1314 lines
54 KiB
C++
1314 lines
54 KiB
C++
/*
|
|
* Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
#include "incls/_precompiled.incl"
|
|
#include "incls/_reg_split.cpp.incl"
|
|
|
|
//------------------------------Split--------------------------------------
|
|
// Walk the graph in RPO and for each lrg which spills, propagate reaching
|
|
// definitions. During propagation, split the live range around regions of
|
|
// High Register Pressure (HRP). If a Def is in a region of Low Register
|
|
// Pressure (LRP), it will not get spilled until we encounter a region of
|
|
// HRP between it and one of its uses. We will spill at the transition
|
|
// point between LRP and HRP. Uses in the HRP region will use the spilled
|
|
// Def. The first Use outside the HRP region will generate a SpillCopy to
|
|
// hoist the live range back up into a register, and all subsequent uses
|
|
// will use that new Def until another HRP region is encountered. Defs in
|
|
// HRP regions will get trailing SpillCopies to push the LRG down into the
|
|
// stack immediately.
|
|
//
|
|
// As a side effect, unlink from (hence make dead) coalesced copies.
|
|
//
|
|
|
|
static const char out_of_nodes[] = "out of nodes during split";
|
|
|
|
//------------------------------get_spillcopy_wide-----------------------------
|
|
// Get a SpillCopy node with wide-enough masks. Use the 'wide-mask', the
|
|
// wide ideal-register spill-mask if possible. If the 'wide-mask' does
|
|
// not cover the input (or output), use the input (or output) mask instead.
|
|
Node *PhaseChaitin::get_spillcopy_wide( Node *def, Node *use, uint uidx ) {
|
|
// If ideal reg doesn't exist we've got a bad schedule happening
|
|
// that is forcing us to spill something that isn't spillable.
|
|
// Bail rather than abort
|
|
int ireg = def->ideal_reg();
|
|
if( ireg == 0 || ireg == Op_RegFlags ) {
|
|
assert(false, "attempted to spill a non-spillable item");
|
|
C->record_method_not_compilable("attempted to spill a non-spillable item");
|
|
return NULL;
|
|
}
|
|
if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
|
|
return NULL;
|
|
}
|
|
const RegMask *i_mask = &def->out_RegMask();
|
|
const RegMask *w_mask = C->matcher()->idealreg2spillmask[ireg];
|
|
const RegMask *o_mask = use ? &use->in_RegMask(uidx) : w_mask;
|
|
const RegMask *w_i_mask = w_mask->overlap( *i_mask ) ? w_mask : i_mask;
|
|
const RegMask *w_o_mask;
|
|
|
|
if( w_mask->overlap( *o_mask ) && // Overlap AND
|
|
((ireg != Op_RegL && ireg != Op_RegD // Single use or aligned
|
|
#ifdef _LP64
|
|
&& ireg != Op_RegP
|
|
#endif
|
|
) || o_mask->is_aligned_Pairs()) ) {
|
|
// Don't come here for mis-aligned doubles
|
|
w_o_mask = w_mask;
|
|
} else { // wide ideal mask does not overlap with o_mask
|
|
// Mis-aligned doubles come here and XMM->FPR moves on x86.
|
|
w_o_mask = o_mask; // Must target desired registers
|
|
// Does the ideal-reg-mask overlap with o_mask? I.e., can I use
|
|
// a reg-reg move or do I need a trip across register classes
|
|
// (and thus through memory)?
|
|
if( !C->matcher()->idealreg2regmask[ireg]->overlap( *o_mask) && o_mask->is_UP() )
|
|
// Here we assume a trip through memory is required.
|
|
w_i_mask = &C->FIRST_STACK_mask();
|
|
}
|
|
return new (C) MachSpillCopyNode( def, *w_i_mask, *w_o_mask );
|
|
}
|
|
|
|
//------------------------------insert_proj------------------------------------
|
|
// Insert the spill at chosen location. Skip over any intervening Proj's or
|
|
// Phis. Skip over a CatchNode and projs, inserting in the fall-through block
|
|
// instead. Update high-pressure indices. Create a new live range.
|
|
void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) {
|
|
// Skip intervening ProjNodes. Do not insert between a ProjNode and
|
|
// its definer.
|
|
while( i < b->_nodes.size() &&
|
|
(b->_nodes[i]->is_Proj() ||
|
|
b->_nodes[i]->is_Phi() ) )
|
|
i++;
|
|
|
|
// Do not insert between a call and his Catch
|
|
if( b->_nodes[i]->is_Catch() ) {
|
|
// Put the instruction at the top of the fall-thru block.
|
|
// Find the fall-thru projection
|
|
while( 1 ) {
|
|
const CatchProjNode *cp = b->_nodes[++i]->as_CatchProj();
|
|
if( cp->_con == CatchProjNode::fall_through_index )
|
|
break;
|
|
}
|
|
int sidx = i - b->end_idx()-1;
|
|
b = b->_succs[sidx]; // Switch to successor block
|
|
i = 1; // Right at start of block
|
|
}
|
|
|
|
b->_nodes.insert(i,spill); // Insert node in block
|
|
_cfg._bbs.map(spill->_idx,b); // Update node->block mapping to reflect
|
|
// Adjust the point where we go hi-pressure
|
|
if( i <= b->_ihrp_index ) b->_ihrp_index++;
|
|
if( i <= b->_fhrp_index ) b->_fhrp_index++;
|
|
|
|
// Assign a new Live Range Number to the SpillCopy and grow
|
|
// the node->live range mapping.
|
|
new_lrg(spill,maxlrg);
|
|
}
|
|
|
|
//------------------------------split_DEF--------------------------------------
|
|
// There are four categories of Split; UP/DOWN x DEF/USE
|
|
// Only three of these really occur as DOWN/USE will always color
|
|
// Any Split with a DEF cannot CISC-Spill now. Thus we need
|
|
// two helper routines, one for Split DEFS (insert after instruction),
|
|
// one for Split USES (insert before instruction). DEF insertion
|
|
// happens inside Split, where the Leaveblock array is updated.
