jdk-24/src/hotspot/share/opto/regmask.hpp
Ningsheng Jian 9b5a9b6189 8231441: AArch64: Initial SVE backend support
Co-authored-by: Joshua Zhu <joshua.zhu@arm.com>
Co-authored-by: Yang Zhang <yang.zhang@arm.com>
Reviewed-by: adinn, pli, ihse, vlivanov, eosterlund
2020-09-02 09:45:44 +08:00

361 lines
12 KiB
C++

/*
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OPTO_REGMASK_HPP
#define SHARE_OPTO_REGMASK_HPP
#include "code/vmreg.hpp"
#include "opto/optoreg.hpp"
#include "utilities/count_leading_zeros.hpp"
#include "utilities/count_trailing_zeros.hpp"
class LRG;
//-------------Non-zero bit search methods used by RegMask---------------------
// Find lowest 1, undefined if empty/0
static int find_lowest_bit(uint32_t mask) {
return count_trailing_zeros(mask);
}
// Find highest 1, undefined if empty/0
static int find_highest_bit(uint32_t mask) {
return count_leading_zeros(mask) ^ 31;
}
//------------------------------RegMask----------------------------------------
// The ADL file describes how to print the machine-specific registers, as well
// as any notion of register classes. We provide a register mask, which is
// just a collection of Register numbers.
// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
// RM_SIZE is the size of a register mask in words.
// FORALL_BODY replicates a BODY macro once per word in the register mask.
// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
// However, it means the ADLC can redefine the unroll macro and all loops
// over register masks will be unrolled by the correct amount.
class RegMask {
union {
double _dummy_force_double_alignment[RM_SIZE>>1];
// Array of Register Mask bits. This array is large enough to cover
// all the machine registers and all parameters that need to be passed
// on the stack (stack registers) up to some interesting limit. Methods
// that need more parameters will NOT be compiled. On Intel, the limit
// is something like 90+ parameters.
int _A[RM_SIZE];
};
// The low and high water marks represents the lowest and highest word
// that might contain set register mask bits, respectively. We guarantee
// that there are no bits in words outside this range, but any word at
// and between the two marks can still be 0.
int _lwm;
int _hwm;
enum {
_WordBits = BitsPerInt,
_LogWordBits = LogBitsPerInt,
_RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
};
public:
enum { CHUNK_SIZE = RM_SIZE*_WordBits };
// SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
// Also, consider the maximum alignment size for a normally allocated
// value. Since we allocate register pairs but not register quads (at
// present), this alignment is SlotsPerLong (== 2). A normally
// aligned allocated register is either a single register, or a pair
// of adjacent registers, the lower-numbered being even.
// See also is_aligned_Pairs() below, and the padding added before
// Matcher::_new_SP to keep allocated pairs aligned properly.
// If we ever go to quad-word allocations, SlotsPerQuad will become
// the controlling alignment constraint. Note that this alignment
// requirement is internal to the allocator, and independent of any
// particular platform.
enum { SlotsPerLong = 2,
SlotsPerVecA = 8,
SlotsPerVecS = 1,
SlotsPerVecD = 2,
SlotsPerVecX = 4,
SlotsPerVecY = 8,
SlotsPerVecZ = 16,
};
// A constructor only used by the ADLC output. All mask fields are filled
// in directly. Calls to this look something like RM(1,2,3,4);
RegMask(
# define BODY(I) int a##I,
FORALL_BODY
# undef BODY
int dummy = 0) {
# define BODY(I) _A[I] = a##I;
FORALL_BODY
# undef BODY
_lwm = 0;
_hwm = RM_SIZE - 1;
while (_hwm > 0 && _A[_hwm] == 0) _hwm--;
while ((_lwm < _hwm) && _A[_lwm] == 0) _lwm++;
assert(valid_watermarks(), "post-condition");
}
// Handy copying constructor
RegMask(RegMask *rm) {
_hwm = rm->_hwm;
_lwm = rm->_lwm;
for (int i = 0; i < RM_SIZE; i++) {
_A[i] = rm->_A[i];
}
assert(valid_watermarks(), "post-condition");
}
// Construct an empty mask
RegMask() {
Clear();
}
// Construct a mask with a single bit
RegMask(OptoReg::Name reg) {
Clear();
Insert(reg);
}
// Check for register being in mask
int Member(OptoReg::Name reg) const {
assert(reg < CHUNK_SIZE, "");
return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
}
// The last bit in the register mask indicates that the mask should repeat
// indefinitely with ONE bits. Returns TRUE if mask is infinite or
// unbounded in size. Returns FALSE if mask is finite size.
int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
// Work around an -xO3 optimization problme in WS6U1. The old way:
// void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
// will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
// follows an Insert() loop, like the one found in init_spill_mask(). Using
// Insert() instead works because the index into _A in computed instead of
// constant. See bug 4665841.
void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
// Test for being a not-empty mask.
int is_NotEmpty() const {
assert(valid_watermarks(), "sanity");
int tmp = 0;
for (int i = _lwm; i <= _hwm; i++) {
tmp |= _A[i];
}
return tmp;
}
// Find lowest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_first_elem() const {
assert(valid_watermarks(), "sanity");
for (int i = _lwm; i <= _hwm; i++) {
int bits = _A[i];
if (bits) {
return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(bits));
}
}
return OptoReg::Name(OptoReg::Bad);
}
// Get highest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_last_elem() const {
assert(valid_watermarks(), "sanity");
for (int i = _hwm; i >= _lwm; i--) {
int bits = _A[i];
if (bits) {
return OptoReg::Name((i<<_LogWordBits) + find_highest_bit(bits));
}
}
return OptoReg::Name(OptoReg::Bad);
}
// Clear out partial bits; leave only aligned adjacent bit pairs.
