9b4fc8fc23
Various fixes to the G1 debugging output. Reviewed-by: johnc, iveresov
1071 lines
40 KiB
C++
1071 lines
40 KiB
C++
/*
|
|
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
class G1CollectedHeap;
|
|
class CMTask;
|
|
typedef GenericTaskQueue<oop> CMTaskQueue;
|
|
typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
|
|
|
|
// A generic CM bit map. This is essentially a wrapper around the BitMap
|
|
// class, with one bit per (1<<_shifter) HeapWords.
|
|
|
|
class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
|
|
protected:
|
|
HeapWord* _bmStartWord; // base address of range covered by map
|
|
size_t _bmWordSize; // map size (in #HeapWords covered)
|
|
const int _shifter; // map to char or bit
|
|
VirtualSpace _virtual_space; // underlying the bit map
|
|
BitMap _bm; // the bit map itself
|
|
|
|
public:
|
|
// constructor
|
|
CMBitMapRO(ReservedSpace rs, int shifter);
|
|
|
|
enum { do_yield = true };
|
|
|
|
// inquiries
|
|
HeapWord* startWord() const { return _bmStartWord; }
|
|
size_t sizeInWords() const { return _bmWordSize; }
|
|
// the following is one past the last word in space
|
|
HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
|
|
|
|
// read marks
|
|
|
|
bool isMarked(HeapWord* addr) const {
|
|
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
"outside underlying space?");
|
|
return _bm.at(heapWordToOffset(addr));
|
|
}
|
|
|
|
// iteration
|
|
bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
|
|
bool iterate(BitMapClosure* cl, MemRegion mr);
|
|
|
|
// Return the address corresponding to the next marked bit at or after
|
|
// "addr", and before "limit", if "limit" is non-NULL. If there is no
|
|
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
|
|
HeapWord* getNextMarkedWordAddress(HeapWord* addr,
|
|
HeapWord* limit = NULL) const;
|
|
// Return the address corresponding to the next unmarked bit at or after
|
|
// "addr", and before "limit", if "limit" is non-NULL. If there is no
|
|
// such bit, returns "limit" if that is non-NULL, or else "endWord()".
|
|
HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
|
|
HeapWord* limit = NULL) const;
|
|
|
|
// conversion utilities
|
|
// XXX Fix these so that offsets are size_t's...
|
|
HeapWord* offsetToHeapWord(size_t offset) const {
|
|
return _bmStartWord + (offset << _shifter);
|
|
}
|
|
size_t heapWordToOffset(HeapWord* addr) const {
|
|
return pointer_delta(addr, _bmStartWord) >> _shifter;
|
|
}
|
|
int heapWordDiffToOffsetDiff(size_t diff) const;
|
|
HeapWord* nextWord(HeapWord* addr) {
|
|
return offsetToHeapWord(heapWordToOffset(addr) + 1);
|
|
}
|
|
|
|
void mostly_disjoint_range_union(BitMap* from_bitmap,
|
|
size_t from_start_index,
|
|
HeapWord* to_start_word,
|
|
size_t word_num);
|
|
|
|
// debugging
|
|
NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
|
|
};
|
|
|
|
class CMBitMap : public CMBitMapRO {
|
|
|
|
public:
|
|
// constructor
|
|
CMBitMap(ReservedSpace rs, int shifter) :
|
|
CMBitMapRO(rs, shifter) {}
|
|
|
|
// write marks
|
|
void mark(HeapWord* addr) {
|
|
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
"outside underlying space?");
|
|
_bm.at_put(heapWordToOffset(addr), true);
|
|
}
|
|
void clear(HeapWord* addr) {
|
|
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
"outside underlying space?");
|
|
_bm.at_put(heapWordToOffset(addr), false);
|
|
}
|
|
bool parMark(HeapWord* addr) {
|
|
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
"outside underlying space?");
|
|
return _bm.par_at_put(heapWordToOffset(addr), true);
|
|
}
|
|
bool parClear(HeapWord* addr) {
|
|
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
|
|
"outside underlying space?");
|
|
return _bm.par_at_put(heapWordToOffset(addr), false);
|
|
}
|
|
void markRange(MemRegion mr);
|
|
void clearAll();
|
|
void clearRange(MemRegion mr);
|
|
|
|
// Starting at the bit corresponding to "addr" (inclusive), find the next
|
|
// "1" bit, if any. This bit starts some run of consecutive "1"'s; find
|
|
// the end of this run (stopping at "end_addr"). Return the MemRegion
|
|
// covering from the start of the region corresponding to the first bit
|
|
// of the run to the end of the region corresponding to the last bit of
|
|
// the run. If there is no "1" bit at or after "addr", return an empty
|
|
// MemRegion.
|
|
MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
|
|
};
|
|
|
|
// Represents a marking stack used by the CM collector.
|
|
// Ideally this should be GrowableArray<> just like MSC's marking stack(s).
|
|
class CMMarkStack VALUE_OBJ_CLASS_SPEC {
|
|
ConcurrentMark* _cm;
|
|
oop* _base; // bottom of stack
|
|
jint _index; // one more than last occupied index
|
|
jint _capacity; // max #elements
|
|
jint _oops_do_bound; // Number of elements to include in next iteration.