|
|
uint PhaseChaitin::split_DEF( Node *def, Block *b, int loc, uint maxlrg, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx ) {
|
|
#ifdef ASSERT
|
|
// Increment the counter for this lrg
|
|
splits.at_put(slidx, splits.at(slidx)+1);
|
|
#endif
|
|
// If we are spilling the memory op for an implicit null check, at the
|
|
// null check location (ie - null check is in HRP block) we need to do
|
|
// the null-check first, then spill-down in the following block.
|
|
// (The implicit_null_check function ensures the use is also dominated
|
|
// by the branch-not-taken block.)
|
|
Node *be = b->end();
|
|
if( be->is_MachNullCheck() && be->in(1) == def && def == b->_nodes[loc] ) {
|
|
// Spill goes in the branch-not-taken block
|
|
b = b->_succs[b->_nodes[b->end_idx()+1]->Opcode() == Op_IfTrue];
|
|
loc = 0; // Just past the Region
|
|
}
|
|
assert( loc >= 0, "must insert past block head" );
|
|
|
|
// Get a def-side SpillCopy
|
|
Node *spill = get_spillcopy_wide(def,NULL,0);
|
|
// Did we fail to split?, then bail
|
|
if (!spill) {
|
|
return 0;
|
|
}
|
|
|
|
// Insert the spill at chosen location
|
|
insert_proj( b, loc+1, spill, maxlrg++);
|
|
|
|
// Insert new node into Reaches array
|
|
Reachblock[slidx] = spill;
|
|
// Update debug list of reaching down definitions by adding this one
|
|
debug_defs[slidx] = spill;
|
|
|
|
// return updated count of live ranges
|
|
return maxlrg;
|
|
}
|
|
|
|
//------------------------------split_USE--------------------------------------
|
|
// Splits at uses can involve redeffing the LRG, so no CISC Spilling there.
|
|
// Debug uses want to know if def is already stack enabled.
|
|
uint PhaseChaitin::split_USE( Node *def, Block *b, Node *use, uint useidx, uint maxlrg, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx ) {
|
|
#ifdef ASSERT
|
|
// Increment the counter for this lrg
|
|
splits.at_put(slidx, splits.at(slidx)+1);
|
|
#endif
|
|
|
|
// Some setup stuff for handling debug node uses
|
|
JVMState* jvms = use->jvms();
|
|
uint debug_start = jvms ? jvms->debug_start() : 999999;
|
|
uint debug_end = jvms ? jvms->debug_end() : 999999;
|
|
|
|
//-------------------------------------------
|
|
// Check for use of debug info
|
|
if (useidx >= debug_start && useidx < debug_end) {
|
|
// Actually it's perfectly legal for constant debug info to appear
|
|
// just unlikely. In this case the optimizer left a ConI of a 4
|
|
// as both inputs to a Phi with only a debug use. It's a single-def
|
|
// live range of a rematerializable value. The live range spills,
|
|
// rematerializes and now the ConI directly feeds into the debug info.
|
|
// assert(!def->is_Con(), "constant debug info already constructed directly");
|
|
|
|
// Special split handling for Debug Info
|
|
// If DEF is DOWN, just hook the edge and return
|
|
// If DEF is UP, Split it DOWN for this USE.
|
|
if( def->is_Mach() ) {
|
|
if( def_down ) {
|
|
// DEF is DOWN, so connect USE directly to the DEF
|
|
use->set_req(useidx, def);
|
|
} else {
|
|
// Block and index where the use occurs.
|
|
Block *b = _cfg._bbs[use->_idx];
|
|
// Put the clone just prior to use
|
|
int bindex = b->find_node(use);
|
|
// DEF is UP, so must copy it DOWN and hook in USE
|
|
// Insert SpillCopy before the USE, which uses DEF as its input,
|
|
// and defs a new live range, which is used by this node.
|
|
Node *spill = get_spillcopy_wide(def,use,useidx);
|
|
// did we fail to split?
|
|
if (!spill) {
|
|
// Bail
|
|
return 0;
|
|
}
|
|
// insert into basic block
|
|
insert_proj( b, bindex, spill, maxlrg++ );
|
|
// Use the new split
|
|
use->set_req(useidx,spill);
|
|
}
|
|
// No further split handling needed for this use
|
|
return maxlrg;
|
|
} // End special splitting for debug info live range
|
|
} // If debug info
|
|
|
|
// CISC-SPILLING
|
|
// Finally, check to see if USE is CISC-Spillable, and if so,
|
|
// gather_lrg_masks will add the flags bit to its mask, and
|
|
// no use side copy is needed. This frees up the live range
|
|
// register choices without causing copy coalescing, etc.
|
|
if( UseCISCSpill && cisc_sp ) {
|
|
int inp = use->cisc_operand();
|
|
if( inp != AdlcVMDeps::Not_cisc_spillable )
|
|
// Convert operand number to edge index number
|
|
inp = use->as_Mach()->operand_index(inp);
|
|
if( inp == (int)useidx ) {
|
|
use->set_req(useidx, def);
|
|
#ifndef PRODUCT
|
|
if( TraceCISCSpill ) {
|
|
tty->print(" set_split: ");
|
|
use->dump();
|
|
}
|
|
#endif
|
|
return maxlrg;
|
|
}
|
|
}
|
|
|
|
//-------------------------------------------
|
|
// Insert a Copy before the use
|
|
|
|
// Block and index where the use occurs.