void clear_to_pairs();
#ifdef ASSERT
// Verify watermarks are sane, i.e., within bounds and that no
// register words below or above the watermarks have bits set.
bool valid_watermarks() const {
assert(_hwm >= 0 && _hwm < RM_SIZE, "_hwm out of range: %d", _hwm);
assert(_lwm >= 0 && _lwm < RM_SIZE, "_lwm out of range: %d", _lwm);
for (int i = 0; i < _lwm; i++) {
assert(_A[i] == 0, "_lwm too high: %d regs at: %d", _lwm, i);
}
for (int i = _hwm + 1; i < RM_SIZE; i++) {
assert(_A[i] == 0, "_hwm too low: %d regs at: %d", _hwm, i);
}
return true;
}
#endif // !ASSERT
// Test that the mask contains only aligned adjacent bit pairs
bool is_aligned_pairs() const;
// mask is a pair of misaligned registers
bool is_misaligned_pair() const;
// Test for single register
bool is_bound1() const;
// Test for a single adjacent pair
bool is_bound_pair() const;
// Test for a single adjacent set of ideal register's size.
bool is_bound(uint ireg) const;
// Check that whether given reg number with size is valid
// for current regmask, where reg is the highest number.
bool is_valid_reg(OptoReg::Name reg, const int size) const;
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
// Assert that the mask contains only bit sets.
OptoReg::Name find_first_set(LRG &lrg, const int size) const;
// Clear out partial bits; leave only aligned adjacent bit sets of size.
void clear_to_sets(const int size);
// Smear out partial bits to aligned adjacent bit sets.
void smear_to_sets(const int size);
// Test that the mask contains only aligned adjacent bit sets
bool is_aligned_sets(const int size) const;
// Test for a single adjacent set
int is_bound_set(const int size) const;
static bool is_vector(uint ireg);
static int num_registers(uint ireg);
static int num_registers(uint ireg, LRG &lrg);
// Fast overlap test. Non-zero if any registers in common.
int overlap(const RegMask &rm) const {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
int hwm = MIN2(_hwm, rm._hwm);
int lwm = MAX2(_lwm, rm._lwm);
int result = 0;
for (int i = lwm; i <= hwm; i++) {
result |= _A[i] & rm._A[i];
}
return result;
}
// Special test for register pressure based splitting
// UP means register only, Register plus stack, or stack only is DOWN
bool is_UP() const;
// Clear a register mask
void Clear() {
_lwm = RM_SIZE - 1;
_hwm = 0;
memset(_A, 0, sizeof(int)*RM_SIZE);
assert(valid_watermarks(), "sanity");
}
// Fill a register mask with 1's
void Set_All() {
_lwm = 0;
_hwm = RM_SIZE - 1;
memset(_A, 0xFF, sizeof(int)*RM_SIZE);
assert(valid_watermarks(), "sanity");
}
// Insert register into mask
void Insert(OptoReg::Name reg) {
assert(reg < CHUNK_SIZE, "sanity");
assert(valid_watermarks(), "pre-condition");
int index = reg>>_LogWordBits;
if (index > _hwm) _hwm = index;
if (index < _lwm) _lwm = index;
_A[index] |= (1<<(reg&(_WordBits-1)));
assert(valid_watermarks(), "post-condition");
}
// Remove register from mask
void Remove(OptoReg::Name reg) {
assert(reg < CHUNK_SIZE, "");
_A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
}
// OR 'rm' into 'this'
void OR(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
// OR widens the live range
if (_lwm > rm._lwm) _lwm = rm._lwm;
if (_hwm < rm._hwm) _hwm = rm._hwm;
for (int i = _lwm; i <= _hwm; i++) {
_A[i] |= rm._A[i];
}
assert(valid_watermarks(), "sanity");
}
// AND 'rm' into 'this'
void AND(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
// Do not evaluate words outside the current watermark range, as they are
// already zero and an &= would not change that
for (int i = _lwm; i <= _hwm; i++) {
_A[i] &= rm._A[i];
}
// Narrow the watermarks if &rm spans a narrower range.
// Update after to ensure non-overlapping words are zeroed out.
if (_lwm < rm._lwm) _lwm = rm._lwm;
if (_hwm > rm._hwm) _hwm = rm._hwm;
}
// Subtract 'rm' from 'this'
void SUBTRACT(const RegMask &rm) {
assert(valid_watermarks() && rm.valid_watermarks(), "sanity");
int hwm = MIN2(_hwm, rm._hwm);
int lwm = MAX2(_lwm, rm._lwm);
for (int i = lwm; i <= hwm; i++) {
_A[i] &= ~rm._A[i];
}
}
// Compute size of register mask: number of bits
uint Size() const;
#ifndef PRODUCT
void print() const { dump(); }
void dump(outputStream *st = tty) const; // Print a mask
#endif
static const RegMask Empty; // Common empty mask
static bool can_represent(OptoReg::Name reg) {
// NOTE: -1 in computation reflects the usage of the last
// bit of the regmask as an infinite stack flag and
// -7 is to keep mask aligned for largest value (VecZ).
return (int)reg < (int)(CHUNK_SIZE-1);
}
static bool can_represent_arg(OptoReg::Name reg) {
// NOTE: -SlotsPerVecZ in computation reflects the need
// to keep mask aligned for largest value (VecZ).
return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecZ);
}
};
// Do not use this constant directly in client code!
#undef RM_SIZE
#endif // SHARE_OPTO_REGMASK_HPP