|
|
NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
|
|
|
|
bool _overflow;
|
|
DEBUG_ONLY(bool _drain_in_progress;)
|
|
DEBUG_ONLY(bool _drain_in_progress_yields;)
|
|
|
|
public:
|
|
CMMarkStack(ConcurrentMark* cm);
|
|
~CMMarkStack();
|
|
|
|
void allocate(size_t size);
|
|
|
|
oop pop() {
|
|
if (!isEmpty()) {
|
|
return _base[--_index] ;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// If overflow happens, don't do the push, and record the overflow.
|
|
// *Requires* that "ptr" is already marked.
|
|
void push(oop ptr) {
|
|
if (isFull()) {
|
|
// Record overflow.
|
|
_overflow = true;
|
|
return;
|
|
} else {
|
|
_base[_index++] = ptr;
|
|
NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
|
|
}
|
|
}
|
|
// Non-block impl. Note: concurrency is allowed only with other
|
|
// "par_push" operations, not with "pop" or "drain". We would need
|
|
// parallel versions of them if such concurrency was desired.
|
|
void par_push(oop ptr);
|
|
|
|
// Pushes the first "n" elements of "ptr_arr" on the stack.
|
|
// Non-block impl. Note: concurrency is allowed only with other
|
|
// "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
|
|
void par_adjoin_arr(oop* ptr_arr, int n);
|
|
|
|
// Pushes the first "n" elements of "ptr_arr" on the stack.
|
|
// Locking impl: concurrency is allowed only with
|
|
// "par_push_arr" and/or "par_pop_arr" operations, which use the same
|
|
// locking strategy.
|
|
void par_push_arr(oop* ptr_arr, int n);
|
|
|
|
// If returns false, the array was empty. Otherwise, removes up to "max"
|
|
// elements from the stack, and transfers them to "ptr_arr" in an
|
|
// unspecified order. The actual number transferred is given in "n" ("n
|
|
// == 0" is deliberately redundant with the return value.) Locking impl:
|
|
// concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
|
|
// operations, which use the same locking strategy.
|
|
bool par_pop_arr(oop* ptr_arr, int max, int* n);
|
|
|
|
// Drain the mark stack, applying the given closure to all fields of
|
|
// objects on the stack. (That is, continue until the stack is empty,
|
|
// even if closure applications add entries to the stack.) The "bm"
|
|
// argument, if non-null, may be used to verify that only marked objects
|
|
// are on the mark stack. If "yield_after" is "true", then the
|
|
// concurrent marker performing the drain offers to yield after
|
|
// processing each object. If a yield occurs, stops the drain operation
|
|
// and returns false. Otherwise, returns true.
|
|
template<class OopClosureClass>
|
|
bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
|
|
|
|
bool isEmpty() { return _index == 0; }
|
|
bool isFull() { return _index == _capacity; }
|
|
int maxElems() { return _capacity; }
|
|
|
|
bool overflow() { return _overflow; }
|
|
void clear_overflow() { _overflow = false; }
|
|
|
|
int size() { return _index; }
|
|
|
|
void setEmpty() { _index = 0; clear_overflow(); }
|
|
|
|
// Record the current size; a subsequent "oops_do" will iterate only over
|
|
// indices valid at the time of this call.
|
|
void set_oops_do_bound(jint bound = -1) {
|
|
if (bound == -1) {
|
|
_oops_do_bound = _index;
|
|
} else {
|
|
_oops_do_bound = bound;
|
|
}
|
|
}
|
|
jint oops_do_bound() { return _oops_do_bound; }
|
|
// iterate over the oops in the mark stack, up to the bound recorded via
|
|
// the call above.
|
|
void oops_do(OopClosure* f);
|
|
};
|
|
|
|
class CMRegionStack VALUE_OBJ_CLASS_SPEC {
|
|
MemRegion* _base;
|
|
jint _capacity;
|
|
jint _index;
|
|
jint _oops_do_bound;
|
|
bool _overflow;
|
|
public:
|
|
CMRegionStack();
|
|
~CMRegionStack();
|
|
void allocate(size_t size);
|
|
|
|
// This is lock-free; assumes that it will only be called in parallel
|
|
// with other "push" operations (no pops).
|
|
void push(MemRegion mr);
|
|
|
|
#if 0
|
|
// This is currently not used. See the comment in the .cpp file.
|
|
|
|
// Lock-free; assumes that it will only be called in parallel
|
|
// with other "pop" operations (no pushes).
|
|
MemRegion pop();
|
|
#endif // 0
|
|
|
|
// These two are the implementations that use a lock. They can be
|
|
// called concurrently with each other but they should not be called
|
|
// concurrently with the lock-free versions (push() / pop()).
|
|
void push_with_lock(MemRegion mr);
|
|
MemRegion pop_with_lock();
|
|
|
|
bool isEmpty() { return _index == 0; }
|
|
bool isFull() { return _index == _capacity; }
|
|
|
|
bool overflow() { return _overflow; }
|
|
void clear_overflow() { _overflow = false; }
|
|
|
|
int size() { return _index; }
|
|
|
|
// It iterates over the entries in the region stack and it
|
|
// invalidates (i.e. assigns MemRegion()) the ones that point to
|
|
// regions in the collection set.
|
|
bool invalidate_entries_into_cset();
|
|
|
|
// This gives an upper bound up to which the iteration in
|
|
// invalidate_entries_into_cset() will reach. This prevents
|
|
// newly-added entries to be unnecessarily scanned.