|
|
int bindex;
|
|
// Phi input spill-copys belong at the end of the prior block
|
|
if( use->is_Phi() ) {
|
|
b = _cfg._bbs[b->pred(useidx)->_idx];
|
|
bindex = b->end_idx();
|
|
} else {
|
|
// Put the clone just prior to use
|
|
bindex = b->find_node(use);
|
|
}
|
|
|
|
Node *spill = get_spillcopy_wide( def, use, useidx );
|
|
if( !spill ) return 0; // Bailed out
|
|
// Insert SpillCopy before the USE, which uses the reaching DEF as
|
|
// its input, and defs a new live range, which is used by this node.
|
|
insert_proj( b, bindex, spill, maxlrg++ );
|
|
// Use the spill/clone
|
|
use->set_req(useidx,spill);
|
|
|
|
// return updated live range count
|
|
return maxlrg;
|
|
}
|
|
|
|
//------------------------------split_Rematerialize----------------------------
|
|
// Clone a local copy of the def.
|
|
Node *PhaseChaitin::split_Rematerialize( Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits, int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru ) {
|
|
// The input live ranges will be stretched to the site of the new
|
|
// instruction. They might be stretched past a def and will thus
|
|
// have the old and new values of the same live range alive at the
|
|
// same time - a definite no-no. Split out private copies of
|
|
// the inputs.
|
|
if( def->req() > 1 ) {
|
|
for( uint i = 1; i < def->req(); i++ ) {
|
|
Node *in = def->in(i);
|
|
// Check for single-def (LRG cannot redefined)
|
|
uint lidx = n2lidx(in);
|
|
if( lidx >= _maxlrg ) continue; // Value is a recent spill-copy
|
|
if (lrgs(lidx).is_singledef()) continue;
|
|
|
|
Block *b_def = _cfg._bbs[def->_idx];
|
|
int idx_def = b_def->find_node(def);
|
|
Node *in_spill = get_spillcopy_wide( in, def, i );
|
|
if( !in_spill ) return 0; // Bailed out
|
|
insert_proj(b_def,idx_def,in_spill,maxlrg++);
|
|
if( b_def == b )
|
|
insidx++;
|
|
def->set_req(i,in_spill);
|
|
}
|
|
}
|
|
|
|
Node *spill = def->clone();
|
|
if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
|
|
// Check when generating nodes
|
|
return 0;
|
|
}
|
|
|
|
// See if any inputs are currently being spilled, and take the
|
|
// latest copy of spilled inputs.
|
|
if( spill->req() > 1 ) {
|
|
for( uint i = 1; i < spill->req(); i++ ) {
|
|
Node *in = spill->in(i);
|
|
uint lidx = Find_id(in);
|
|
|
|
// Walk backwards thru spill copy node intermediates
|
|
if (walkThru) {
|
|
while ( in->is_SpillCopy() && lidx >= _maxlrg ) {
|
|
in = in->in(1);
|
|
lidx = Find_id(in);
|
|
}
|
|
|
|
if (lidx < _maxlrg && lrgs(lidx).is_multidef()) {
|
|
// walkThru found a multidef LRG, which is unsafe to use, so
|
|
// just keep the original def used in the clone.
|
|
in = spill->in(i);
|
|
lidx = Find_id(in);
|
|
}
|
|
}
|
|
|
|
if( lidx < _maxlrg && lrgs(lidx).reg() >= LRG::SPILL_REG ) {
|
|
Node *rdef = Reachblock[lrg2reach[lidx]];
|
|
if( rdef ) spill->set_req(i,rdef);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
assert( spill->out_RegMask().is_UP(), "rematerialize to a reg" );
|
|
// Rematerialized op is def->spilled+1
|
|
set_was_spilled(spill);
|
|
if( _spilled_once.test(def->_idx) )
|
|
set_was_spilled(spill);
|
|
|
|
insert_proj( b, insidx, spill, maxlrg++ );
|
|
#ifdef ASSERT
|
|
// Increment the counter for this lrg
|
|
splits.at_put(slidx, splits.at(slidx)+1);
|
|
#endif
|
|
// See if the cloned def kills any flags, and copy those kills as well
|
|
uint i = insidx+1;
|
|
if( clone_projs( b, i, def, spill, maxlrg ) ) {
|
|
// Adjust the point where we go hi-pressure
|
|
if( i <= b->_ihrp_index ) b->_ihrp_index++;
|
|
if( i <= b->_fhrp_index ) b->_fhrp_index++;
|
|
}
|
|
|
|
return spill;
|
|
}
|
|
|
|
//------------------------------is_high_pressure-------------------------------
|
|
// Function to compute whether or not this live range is "high pressure"
|
|
// in this block - whether it spills eagerly or not.
|
|
bool PhaseChaitin::is_high_pressure( Block *b, LRG *lrg, uint insidx ) {
|
|
if( lrg->_was_spilled1 ) return true;
|
|
// Forced spilling due to conflict? Then split only at binding uses
|
|
// or defs, not for supposed capacity problems.
|
|
// CNC - Turned off 7/8/99, causes too much spilling
|
|
// if( lrg->_is_bound ) return false;
|
|
|
|
// Not yet reached the high-pressure cutoff point, so low pressure
|
|
uint hrp_idx = lrg->_is_float ? b->_fhrp_index : b->_ihrp_index;
|
|
if( insidx < hrp_idx ) return false;
|
|
// Register pressure for the block as a whole depends on reg class
|
|
int block_pres = lrg->_is_float ? b->_freg_pressure : b->_reg_pressure;
|
|
// Bound live ranges will split at the binding points first;
|
|
// Intermediate splits should assume the live range's register set
|
|
// got "freed up" and that num_regs will become INT_PRESSURE.
|
|
int bound_pres = lrg->_is_float ? FLOATPRESSURE : INTPRESSURE;
|
|
// Effective register pressure limit.
|
|
int lrg_pres = (lrg->get_invalid_mask_size() > lrg->num_regs())
|
|
? (lrg->get_invalid_mask_size() >> (lrg->num_regs()-1)) : bound_pres;
|
|
// High pressure if block pressure requires more register freedom
|
|
// than live range has.
