(R)
T = T.add(m.multiply(N));
T = T.shiftRight(len*32); // i.e. T.divide(R)
if (T.compareTo(N) > 0) {
T = T.subtract(N);
}
return T;
}
// Call the Montgomery multiply intrinsic.
BigInteger montgomeryMultiply(int[] a_words, int[] b_words, int[] n_words,
int len, BigInteger inv)
throws Throwable {
BigInteger t = montgomeryMultiply(
newBigInteger(a_words),
newBigInteger(b_words),
newBigInteger(n_words),
len, inv);
return t;
}
// Check that the Montgomery multiply intrinsic returns the same
// result as the longhand calculation.
void check(int[] a_words, int[] b_words, int[] n_words, int len, BigInteger inv)
throws Throwable {
BigInteger n = newBigInteger(n_words);
BigInteger slow = montgomeryMultiply(a_words, b_words, n_words, len, inv);
BigInteger fast
= newBigInteger(montgomeryMultiply
(a_words, b_words, n_words, len, inv.longValue(), null));
// The intrinsic may not return the same value as the longhand
// calculation but they must have the same residue mod N.
if (!slow.mod(n).equals(fast.mod(n))) {
throw new RuntimeException();
}
}
Random rnd = new Random(0);
// Return a random value of length <= bits in an array of even length
int[] random_val(int bits) {
int len = (bits+63)/64; // i.e. length in longs
int[] val = new int[len*2];
for (int i = 0; i < val.length; i++)
val[i] = rnd.nextInt();
int leadingZeros = 64 - (bits & 64);
if (leadingZeros >= 32) {
val[0] = 0;
val[1] &= ~(-1l << (leadingZeros & 31));
} else {
val[0] &= ~(-1l << leadingZeros);
}
return val;
}
void testOneLength(int lenInBits, int lenInInts) throws Throwable {
BigInteger mod = new BigInteger(lenInBits, 2, rnd);
BigInteger r = BigInteger.ONE.shiftLeft(lenInInts * 32);
BigInteger n_prime = mod.modInverse(r).negate();
// Make n.length even, padding with a zero if necessary
int[] n = mag(mod);
if (n.length < lenInInts) {
int[] x = new int[lenInInts];
System.arraycopy(n, 0, x, lenInInts-n.length, n.length);
n = x;
}
for (int i = 0; i < 10000; i++) {
// multiply
check(random_val(lenInBits), random_val(lenInBits), n, lenInInts, n_prime);
// square
int[] tmp = random_val(lenInBits);
check(tmp, tmp, n, lenInInts, n_prime);
}
}
// Test the Montgomery multiply intrinsic with a bunch of random
// values of varying lengths. Do this for long enough that the
// caller of the intrinsic is C2-compiled.
void testResultValues() throws Throwable {
// Test a couple of interesting edge cases.
testOneLength(1024, 32);
testOneLength(1025, 34);
for (int j = 10; j > 0; j--) {
// Construct a random prime whose length in words is even
int lenInBits = rnd.nextInt(2048) + 64;
int lenInInts = (lenInBits + 63)/64*2;
testOneLength(lenInBits, lenInInts);
}
}
// Range checks
void testOneMontgomeryMultiplyCheck(int[] a, int[] b, int[] n, int len, long inv,
int[] product, Class klass) {
try {
montgomeryMultiply(a, b, n, len, inv, product);
} catch (Throwable ex) {
if (klass.isAssignableFrom(ex.getClass()))
return;
throw new RuntimeException(klass + " expected, " + ex + " was thrown");
}
throw new RuntimeException(klass + " expected, was not thrown");
}
void testOneMontgomeryMultiplyCheck(int[] a, int[] b, BigInteger n, int len, BigInteger inv,
Class klass) {
testOneMontgomeryMultiplyCheck(a, b, mag(n), len, inv.longValue(), null, klass);
}
void testOneMontgomeryMultiplyCheck(int[] a, int[] b, BigInteger n, int len, BigInteger inv,
int[] product, Class klass) {
testOneMontgomeryMultiplyCheck(a, b, mag(n), len, inv.longValue(), product, klass);
}
void testMontgomeryMultiplyChecks() {
int[] blah = random_val(40);
int[] small = random_val(39);
BigInteger mod = new BigInteger(40*32 , 2, rnd);
BigInteger r = BigInteger.ONE.shiftLeft(40*32);
BigInteger n_prime = mod.modInverse(r).negate();
// Length out of range: square
testOneMontgomeryMultiplyCheck(blah, blah, mod, 41, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah, mod, 0, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah, mod, -1, n_prime, IllegalArgumentException.class);
// As above, but for multiply
testOneMontgomeryMultiplyCheck(blah, blah.clone(), mod, 41, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah.clone(), mod, 0, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah.clone(), mod, 0, n_prime, IllegalArgumentException.class);
// Length odd
testOneMontgomeryMultiplyCheck(small, small, mod, 39, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, small, mod, 0, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, small, mod, -1, n_prime, IllegalArgumentException.class);
// As above, but for multiply
testOneMontgomeryMultiplyCheck(small, small.clone(), mod, 39, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, small.clone(), mod, 0, n_prime, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, small.clone(), mod, -1, n_prime, IllegalArgumentException.class);
// array too small
testOneMontgomeryMultiplyCheck(blah, blah, mod, 40, n_prime, small, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah.clone(), mod, 40, n_prime, small, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, blah, mod, 40, n_prime, blah, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, small, mod, 40, n_prime, blah, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(blah, blah, mod, 40, n_prime, small, IllegalArgumentException.class);
testOneMontgomeryMultiplyCheck(small, small, mod, 40, n_prime, blah, IllegalArgumentException.class);
}
public static void main(String args[]) {
try {
new MontgomeryMultiplyTest().testMontgomeryMultiplyChecks();
new MontgomeryMultiplyTest().testResultValues();
} catch (Throwable ex) {
throw new RuntimeException(ex);
}
}
}