|
|
void set_oops_do_bound() {
|
|
_oops_do_bound = _index;
|
|
}
|
|
|
|
void setEmpty() { _index = 0; clear_overflow(); }
|
|
};
|
|
|
|
// this will enable a variety of different statistics per GC task
|
|
#define _MARKING_STATS_ 0
|
|
// this will enable the higher verbose levels
|
|
#define _MARKING_VERBOSE_ 0
|
|
|
|
#if _MARKING_STATS_
|
|
#define statsOnly(statement) \
|
|
do { \
|
|
statement ; \
|
|
} while (0)
|
|
#else // _MARKING_STATS_
|
|
#define statsOnly(statement) \
|
|
do { \
|
|
} while (0)
|
|
#endif // _MARKING_STATS_
|
|
|
|
typedef enum {
|
|
no_verbose = 0, // verbose turned off
|
|
stats_verbose, // only prints stats at the end of marking
|
|
low_verbose, // low verbose, mostly per region and per major event
|
|
medium_verbose, // a bit more detailed than low
|
|
high_verbose // per object verbose
|
|
} CMVerboseLevel;
|
|
|
|
|
|
class ConcurrentMarkThread;
|
|
|
|
class ConcurrentMark: public CHeapObj {
|
|
friend class ConcurrentMarkThread;
|
|
friend class CMTask;
|
|
friend class CMBitMapClosure;
|
|
friend class CSMarkOopClosure;
|
|
friend class CMGlobalObjectClosure;
|
|
friend class CMRemarkTask;
|
|
friend class CMConcurrentMarkingTask;
|
|
friend class G1ParNoteEndTask;
|
|
friend class CalcLiveObjectsClosure;
|
|
|
|
protected:
|
|
ConcurrentMarkThread* _cmThread; // the thread doing the work
|
|
G1CollectedHeap* _g1h; // the heap.
|
|
size_t _parallel_marking_threads; // the number of marking
|
|
// threads we'll use
|
|
double _sleep_factor; // how much we have to sleep, with
|
|
// respect to the work we just did, to
|
|
// meet the marking overhead goal
|
|
double _marking_task_overhead; // marking target overhead for
|
|
// a single task
|
|
|
|
// same as the two above, but for the cleanup task
|
|
double _cleanup_sleep_factor;
|
|
double _cleanup_task_overhead;
|
|
|
|
// Stuff related to age cohort processing.
|
|
struct ParCleanupThreadState {
|
|
char _pre[64];
|
|
UncleanRegionList list;
|
|
char _post[64];
|
|
};
|
|
ParCleanupThreadState** _par_cleanup_thread_state;
|
|
|
|
// CMS marking support structures
|
|
CMBitMap _markBitMap1;
|
|
CMBitMap _markBitMap2;
|
|
CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
|
|
CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
|
|
bool _at_least_one_mark_complete;
|
|
|
|
BitMap _region_bm;
|
|
BitMap _card_bm;
|
|
|
|
// Heap bounds
|
|
HeapWord* _heap_start;
|
|
HeapWord* _heap_end;
|
|
|
|
// For gray objects
|
|
CMMarkStack _markStack; // Grey objects behind global finger.
|
|
CMRegionStack _regionStack; // Grey regions behind global finger.
|
|
HeapWord* volatile _finger; // the global finger, region aligned,
|
|
// always points to the end of the
|
|
// last claimed region
|
|
|
|
// marking tasks
|
|
size_t _max_task_num; // maximum task number
|
|
size_t _active_tasks; // task num currently active
|
|
CMTask** _tasks; // task queue array (max_task_num len)
|
|
CMTaskQueueSet* _task_queues; // task queue set
|
|
ParallelTaskTerminator _terminator; // for termination
|
|
|
|
// Two sync barriers that are used to synchronise tasks when an
|
|
// overflow occurs. The algorithm is the following. All tasks enter
|
|
// the first one to ensure that they have all stopped manipulating
|
|
// the global data structures. After they exit it, they re-initialise
|
|
// their data structures and task 0 re-initialises the global data
|
|
// structures. Then, they enter the second sync barrier. This
|
|
// ensure, that no task starts doing work before all data
|
|
// structures (local and global) have been re-initialised. When they
|
|
// exit it, they are free to start working again.
|
|
WorkGangBarrierSync _first_overflow_barrier_sync;
|
|
WorkGangBarrierSync _second_overflow_barrier_sync;
|
|
|
|
|
|
// this is set by any task, when an overflow on the global data
|
|
// structures is detected.
|
|
volatile bool _has_overflown;
|
|
// true: marking is concurrent, false: we're in remark
|
|
volatile bool _concurrent;
|
|
// set at the end of a Full GC so that marking aborts
|
|
volatile bool _has_aborted;
|
|
// used when remark aborts due to an overflow to indicate that
|
|
// another concurrent marking phase should start
|
|
volatile bool _restart_for_overflow;
|
|
|
|
// This is true from the very start of concurrent marking until the
|
|
// point when all the tasks complete their work. It is really used
|
|
// to determine the points between the end of concurrent marking and
|
|
// time of remark.
|
|
volatile bool _concurrent_marking_in_progress;
|
|
|
|
// verbose level
|
|
CMVerboseLevel _verbose_level;
|
|
|
|
// These two fields are used to implement the optimisation that
|
|
// avoids pushing objects on the global/region stack if there are
|
|
// no collection set regions above the lowest finger.