|
|
return block_pres >= lrg_pres;
|
|
}
|
|
|
|
|
|
//------------------------------prompt_use---------------------------------
|
|
// True if lidx is used before any real register is def'd in the block
|
|
bool PhaseChaitin::prompt_use( Block *b, uint lidx ) {
|
|
if( lrgs(lidx)._was_spilled2 ) return false;
|
|
|
|
// Scan block for 1st use.
|
|
for( uint i = 1; i <= b->end_idx(); i++ ) {
|
|
Node *n = b->_nodes[i];
|
|
// Ignore PHI use, these can be up or down
|
|
if( n->is_Phi() ) continue;
|
|
for( uint j = 1; j < n->req(); j++ )
|
|
if( Find_id(n->in(j)) == lidx )
|
|
return true; // Found 1st use!
|
|
if( n->out_RegMask().is_NotEmpty() ) return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//------------------------------Split--------------------------------------
|
|
//----------Split Routine----------
|
|
// ***** NEW SPLITTING HEURISTIC *****
|
|
// DEFS: If the DEF is in a High Register Pressure(HRP) Block, split there.
|
|
// Else, no split unless there is a HRP block between a DEF and
|
|
// one of its uses, and then split at the HRP block.
|
|
//
|
|
// USES: If USE is in HRP, split at use to leave main LRG on stack.
|
|
// Else, hoist LRG back up to register only (ie - split is also DEF)
|
|
// We will compute a new maxlrg as we go
|
|
uint PhaseChaitin::Split( uint maxlrg ) {
|
|
NOT_PRODUCT( Compile::TracePhase t3("regAllocSplit", &_t_regAllocSplit, TimeCompiler); )
|
|
|
|
uint bidx, pidx, slidx, insidx, inpidx, twoidx;
|
|
uint non_phi = 1, spill_cnt = 0;
|
|
Node **Reachblock;
|
|
Node *n1, *n2, *n3;
|
|
Node_List *defs,*phis;
|
|
bool *UPblock;
|
|
bool u1, u2, u3;
|
|
Block *b, *pred;
|
|
PhiNode *phi;
|
|
GrowableArray<uint> lidxs;
|
|
|
|
// Array of counters to count splits per live range
|
|
GrowableArray<uint> splits;
|
|
|
|
//----------Setup Code----------
|
|
// Create a convenient mapping from lrg numbers to reaches/leaves indices
|
|
uint *lrg2reach = NEW_RESOURCE_ARRAY( uint, _maxlrg );
|
|
// Keep track of DEFS & Phis for later passes
|
|
defs = new Node_List();
|
|
phis = new Node_List();
|
|
// Gather info on which LRG's are spilling, and build maps
|
|
for( bidx = 1; bidx < _maxlrg; bidx++ ) {
|
|
if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
|
|
assert(!lrgs(bidx).mask().is_AllStack(),"AllStack should color");
|
|
lrg2reach[bidx] = spill_cnt;
|
|
spill_cnt++;
|
|
lidxs.append(bidx);
|
|
#ifdef ASSERT
|
|
// Initialize the split counts to zero
|
|
splits.append(0);
|
|
#endif
|
|
#ifndef PRODUCT
|
|
if( PrintOpto && WizardMode && lrgs(bidx)._was_spilled1 )
|
|
tty->print_cr("Warning, 2nd spill of L%d",bidx);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Create side arrays for propagating reaching defs info.
|
|
// Each block needs a node pointer for each spilling live range for the
|
|
// Def which is live into the block. Phi nodes handle multiple input
|
|
// Defs by querying the output of their predecessor blocks and resolving
|
|
// them to a single Def at the phi. The pointer is updated for each
|
|
// Def in the block, and then becomes the output for the block when
|
|
// processing of the block is complete. We also need to track whether
|
|
// a Def is UP or DOWN. UP means that it should get a register (ie -
|
|
// it is always in LRP regions), and DOWN means that it is probably
|
|
// on the stack (ie - it crosses HRP regions).
|
|
Node ***Reaches = NEW_RESOURCE_ARRAY( Node**, _cfg._num_blocks+1 );
|
|
bool **UP = NEW_RESOURCE_ARRAY( bool*, _cfg._num_blocks+1 );
|
|
Node **debug_defs = NEW_RESOURCE_ARRAY( Node*, spill_cnt );
|
|
VectorSet **UP_entry= NEW_RESOURCE_ARRAY( VectorSet*, spill_cnt );
|
|
|
|
// Initialize Reaches & UP
|
|
for( bidx = 0; bidx < _cfg._num_blocks+1; bidx++ ) {
|
|
Reaches[bidx] = NEW_RESOURCE_ARRAY( Node*, spill_cnt );
|
|
UP[bidx] = NEW_RESOURCE_ARRAY( bool, spill_cnt );
|
|
Node **Reachblock = Reaches[bidx];
|
|
bool *UPblock = UP[bidx];
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ ) {
|
|
UPblock[slidx] = true; // Assume they start in registers
|
|
Reachblock[slidx] = NULL; // Assume that no def is present
|
|
}
|
|
}
|
|
|
|
// Initialize to array of empty vectorsets
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ )
|
|
UP_entry[slidx] = new VectorSet(Thread::current()->resource_area());
|
|
|
|
//----------PASS 1----------
|
|
//----------Propagation & Node Insertion Code----------
|
|
// Walk the Blocks in RPO for DEF & USE info
|
|
for( bidx = 0; bidx < _cfg._num_blocks; bidx++ ) {
|
|
|
|
if (C->check_node_count(spill_cnt, out_of_nodes)) {
|
|
return 0;
|
|
}
|
|
|
|
b = _cfg._blocks[bidx];
|
|
// Reaches & UP arrays for this block
|
|
Reachblock = Reaches[b->_pre_order];
|
|
UPblock = UP[b->_pre_order];
|
|
// Reset counter of start of non-Phi nodes in block
|
|
non_phi = 1;
|
|
//----------Block Entry Handling----------
|
|
// Check for need to insert a new phi
|
|
// Cycle through this block's predecessors, collecting Reaches
|
|
// info for each spilled LRG. If they are identical, no phi is
|
|
// needed. If they differ, check for a phi, and insert if missing,
|
|
// or update edges if present. Set current block's Reaches set to
|
|
// be either the phi's or the reaching def, as appropriate.
|
|
// If no Phi is needed, check if the LRG needs to spill on entry
|
|
// to the block due to HRP.
