Claes Redestad 7a30c97753 8061281: Microbenchmark suite build support, directory layout and sample benchmarks
8061282: Migrate jmh-jdk-microbenchmarks into the JDK

Co-authored-by: Magnus Ihse Bursie <magnus.ihse.bursie@oracle.com>
Co-authored-by: Erik Joelsson <erik.joelsson@oracle.com>
Co-authored-by: Staffan Friberg <sfriberg@kth.se>
Reviewed-by: ecaspole, mchung, erikj, ihse
2018-11-16 23:39:51 +01:00

218 lines
6.9 KiB
Java

/*
* Copyright (c) 2014 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.vm.compiler;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import java.util.Random;
import java.util.concurrent.TimeUnit;
/**
* Tests speed of division and remainder calculations.
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
public class DivRem {
private static final int ARRAYSIZE = 500;
/* instance fields for the constant int division tests. */
public int[] intValues, intValues2;
/* instance fields for the constant long division tests. */
public long[] longValues, longValues2;
/* instance fields for the tests using the testdr-method. */
public long[] drLongValues1, drLongValues2;
public long[] drLongValuesAsInts1, drLongValuesAsInts2;
@Setup
public void setupSubclass() {
Random r = new Random(4711);
intValues = new int[ARRAYSIZE];
intValues2 = new int[ARRAYSIZE];
longValues = new long[ARRAYSIZE];
longValues2 = new long[ARRAYSIZE];
for (int i = 0; i < ARRAYSIZE; i++) {
intValues[i] = r.nextInt();
if (intValues[i] == 0) {
intValues[i] = 5353;
}
intValues2[i] = r.nextInt();
longValues[i] = r.nextLong();
if (longValues[i] == 0) {
longValues[i] = 5353L;
}
longValues2[i] = r.nextLong();
}
/* generate random longs for 32-64 tests */
drLongValues1 = new long[ARRAYSIZE];
drLongValues2 = new long[ARRAYSIZE];
drLongValuesAsInts1 = new long[ARRAYSIZE];
drLongValuesAsInts2 = new long[ARRAYSIZE];
for (int i = 0; i < ARRAYSIZE; i++) {
long l = r.nextLong();
if (l == 0L) {
l++;
}
drLongValues1[i] = l;
drLongValuesAsInts1[i] = (long) (int) l;
l = r.nextLong();
if (l == 0L) {
l++;
}
drLongValues2[i] = l;
drLongValuesAsInts2[i] = (long) (int) l;
}
}
/**
* Tests integer division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to
* a multiplication instead.
*/
@Benchmark
public int testIntDivConstantDivisor() {
int dummy = 0;
for (int i = 0; i < intValues.length; i++) {
dummy += intValues[i] / 49;
}
return dummy;
}
/**
* Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a
* multiplication instead.
*/
@Benchmark
public long testLongDivConstantDivisor() {
long dummy = 0;
for (int i = 0; i < longValues.length; i++) {
dummy += longValues[i] / 49L + longValues[i] / 0x4949494949L;
}
return dummy;
}
/**
* Tests integer remainder with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to
* two multiplications instead.
*/
@Benchmark
public int testIntRemConstantDivisor() {
int dummy = 0;
for (int i = 0; i < intValues.length; i++) {
dummy += intValues[i] % 49;
}
return dummy;
}
/**
* Tests long division with a constant divisor. Hopefully the JVM will do a Granlund-Montgomery and convert it to a
* multiplication instead.
*/
@Benchmark
public long testLongRemConstantDivisor() {
long dummy = 0;
for (int i = 0; i < longValues.length; i++) {
dummy += longValues[i] % 49L + longValues[i] % 0x4949494949L;
}
return dummy;
}
/**
* Tests integer division with a variable divisor. This benchmark is mainly here to be a comparison against the
* benchmark that performs both divisions and remainder calculations.
*/
@Benchmark
public int testIntDivVariableDivisor() {
int dummy = 0;
for (int i = 0; i < intValues.length; i++) {
dummy += intValues2[i] / intValues[i];
}
return dummy;
}
/**
* Tests integer division and remainder with a variable divisor. Both calculations are performed with the same
* divisor, so a JVM should not have to perform two complex calculations. Either a division followed by a
* multiplication, or on X86 using idiv, where the reminder is also returned from the idiv instruction.
*/
@Benchmark
public int testIntDivRemVariableDivisor() {
int dummy = 0;
for (int i = 0; i < intValues.length; i++) {
dummy += intValues2[i] / intValues[i];
dummy += intValues2[i] % intValues[i];
}
return dummy;
}
@Benchmark
public long test64DivRem64() {
long dummy = 0;
for (int i = 0; i < drLongValues1.length; i++) {
long l1 = drLongValues1[i];
long l2 = drLongValues2[i];
dummy += l1 / l2;
dummy += l1 % l2;
}
return dummy;
}
@Benchmark
public long test32DivRem32() {
long dummy = 0;
for (int i = 0; i < drLongValuesAsInts1.length; i++) {
long l1 = drLongValuesAsInts1[i];
long l2 = drLongValuesAsInts2[i];
dummy += l1 / l2;
dummy += l1 % l2;
}
return dummy;
}
@Benchmark
public long test64DivRem32() {
long dummy = 0;
for (int i = 0; i < drLongValues1.length; i++) {
long l1 = drLongValues1[i];
long l2 = drLongValuesAsInts2[i];
dummy += l1 / l2;
dummy += l1 % l2;
}
return dummy;
}
}