|
|
|
|
// This is the lowest finger (among the global and local fingers),
|
|
// which is calculated before a new collection set is chosen.
|
|
HeapWord* _min_finger;
|
|
// If this flag is true, objects/regions that are marked below the
|
|
// finger should be pushed on the stack(s). If this is flag is
|
|
// false, it is safe not to push them on the stack(s).
|
|
bool _should_gray_objects;
|
|
|
|
// All of these times are in ms.
|
|
NumberSeq _init_times;
|
|
NumberSeq _remark_times;
|
|
NumberSeq _remark_mark_times;
|
|
NumberSeq _remark_weak_ref_times;
|
|
NumberSeq _cleanup_times;
|
|
double _total_counting_time;
|
|
double _total_rs_scrub_time;
|
|
|
|
double* _accum_task_vtime; // accumulated task vtime
|
|
|
|
WorkGang* _parallel_workers;
|
|
|
|
void weakRefsWork(bool clear_all_soft_refs);
|
|
|
|
void swapMarkBitMaps();
|
|
|
|
// It resets the global marking data structures, as well as the
|
|
// task local ones; should be called during initial mark.
|
|
void reset();
|
|
// It resets all the marking data structures.
|
|
void clear_marking_state();
|
|
|
|
// It should be called to indicate which phase we're in (concurrent
|
|
// mark or remark) and how many threads are currently active.
|
|
void set_phase(size_t active_tasks, bool concurrent);
|
|
// We do this after we're done with marking so that the marking data
|
|
// structures are initialised to a sensible and predictable state.
|
|
void set_non_marking_state();
|
|
|
|
// prints all gathered CM-related statistics
|
|
void print_stats();
|
|
|
|
// accessor methods
|
|
size_t parallel_marking_threads() { return _parallel_marking_threads; }
|
|
double sleep_factor() { return _sleep_factor; }
|
|
double marking_task_overhead() { return _marking_task_overhead;}
|
|
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
|
|
double cleanup_task_overhead() { return _cleanup_task_overhead;}
|
|
|
|
HeapWord* finger() { return _finger; }
|
|
bool concurrent() { return _concurrent; }
|
|
size_t active_tasks() { return _active_tasks; }
|
|
ParallelTaskTerminator* terminator() { return &_terminator; }
|
|
|
|
// It claims the next available region to be scanned by a marking
|
|
// task. It might return NULL if the next region is empty or we have
|
|
// run out of regions. In the latter case, out_of_regions()
|
|
// determines whether we've really run out of regions or the task
|
|
// should call claim_region() again. This might seem a bit
|
|
// awkward. Originally, the code was written so that claim_region()
|
|
// either successfully returned with a non-empty region or there
|
|
// were no more regions to be claimed. The problem with this was
|
|
// that, in certain circumstances, it iterated over large chunks of
|
|
// the heap finding only empty regions and, while it was working, it
|
|
// was preventing the calling task to call its regular clock
|
|
// method. So, this way, each task will spend very little time in
|
|
// claim_region() and is allowed to call the regular clock method
|
|
// frequently.
|
|
HeapRegion* claim_region(int task);
|
|
|
|
// It determines whether we've run out of regions to scan.
|
|
bool out_of_regions() { return _finger == _heap_end; }
|
|
|
|
// Returns the task with the given id
|
|
CMTask* task(int id) {
|
|
assert(0 <= id && id < (int) _active_tasks,
|
|
"task id not within active bounds");
|
|
return _tasks[id];
|
|
}
|
|
|
|
// Returns the task queue with the given id
|
|
CMTaskQueue* task_queue(int id) {
|
|
assert(0 <= id && id < (int) _active_tasks,
|
|
"task queue id not within active bounds");
|
|
return (CMTaskQueue*) _task_queues->queue(id);
|
|
}
|
|
|
|
// Returns the task queue set
|
|
CMTaskQueueSet* task_queues() { return _task_queues; }
|
|
|
|
// Access / manipulation of the overflow flag which is set to
|
|
// indicate that the global stack or region stack has overflown
|
|
bool has_overflown() { return _has_overflown; }
|
|
void set_has_overflown() { _has_overflown = true; }
|
|
void clear_has_overflown() { _has_overflown = false; }
|
|
|
|
bool has_aborted() { return _has_aborted; }
|
|
bool restart_for_overflow() { return _restart_for_overflow; }
|
|
|
|
// Methods to enter the two overflow sync barriers
|
|
void enter_first_sync_barrier(int task_num);
|
|
void enter_second_sync_barrier(int task_num);
|
|
|
|
public:
|
|
// Manipulation of the global mark stack.
|
|
// Notice that the first mark_stack_push is CAS-based, whereas the
|
|
// two below are Mutex-based. This is OK since the first one is only
|
|
// called during evacuation pauses and doesn't compete with the
|
|
// other two (which are called by the marking tasks during
|
|
// concurrent marking or remark).