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ ) {
|
|
// Grab the live range number
|
|
uint lidx = lidxs.at(slidx);
|
|
// Do not bother splitting or putting in Phis for single-def
|
|
// rematerialized live ranges. This happens alot to constants
|
|
// with long live ranges.
|
|
if( lrgs(lidx).is_singledef() &&
|
|
lrgs(lidx)._def->rematerialize() ) {
|
|
// reset the Reaches & UP entries
|
|
Reachblock[slidx] = lrgs(lidx)._def;
|
|
UPblock[slidx] = true;
|
|
// Record following instruction in case 'n' rematerializes and
|
|
// kills flags
|
|
Block *pred1 = _cfg._bbs[b->pred(1)->_idx];
|
|
continue;
|
|
}
|
|
|
|
// Initialize needs_phi and needs_split
|
|
bool needs_phi = false;
|
|
bool needs_split = false;
|
|
bool has_phi = false;
|
|
// Walk the predecessor blocks to check inputs for that live range
|
|
// Grab predecessor block header
|
|
n1 = b->pred(1);
|
|
// Grab the appropriate reaching def info for inpidx
|
|
pred = _cfg._bbs[n1->_idx];
|
|
pidx = pred->_pre_order;
|
|
Node **Ltmp = Reaches[pidx];
|
|
bool *Utmp = UP[pidx];
|
|
n1 = Ltmp[slidx];
|
|
u1 = Utmp[slidx];
|
|
// Initialize node for saving type info
|
|
n3 = n1;
|
|
u3 = u1;
|
|
|
|
// Compare inputs to see if a Phi is needed
|
|
for( inpidx = 2; inpidx < b->num_preds(); inpidx++ ) {
|
|
// Grab predecessor block headers
|
|
n2 = b->pred(inpidx);
|
|
// Grab the appropriate reaching def info for inpidx
|
|
pred = _cfg._bbs[n2->_idx];
|
|
pidx = pred->_pre_order;
|
|
Ltmp = Reaches[pidx];
|
|
Utmp = UP[pidx];
|
|
n2 = Ltmp[slidx];
|
|
u2 = Utmp[slidx];
|
|
// For each LRG, decide if a phi is necessary
|
|
if( n1 != n2 ) {
|
|
needs_phi = true;
|
|
}
|
|
// See if the phi has mismatched inputs, UP vs. DOWN
|
|
if( n1 && n2 && (u1 != u2) ) {
|
|
needs_split = true;
|
|
}
|
|
// Move n2/u2 to n1/u1 for next iteration
|
|
n1 = n2;
|
|
u1 = u2;
|
|
// Preserve a non-NULL predecessor for later type referencing
|
|
if( (n3 == NULL) && (n2 != NULL) ){
|
|
n3 = n2;
|
|
u3 = u2;
|
|
}
|
|
} // End for all potential Phi inputs
|
|
|
|
// check block for appropriate phinode & update edges
|
|
for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
|
|
n1 = b->_nodes[insidx];
|
|
// bail if this is not a phi
|
|
phi = n1->is_Phi() ? n1->as_Phi() : NULL;
|
|
if( phi == NULL ) {
|
|
// Keep track of index of first non-PhiNode instruction in block
|
|
non_phi = insidx;
|
|
// break out of the for loop as we have handled all phi nodes
|
|
break;
|
|
}
|
|
// must be looking at a phi
|
|
if( Find_id(n1) == lidxs.at(slidx) ) {
|
|
// found the necessary phi
|
|
needs_phi = false;
|
|
has_phi = true;
|
|
// initialize the Reaches entry for this LRG
|
|
Reachblock[slidx] = phi;
|
|
break;
|
|
} // end if found correct phi
|
|
} // end for all phi's
|
|
|
|
// If a phi is needed or exist, check for it
|
|
if( needs_phi || has_phi ) {
|
|
// add new phinode if one not already found
|
|
if( needs_phi ) {
|
|
// create a new phi node and insert it into the block
|
|
// type is taken from left over pointer to a predecessor
|
|
assert(n3,"No non-NULL reaching DEF for a Phi");
|
|
phi = new (C, b->num_preds()) PhiNode(b->head(), n3->bottom_type());
|
|
// initialize the Reaches entry for this LRG
|
|
Reachblock[slidx] = phi;
|
|
|
|
// add node to block & node_to_block mapping
|
|
insert_proj( b, insidx++, phi, maxlrg++ );
|
|
non_phi++;
|
|
// Reset new phi's mapping to be the spilling live range
|
|
_names.map(phi->_idx, lidx);
|
|
assert(Find_id(phi) == lidx,"Bad update on Union-Find mapping");
|
|
} // end if not found correct phi
|
|
// Here you have either found or created the Phi, so record it
|
|
assert(phi != NULL,"Must have a Phi Node here");
|
|
phis->push(phi);
|
|
// PhiNodes should either force the LRG UP or DOWN depending
|
|
// on its inputs and the register pressure in the Phi's block.
|
|
UPblock[slidx] = true; // Assume new DEF is UP
|
|
// If entering a high-pressure area with no immediate use,
|
|
// assume Phi is DOWN
|
|
if( is_high_pressure( b, &lrgs(lidx), b->end_idx()) && !prompt_use(b,lidx) )
|
|
UPblock[slidx] = false;
|
|
// If we are not split up/down and all inputs are down, then we
|
|
// are down
|
|
if( !needs_split && !u3 )
|
|
UPblock[slidx] = false;
|
|
} // end if phi is needed
|
|
|
|
// Do not need a phi, so grab the reaching DEF
|
|
else {
|
|
// Grab predecessor block header
|
|
n1 = b->pred(1);
|
|
// Grab the appropriate reaching def info for k
|
|
pred = _cfg._bbs[n1->_idx];
|
|
pidx = pred->_pre_order;
|
|
Node **Ltmp = Reaches[pidx];
|
|
bool *Utmp = UP[pidx];
|
|
// reset the Reaches & UP entries
|
|
Reachblock[slidx] = Ltmp[slidx];
|
|
UPblock[slidx] = Utmp[slidx];
|
|
} // end else no Phi is needed
|
|
} // end for all spilling live ranges
|
|
// DEBUG
|
|
#ifndef PRODUCT
|
|
if(trace_spilling()) {
|
|
tty->print("/`\nBlock %d: ", b->_pre_order);
|
|
tty->print("Reaching Definitions after Phi handling\n");
|
|
for( uint x = 0; x < spill_cnt; x++ ) {
|
|
tty->print("Spill Idx %d: UP %d: Node\n",x,UPblock[x]);
|
|
if( Reachblock[x] )
|
|
Reachblock[x]->dump();
|
|
else
|
|
tty->print("Undefined\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//----------Non-Phi Node Splitting----------
|
|
// Since phi-nodes have now been handled, the Reachblock array for this
|
|
// block is initialized with the correct starting value for the defs which
|
|
// reach non-phi instructions in this block. Thus, process non-phi
|
|
// instructions normally, inserting SpillCopy nodes for all spill
|
|
// locations.
|
|
|
|
// Memoize any DOWN reaching definitions for use as DEBUG info
|
|
for( insidx = 0; insidx < spill_cnt; insidx++ ) {
|
|
debug_defs[insidx] = (UPblock[insidx]) ? NULL : Reachblock[insidx];
|
|
if( UPblock[insidx] ) // Memoize UP decision at block start
|
|
UP_entry[insidx]->set( b->_pre_order );
|
|
}
|
|
|
|
//----------Walk Instructions in the Block and Split----------
|
|
// For all non-phi instructions in the block
|
|
for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
|
|
Node *n = b->_nodes[insidx];
|
|
// Find the defining Node's live range index
|
|
uint defidx = Find_id(n);
|
|
uint cnt = n->req();
|
|
|
|
if( n->is_Phi() ) {
|
|
// Skip phi nodes after removing dead copies.
|
|
if( defidx < _maxlrg ) {
|
|
// Check for useless Phis. These appear if we spill, then
|
|
// coalesce away copies. Dont touch Phis in spilling live
|
|
// ranges; they are busy getting modifed in this pass.
|
|
if( lrgs(defidx).reg() < LRG::SPILL_REG ) {
|
|
uint i;
|
|
Node *u = NULL;
|
|
// Look for the Phi merging 2 unique inputs
|
|
for( i = 1; i < cnt; i++ ) {
|
|
// Ignore repeats and self
|
|
if( n->in(i) != u && n->in(i) != n ) {
|
|
// Found a unique input
|
|
if( u != NULL ) // If it's the 2nd, bail out
|
|
break;
|
|
u = n->in(i); // Else record it
|
|
}
|
|
}
|
|
assert( u, "at least 1 valid input expected" );
|
|
if( i >= cnt ) { // Found one unique input
|
|
assert(Find_id(n) == Find_id(u), "should be the same lrg");
|
|
n->replace_by(u); // Then replace with unique input
|
|
n->disconnect_inputs(NULL);
|
|
b->_nodes.remove(insidx);
|
|
insidx--;
|
|
b->_ihrp_index--;
|
|
b->_fhrp_index--;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
assert( insidx > b->_ihrp_index ||
|
|
(b->_reg_pressure < (uint)INTPRESSURE) ||
|
|
b->_ihrp_index > 4000000 ||
|
|
b->_ihrp_index >= b->end_idx() ||
|
|
!b->_nodes[b->_ihrp_index]->is_Proj(), "" );
|
|
assert( insidx > b->_fhrp_index ||
|
|
(b->_freg_pressure < (uint)FLOATPRESSURE) ||
|
|
b->_fhrp_index > 4000000 ||
|
|
b->_fhrp_index >= b->end_idx() ||
|
|
!b->_nodes[b->_fhrp_index]->is_Proj(), "" );
|
|
|
|
// ********** Handle Crossing HRP Boundry **********
|
|
if( (insidx == b->_ihrp_index) || (insidx == b->_fhrp_index) ) {
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ ) {
|
|
// Check for need to split at HRP boundary - split if UP
|
|
n1 = Reachblock[slidx];
|
|
// bail out if no reaching DEF
|
|
if( n1 == NULL ) continue;
|
|
// bail out if live range is 'isolated' around inner loop
|
|
uint lidx = lidxs.at(slidx);
|
|
// If live range is currently UP
|
|
if( UPblock[slidx] ) {
|
|
// set location to insert spills at
|
|
// SPLIT DOWN HERE - NO CISC SPILL
|
|
if( is_high_pressure( b, &lrgs(lidx), insidx ) &&
|
|
!n1->rematerialize() ) {
|
|
// If there is already a valid stack definition available, use it
|
|
if( debug_defs[slidx] != NULL ) {
|
|
Reachblock[slidx] = debug_defs[slidx];
|
|
}
|
|
else {
|
|
// Insert point is just past last use or def in the block
|
|
int insert_point = insidx-1;
|
|
while( insert_point > 0 ) {
|
|
Node *n = b->_nodes[insert_point];
|
|
// Hit top of block? Quit going backwards
|
|
if( n->is_Phi() ) break;
|
|
// Found a def? Better split after it.