|
|
bool mark_stack_push(oop p) {
|
|
_markStack.par_push(p);
|
|
if (_markStack.overflow()) {
|
|
set_has_overflown();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool mark_stack_push(oop* arr, int n) {
|
|
_markStack.par_push_arr(arr, n);
|
|
if (_markStack.overflow()) {
|
|
set_has_overflown();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
void mark_stack_pop(oop* arr, int max, int* n) {
|
|
_markStack.par_pop_arr(arr, max, n);
|
|
}
|
|
size_t mark_stack_size() { return _markStack.size(); }
|
|
size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
|
|
bool mark_stack_overflow() { return _markStack.overflow(); }
|
|
bool mark_stack_empty() { return _markStack.isEmpty(); }
|
|
|
|
// Manipulation of the region stack
|
|
bool region_stack_push(MemRegion mr) {
|
|
// Currently we only call the lock-free version during evacuation
|
|
// pauses.
|
|
assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
|
|
|
|
_regionStack.push(mr);
|
|
if (_regionStack.overflow()) {
|
|
set_has_overflown();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#if 0
|
|
// Currently this is not used. See the comment in the .cpp file.
|
|
MemRegion region_stack_pop() { return _regionStack.pop(); }
|
|
#endif // 0
|
|
|
|
bool region_stack_push_with_lock(MemRegion mr) {
|
|
// Currently we only call the lock-based version during either
|
|
// concurrent marking or remark.
|
|
assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
|
|
"if we are at a safepoint it should be the remark safepoint");
|
|
|
|
_regionStack.push_with_lock(mr);
|
|
if (_regionStack.overflow()) {
|
|
set_has_overflown();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
MemRegion region_stack_pop_with_lock() {
|
|
// Currently we only call the lock-based version during either
|
|
// concurrent marking or remark.
|
|
assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
|
|
"if we are at a safepoint it should be the remark safepoint");
|
|
|
|
return _regionStack.pop_with_lock();
|
|
}
|
|
|
|
int region_stack_size() { return _regionStack.size(); }
|
|
bool region_stack_overflow() { return _regionStack.overflow(); }
|
|
bool region_stack_empty() { return _regionStack.isEmpty(); }
|
|
|
|
bool concurrent_marking_in_progress() {
|
|
return _concurrent_marking_in_progress;
|
|
}
|
|
void set_concurrent_marking_in_progress() {
|
|
_concurrent_marking_in_progress = true;
|
|
}
|
|
void clear_concurrent_marking_in_progress() {
|
|
_concurrent_marking_in_progress = false;
|
|
}
|
|
|
|
void update_accum_task_vtime(int i, double vtime) {
|
|
_accum_task_vtime[i] += vtime;
|
|
}
|
|
|
|
double all_task_accum_vtime() {
|
|
double ret = 0.0;
|
|
for (int i = 0; i < (int)_max_task_num; ++i)
|
|
ret += _accum_task_vtime[i];
|
|
return ret;
|
|
}
|
|
|
|
// Attempts to steal an object from the task queues of other tasks
|
|
bool try_stealing(int task_num, int* hash_seed, oop& obj) {
|
|
return _task_queues->steal(task_num, hash_seed, obj);
|
|
}
|
|
|
|
// It grays an object by first marking it. Then, if it's behind the
|
|
// global finger, it also pushes it on the global stack.
|
|
void deal_with_reference(oop obj);
|
|
|
|
ConcurrentMark(ReservedSpace rs, int max_regions);
|
|
~ConcurrentMark();
|
|
ConcurrentMarkThread* cmThread() { return _cmThread; }
|
|
|
|
CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
|
|
CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
|
|
|
|
// The following three are interaction between CM and
|
|
// G1CollectedHeap
|
|
|
|
// This notifies CM that a root during initial-mark needs to be
|
|
// grayed and it's MT-safe. Currently, we just mark it. But, in the
|
|
// future, we can experiment with pushing it on the stack and we can
|
|
// do this without changing G1CollectedHeap.
|
|
void grayRoot(oop p);
|
|
// It's used during evacuation pauses to gray a region, if
|
|
// necessary, and it's MT-safe. It assumes that the caller has
|
|
// marked any objects on that region. If _should_gray_objects is
|
|
// true and we're still doing concurrent marking, the region is
|
|
// pushed on the region stack, if it is located below the global
|
|
// finger, otherwise we do nothing.
|
|
void grayRegionIfNecessary(MemRegion mr);
|
|
// It's used during evacuation pauses to mark and, if necessary,
|
|
// gray a single object and it's MT-safe. It assumes the caller did
|
|
// not mark the object. If _should_gray_objects is true and we're
|
|
// still doing concurrent marking, the objects is pushed on the
|
|
// global stack, if it is located below the global finger, otherwise
|
|
// we do nothing.
|
|
void markAndGrayObjectIfNecessary(oop p);
|
|
|
|
// It iterates over the heap and for each object it comes across it
|
|
// will dump the contents of its reference fields, as well as
|
|
// liveness information for the object and its referents. The dump
|
|
// will be written to a file with the following name:
|
|
// G1PrintReachableBaseFile + "." + str. use_prev_marking decides
|
|
// whether the prev (use_prev_marking == true) or next
|
|
// (use_prev_marking == false) marking information will be used to
|
|
// determine the liveness of each object / referent. If all is true,
|
|
// all objects in the heap will be dumped, otherwise only the live
|
|
// ones. In the dump the following symbols / abbreviations are used:
|
|
// M : an explicitly live object (its bitmap bit is set)
|
|
// > : an implicitly live object (over tams)
|
|
// O : an object outside the G1 heap (typically: in the perm gen)
|
|
// NOT : a reference field whose referent is not live
|
|
// AND MARKED : indicates that an object is both explicitly and
|
|
// implicitly live (it should be one or the other, not both)
|
|
void print_reachable(const char* str,
|
|
bool use_prev_marking, bool all) PRODUCT_RETURN;
|
|
|
|
// Clear the next marking bitmap (will be called concurrently).
|
|
void clearNextBitmap();
|
|
|
|
// main CMS steps and related support
|
|
void checkpointRootsInitial();
|
|
|
|
// These two do the work that needs to be done before and after the
|
|
// initial root checkpoint. Since this checkpoint can be done at two
|
|
// different points (i.e. an explicit pause or piggy-backed on a
|
|
// young collection), then it's nice to be able to easily share the
|
|
// pre/post code. It might be the case that we can put everything in
|
|
// the post method. TP
|
|
void checkpointRootsInitialPre();
|
|
void checkpointRootsInitialPost();
|
|
|
|
// Do concurrent phase of marking, to a tentative transitive closure.
|
|
void markFromRoots();
|
|
|
|
// Process all unprocessed SATB buffers. It is called at the
|
|
// beginning of an evacuation pause.
|
|
void drainAllSATBBuffers();
|
|
|
|
void checkpointRootsFinal(bool clear_all_soft_refs);
|
|
void checkpointRootsFinalWork();
|
|
void calcDesiredRegions();
|
|
void cleanup();
|
|
void completeCleanup();
|
|
|
|
// Mark in the previous bitmap. NB: this is usually read-only, so use
|
|
// this carefully!
|
|
void markPrev(oop p);
|
|
void clear(oop p);
|
|
// Clears marks for all objects in the given range, for both prev and
|
|
// next bitmaps. NB: the previous bitmap is usually read-only, so use
|
|
// this carefully!
|
|
void clearRangeBothMaps(MemRegion mr);
|
|
|
|
// Record the current top of the mark and region stacks; a
|
|
// subsequent oops_do() on the mark stack and
|
|
// invalidate_entries_into_cset() on the region stack will iterate
|
|
// only over indices valid at the time of this call.
|
|
void set_oops_do_bound() {
|
|
_markStack.set_oops_do_bound();
|
|
_regionStack.set_oops_do_bound();
|
|
}
|
|
// Iterate over the oops in the mark stack and all local queues. It
|
|
// also calls invalidate_entries_into_cset() on the region stack.
|
|
void oops_do(OopClosure* f);
|
|
// It is called at the end of an evacuation pause during marking so
|
|
// that CM is notified of where the new end of the heap is. It
|
|
// doesn't do anything if concurrent_marking_in_progress() is false,
|
|
// unless the force parameter is true.
|
|
void update_g1_committed(bool force = false);
|
|
|
|
void complete_marking_in_collection_set();
|
|
|
|
// It indicates that a new collection set is being chosen.
|
|
void newCSet();
|
|
// It registers a collection set heap region with CM. This is used
|
|
// to determine whether any heap regions are located above the finger.
|
|
void registerCSetRegion(HeapRegion* hr);
|
|
|
|
// Returns "true" if at least one mark has been completed.
|
|
bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
|
|
|
|
bool isMarked(oop p) const {
|
|
assert(p != NULL && p->is_oop(), "expected an oop");
|
|
HeapWord* addr = (HeapWord*)p;
|
|
assert(addr >= _nextMarkBitMap->startWord() ||
|
|
addr < _nextMarkBitMap->endWord(), "in a region");
|
|
|
|
return _nextMarkBitMap->isMarked(addr);
|
|
}
|
|
|
|
inline bool not_yet_marked(oop p) const;
|
|
|
|
// XXX Debug code
|
|
bool containing_card_is_marked(void* p);
|
|
bool containing_cards_are_marked(void* start, void* last);
|
|
|
|
bool isPrevMarked(oop p) const {
|
|
assert(p != NULL && p->is_oop(), "expected an oop");
|
|
HeapWord* addr = (HeapWord*)p;
|
|
assert(addr >= _prevMarkBitMap->startWord() ||
|
|
addr < _prevMarkBitMap->endWord(), "in a region");
|
|
|
|
return _prevMarkBitMap->isMarked(addr);
|
|
}
|
|
|
|
inline bool do_yield_check(int worker_i = 0);
|
|
inline bool should_yield();
|
|
|
|
// Called to abort the marking cycle after a Full GC takes palce.
|
|
void abort();
|
|
|
|
// This prints the global/local fingers. It is used for debugging.
|
|
NOT_PRODUCT(void print_finger();)
|
|
|
|
void print_summary_info();
|
|
|
|
void print_worker_threads_on(outputStream* st) const;
|
|
|
|
// The following indicate whether a given verbose level has been
|
|
// set. Notice that anything above stats is conditional to
|
|
// _MARKING_VERBOSE_ having been set to 1
|
|
bool verbose_stats()
|
|
{ return _verbose_level >= stats_verbose; }
|
|
bool verbose_low()
|
|
{ return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
|
|
bool verbose_medium()
|
|
{ return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
|
|
bool verbose_high()
|
|
{ return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
|
|
};
|
|
|
|
// A class representing a marking task.