|
|
if( n2lidx(n) == lidx ) break;
|
|
// Look for a use
|
|
uint i;
|
|
for( i = 1; i < n->req(); i++ )
|
|
if( n2lidx(n->in(i)) == lidx )
|
|
break;
|
|
// Found a use? Better split after it.
|
|
if( i < n->req() ) break;
|
|
insert_point--;
|
|
}
|
|
maxlrg = split_DEF( n1, b, insert_point, maxlrg, Reachblock, debug_defs, splits, slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++;
|
|
}
|
|
// This is a new DEF, so update UP
|
|
UPblock[slidx] = false;
|
|
#ifndef PRODUCT
|
|
// DEBUG
|
|
if( trace_spilling() ) {
|
|
tty->print("\nNew Split DOWN DEF of Spill Idx ");
|
|
tty->print("%d, UP %d:\n",slidx,false);
|
|
n1->dump();
|
|
}
|
|
#endif
|
|
}
|
|
} // end if LRG is UP
|
|
} // end for all spilling live ranges
|
|
assert( b->_nodes[insidx] == n, "got insidx set incorrectly" );
|
|
} // end if crossing HRP Boundry
|
|
|
|
// If the LRG index is oob, then this is a new spillcopy, skip it.
|
|
if( defidx >= _maxlrg ) {
|
|
continue;
|
|
}
|
|
LRG &deflrg = lrgs(defidx);
|
|
uint copyidx = n->is_Copy();
|
|
// Remove coalesced copy from CFG
|
|
if( copyidx && defidx == n2lidx(n->in(copyidx)) ) {
|
|
n->replace_by( n->in(copyidx) );
|
|
n->set_req( copyidx, NULL );
|
|
b->_nodes.remove(insidx--);
|
|
b->_ihrp_index--; // Adjust the point where we go hi-pressure
|
|
b->_fhrp_index--;
|
|
continue;
|
|
}
|
|
|
|
#define DERIVED 0
|
|
|
|
// ********** Handle USES **********
|
|
bool nullcheck = false;
|
|
// Implicit null checks never use the spilled value
|
|
if( n->is_MachNullCheck() )
|
|
nullcheck = true;
|
|
if( !nullcheck ) {
|
|
// Search all inputs for a Spill-USE
|
|
JVMState* jvms = n->jvms();
|
|
uint oopoff = jvms ? jvms->oopoff() : cnt;
|
|
uint old_last = cnt - 1;
|
|
for( inpidx = 1; inpidx < cnt; inpidx++ ) {
|
|
// Derived/base pairs may be added to our inputs during this loop.
|
|
// If inpidx > old_last, then one of these new inputs is being
|
|
// handled. Skip the derived part of the pair, but process
|
|
// the base like any other input.
|
|
if( inpidx > old_last && ((inpidx - oopoff) & 1) == DERIVED ) {
|
|
continue; // skip derived_debug added below
|
|
}
|
|
// Get lidx of input
|
|
uint useidx = Find_id(n->in(inpidx));
|
|
// Not a brand-new split, and it is a spill use
|
|
if( useidx < _maxlrg && lrgs(useidx).reg() >= LRG::SPILL_REG ) {
|
|
// Check for valid reaching DEF
|
|
slidx = lrg2reach[useidx];
|
|
Node *def = Reachblock[slidx];
|
|
assert( def != NULL, "Using Undefined Value in Split()\n");
|
|
|
|
// (+++) %%%% remove this in favor of pre-pass in matcher.cpp
|
|
// monitor references do not care where they live, so just hook
|
|
if ( jvms && jvms->is_monitor_use(inpidx) ) {
|
|
// The effect of this clone is to drop the node out of the block,
|
|
// so that the allocator does not see it anymore, and therefore
|
|
// does not attempt to assign it a register.
|
|
def = def->clone();
|
|
_names.extend(def->_idx,0);
|
|
_cfg._bbs.map(def->_idx,b);
|
|
n->set_req(inpidx, def);
|
|
if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
|
|
return 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Rematerializable? Then clone def at use site instead
|
|
// of store/load
|
|
if( def->rematerialize() ) {
|
|
int old_size = b->_nodes.size();
|
|
def = split_Rematerialize( def, b, insidx, maxlrg, splits, slidx, lrg2reach, Reachblock, true );
|
|
if( !def ) return 0; // Bail out
|
|
insidx += b->_nodes.size()-old_size;
|
|
}
|
|
|
|
MachNode *mach = n->is_Mach() ? n->as_Mach() : NULL;
|
|
// Base pointers and oopmap references do not care where they live.
|
|
if ((inpidx >= oopoff) ||
|
|
(mach && mach->ideal_Opcode() == Op_AddP && inpidx == AddPNode::Base)) {
|
|
if (def->rematerialize() && lrgs(useidx)._was_spilled2) {
|
|
// This def has been rematerialized a couple of times without
|
|
// progress. It doesn't care if it lives UP or DOWN, so
|
|
// spill it down now.