|
|
class CMTask : public TerminatorTerminator {
|
|
private:
|
|
enum PrivateConstants {
|
|
// the regular clock call is called once the scanned words reaches
|
|
// this limit
|
|
words_scanned_period = 12*1024,
|
|
// the regular clock call is called once the number of visited
|
|
// references reaches this limit
|
|
refs_reached_period = 384,
|
|
// initial value for the hash seed, used in the work stealing code
|
|
init_hash_seed = 17,
|
|
// how many entries will be transferred between global stack and
|
|
// local queues
|
|
global_stack_transfer_size = 16
|
|
};
|
|
|
|
int _task_id;
|
|
G1CollectedHeap* _g1h;
|
|
ConcurrentMark* _cm;
|
|
CMBitMap* _nextMarkBitMap;
|
|
// the task queue of this task
|
|
CMTaskQueue* _task_queue;
|
|
private:
|
|
// the task queue set---needed for stealing
|
|
CMTaskQueueSet* _task_queues;
|
|
// indicates whether the task has been claimed---this is only for
|
|
// debugging purposes
|
|
bool _claimed;
|
|
|
|
// number of calls to this task
|
|
int _calls;
|
|
|
|
// when the virtual timer reaches this time, the marking step should
|
|
// exit
|
|
double _time_target_ms;
|
|
// the start time of the current marking step
|
|
double _start_time_ms;
|
|
|
|
// the oop closure used for iterations over oops
|
|
OopClosure* _oop_closure;
|
|
|
|
// the region this task is scanning, NULL if we're not scanning any
|
|
HeapRegion* _curr_region;
|
|
// the local finger of this task, NULL if we're not scanning a region
|
|
HeapWord* _finger;
|
|
// limit of the region this task is scanning, NULL if we're not scanning one
|
|
HeapWord* _region_limit;
|
|
|
|
// This is used only when we scan regions popped from the region
|
|
// stack. It records what the last object on such a region we
|
|
// scanned was. It is used to ensure that, if we abort region
|
|
// iteration, we do not rescan the first part of the region. This
|
|
// should be NULL when we're not scanning a region from the region
|
|
// stack.
|
|
HeapWord* _region_finger;
|
|
|
|
// the number of words this task has scanned
|
|
size_t _words_scanned;
|
|
// When _words_scanned reaches this limit, the regular clock is
|
|
// called. Notice that this might be decreased under certain
|
|
// circumstances (i.e. when we believe that we did an expensive
|
|
// operation).
|
|
size_t _words_scanned_limit;
|
|
// the initial value of _words_scanned_limit (i.e. what it was
|
|
// before it was decreased).
|
|
size_t _real_words_scanned_limit;
|
|
|
|
// the number of references this task has visited
|
|
size_t _refs_reached;
|
|
// When _refs_reached reaches this limit, the regular clock is
|
|
// called. Notice this this might be decreased under certain
|
|
// circumstances (i.e. when we believe that we did an expensive
|
|
// operation).
|
|
size_t _refs_reached_limit;
|
|
// the initial value of _refs_reached_limit (i.e. what it was before
|
|
// it was decreased).
|
|
size_t _real_refs_reached_limit;
|
|
|
|
// used by the work stealing stuff
|
|
int _hash_seed;
|
|
// if this is true, then the task has aborted for some reason
|
|
bool _has_aborted;
|
|
// set when the task aborts because it has met its time quota
|
|
bool _has_aborted_timed_out;
|
|
// true when we're draining SATB buffers; this avoids the task
|
|
// aborting due to SATB buffers being available (as we're already
|
|
// dealing with them)
|
|
bool _draining_satb_buffers;
|
|
|
|
// number sequence of past step times
|
|
NumberSeq _step_times_ms;
|
|
// elapsed time of this task
|
|
double _elapsed_time_ms;
|
|
// termination time of this task
|
|
double _termination_time_ms;
|
|
// when this task got into the termination protocol
|
|
double _termination_start_time_ms;
|
|
|
|
// true when the task is during a concurrent phase, false when it is
|
|
// in the remark phase (so, in the latter case, we do not have to
|
|
// check all the things that we have to check during the concurrent
|
|
// phase, i.e. SATB buffer availability...)
|
|
bool _concurrent;
|
|
|
|
TruncatedSeq _marking_step_diffs_ms;
|
|
|
|
// LOTS of statistics related with this task
|
|
#if _MARKING_STATS_
|
|
NumberSeq _all_clock_intervals_ms;
|
|
double _interval_start_time_ms;
|
|
|
|
int _aborted;
|
|
int _aborted_overflow;
|
|
int _aborted_cm_aborted;
|
|
int _aborted_yield;
|
|
int _aborted_timed_out;
|
|
int _aborted_satb;
|
|
int _aborted_termination;
|
|
|
|
int _steal_attempts;
|
|
int _steals;
|
|
|
|
int _clock_due_to_marking;
|
|
int _clock_due_to_scanning;
|
|
|
|
int _local_pushes;
|
|
int _local_pops;
|
|
int _local_max_size;
|
|
int _objs_scanned;
|
|
|
|
int _global_pushes;
|
|
int _global_pops;
|
|
int _global_max_size;
|
|
|
|
int _global_transfers_to;
|
|
int _global_transfers_from;
|
|
|
|
int _region_stack_pops;
|
|
|
|
int _regions_claimed;
|
|
int _objs_found_on_bitmap;
|
|
|
|
int _satb_buffers_processed;
|
|
#endif // _MARKING_STATS_
|
|
|
|
// it updates the local fields after this task has claimed
|
|
// a new region to scan
|
|
void setup_for_region(HeapRegion* hr);
|
|
// it brings up-to-date the limit of the region
|
|
void update_region_limit();
|
|
// it resets the local fields after a task has finished scanning a
|
|
// region
|
|
void giveup_current_region();
|
|
|
|
// called when either the words scanned or the refs visited limit
|
|
// has been reached
|
|
void reached_limit();
|
|
// recalculates the words scanned and refs visited limits
|
|
void recalculate_limits();
|
|
// decreases the words scanned and refs visited limits when we reach
|
|
// an expensive operation
|
|
void decrease_limits();
|
|
// it checks whether the words scanned or refs visited reached their
|
|
// respective limit and calls reached_limit() if they have
|
|
void check_limits() {
|
|
if (_words_scanned >= _words_scanned_limit ||
|
|
_refs_reached >= _refs_reached_limit)
|
|
reached_limit();
|
|
}
|
|
// this is supposed to be called regularly during a marking step as
|
|
// it checks a bunch of conditions that might cause the marking step
|
|
// to abort
|
|
void regular_clock_call();
|
|
bool concurrent() { return _concurrent; }
|
|
|
|
public:
|
|
// It resets the task; it should be called right at the beginning of
|
|
// a marking phase.
|
|
void reset(CMBitMap* _nextMarkBitMap);
|
|
// it clears all the fields that correspond to a claimed region.
|
|
void clear_region_fields();
|
|
|
|
void set_concurrent(bool concurrent) { _concurrent = concurrent; }
|
|
|
|
// The main method of this class which performs a marking step
|
|
// trying not to exceed the given duration. However, it might exit
|
|
// prematurely, according to some conditions (i.e. SATB buffers are
|
|
// available for processing).
|
|
void do_marking_step(double target_ms);
|
|
|
|
// These two calls start and stop the timer
|
|
void record_start_time() {
|
|
_elapsed_time_ms = os::elapsedTime() * 1000.0;
|
|
}
|
|
void record_end_time() {
|
|
_elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
|
|
}
|
|
|
|
// returns the task ID
|
|
int task_id() { return _task_id; }
|
|
|
|
// From TerminatorTerminator. It determines whether this task should
|
|
// exit the termination protocol after it's entered it.
|
|
virtual bool should_exit_termination();
|
|
|
|
HeapWord* finger() { return _finger; }
|
|
|
|
bool has_aborted() { return _has_aborted; }
|
|
void set_has_aborted() { _has_aborted = true; }
|
|
void clear_has_aborted() { _has_aborted = false; }
|
|
bool claimed() { return _claimed; }
|
|
|
|
void set_oop_closure(OopClosure* oop_closure) {
|
|
_oop_closure = oop_closure;
|
|
}
|
|
|
|
// It grays the object by marking it and, if necessary, pushing it
|
|
// on the local queue
|
|
void deal_with_reference(oop obj);
|
|
|
|
// It scans an object and visits its children.
|
|
void scan_object(oop obj) {
|
|
assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
|
|
|
|
if (_cm->verbose_high())
|
|
gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
|
|
_task_id, (void*) obj);
|
|
|
|
size_t obj_size = obj->size();
|
|
_words_scanned += obj_size;
|
|
|
|
obj->oop_iterate(_oop_closure);
|
|
statsOnly( ++_objs_scanned );
|
|
check_limits();
|
|
}
|
|
|
|
// It pushes an object on the local queue.
|
|
void push(oop obj);
|
|
|
|
// These two move entries to/from the global stack.
|
|
void move_entries_to_global_stack();
|
|
void get_entries_from_global_stack();
|
|
|
|
// It pops and scans objects from the local queue. If partially is
|
|
// true, then it stops when the queue size is of a given limit. If
|
|
// partially is false, then it stops when the queue is empty.
|
|
void drain_local_queue(bool partially);
|
|
// It moves entries from the global stack to the local queue and
|
|
// drains the local queue. If partially is true, then it stops when
|
|
// both the global stack and the local queue reach a given size. If
|
|
// partially if false, it tries to empty them totally.
|
|
void drain_global_stack(bool partially);
|
|
// It keeps picking SATB buffers and processing them until no SATB
|
|
// buffers are available.
|
|
void drain_satb_buffers();
|
|
// It keeps popping regions from the region stack and processing
|
|
// them until the region stack is empty.
|
|
void drain_region_stack(BitMapClosure* closure);
|
|
|
|
// moves the local finger to a new location
|
|
inline void move_finger_to(HeapWord* new_finger) {
|
|
assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
|
|
_finger = new_finger;
|
|
}
|
|
|
|
// moves the region finger to a new location
|
|
inline void move_region_finger_to(HeapWord* new_finger) {
|
|
assert(new_finger < _cm->finger(), "invariant");
|
|
_region_finger = new_finger;
|
|
}
|
|
|
|
CMTask(int task_num, ConcurrentMark *cm,
|
|
CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
|
|
|
|
// it prints statistics associated with this task
|
|
void print_stats();
|
|
|
|
#if _MARKING_STATS_
|
|
void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
|
|
#endif // _MARKING_STATS_
|
|
};
|