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false,splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++; // Reset iterator to skip USE side split
|
|
} else {
|
|
// Just hook the def edge
|
|
n->set_req(inpidx, def);
|
|
}
|
|
|
|
if (inpidx >= oopoff) {
|
|
// After oopoff, we have derived/base pairs. We must mention all
|
|
// derived pointers here as derived/base pairs for GC. If the
|
|
// derived value is spilling and we have a copy both in Reachblock
|
|
// (called here 'def') and debug_defs[slidx] we need to mention
|
|
// both in derived/base pairs or kill one.
|
|
Node *derived_debug = debug_defs[slidx];
|
|
if( ((inpidx - oopoff) & 1) == DERIVED && // derived vs base?
|
|
mach && mach->ideal_Opcode() != Op_Halt &&
|
|
derived_debug != NULL &&
|
|
derived_debug != def ) { // Actual 2nd value appears
|
|
// We have already set 'def' as a derived value.
|
|
// Also set debug_defs[slidx] as a derived value.
|
|
uint k;
|
|
for( k = oopoff; k < cnt; k += 2 )
|
|
if( n->in(k) == derived_debug )
|
|
break; // Found an instance of debug derived
|
|
if( k == cnt ) {// No instance of debug_defs[slidx]
|
|
// Add a derived/base pair to cover the debug info.
|
|
// We have to process the added base later since it is not
|
|
// handled yet at this point but skip derived part.
|
|
assert(((n->req() - oopoff) & 1) == DERIVED,
|
|
"must match skip condition above");
|
|
n->add_req( derived_debug ); // this will be skipped above
|
|
n->add_req( n->in(inpidx+1) ); // this will be processed
|
|
// Increment cnt to handle added input edges on
|
|
// subsequent iterations.
|
|
cnt += 2;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
// Special logic for DEBUG info
|
|
if( jvms && b->_freq > BLOCK_FREQUENCY(0.5) ) {
|
|
uint debug_start = jvms->debug_start();
|
|
// If this is debug info use & there is a reaching DOWN def
|
|
if ((debug_start <= inpidx) && (debug_defs[slidx] != NULL)) {
|
|
assert(inpidx < oopoff, "handle only debug info here");
|
|
// Just hook it in & move on
|
|
n->set_req(inpidx, debug_defs[slidx]);
|
|
// (Note that this can make two sides of a split live at the
|
|
// same time: The debug def on stack, and another def in a
|
|
// register. The GC needs to know about both of them, but any
|
|
// derived pointers after oopoff will refer to only one of the
|
|
// two defs and the GC would therefore miss the other. Thus
|
|
// this hack is only allowed for debug info which is Java state
|
|
// and therefore never a derived pointer.)
|
|
continue;
|
|
}
|
|
}
|
|
// Grab register mask info
|
|
const RegMask &dmask = def->out_RegMask();
|
|
const RegMask &umask = n->in_RegMask(inpidx);
|
|
|
|
assert(inpidx < oopoff, "cannot use-split oop map info");
|
|
|
|
bool dup = UPblock[slidx];
|
|
bool uup = umask.is_UP();
|
|
|
|
// Need special logic to handle bound USES. Insert a split at this
|
|
// bound use if we can't rematerialize the def, or if we need the
|
|
// split to form a misaligned pair.
|
|
if( !umask.is_AllStack() &&
|
|
(int)umask.Size() <= lrgs(useidx).num_regs() &&
|
|
(!def->rematerialize() ||
|
|
umask.is_misaligned_Pair())) {
|
|
// These need a Split regardless of overlap or pressure
|
|
// SPLIT - NO DEF - NO CISC SPILL
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,dup,false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++; // Reset iterator to skip USE side split
|
|
continue;
|
|
}
|
|
// Here is the logic chart which describes USE Splitting:
|
|
// 0 = false or DOWN, 1 = true or UP
|
|
//
|
|
// Overlap | DEF | USE | Action
|
|
//-------------------------------------------------------
|
|
// 0 | 0 | 0 | Copy - mem -> mem
|
|
// 0 | 0 | 1 | Split-UP - Check HRP
|
|
// 0 | 1 | 0 | Split-DOWN - Debug Info?
|
|
// 0 | 1 | 1 | Copy - reg -> reg
|
|
// 1 | 0 | 0 | Reset Input Edge (no Split)
|
|
// 1 | 0 | 1 | Split-UP - Check HRP
|
|
// 1 | 1 | 0 | Split-DOWN - Debug Info?
|
|
// 1 | 1 | 1 | Reset Input Edge (no Split)
|
|
//
|
|
// So, if (dup == uup), then overlap test determines action,
|
|
// with true being no split, and false being copy. Else,
|
|
// if DEF is DOWN, Split-UP, and check HRP to decide on
|
|
// resetting DEF. Finally if DEF is UP, Split-DOWN, with
|
|
// special handling for Debug Info.
|
|
if( dup == uup ) {
|
|
if( dmask.overlap(umask) ) {
|
|
// Both are either up or down, and there is overlap, No Split
|
|
n->set_req(inpidx, def);
|
|
}
|
|
else { // Both are either up or down, and there is no overlap
|
|
if( dup ) { // If UP, reg->reg copy
|
|
// COPY ACROSS HERE - NO DEF - NO CISC SPILL
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++; // Reset iterator to skip USE side split
|
|
}
|
|
else { // DOWN, mem->mem copy
|
|
// COPY UP & DOWN HERE - NO DEF - NO CISC SPILL
|
|
// First Split-UP to move value into Register
|
|
uint def_ideal = def->ideal_reg();
|
|
const RegMask* tmp_rm = Matcher::idealreg2regmask[def_ideal];
|
|
Node *spill = new (C) MachSpillCopyNode(def, dmask, *tmp_rm);
|
|
insert_proj( b, insidx, spill, maxlrg );
|
|
// Then Split-DOWN as if previous Split was DEF
|
|
maxlrg = split_USE(spill,b,n,inpidx,maxlrg,false,false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx += 2; // Reset iterator to skip USE side splits
|
|
}
|
|
} // End else no overlap
|
|
} // End if dup == uup
|
|
// dup != uup, so check dup for direction of Split
|
|
else {
|
|
if( dup ) { // If UP, Split-DOWN and check Debug Info
|
|
// If this node is already a SpillCopy, just patch the edge
|
|
// except the case of spilling to stack.
|
|
if( n->is_SpillCopy() ) {
|
|
RegMask tmp_rm(umask);
|
|
tmp_rm.SUBTRACT(Matcher::STACK_ONLY_mask);
|
|
if( dmask.overlap(tmp_rm) ) {
|
|
if( def != n->in(inpidx) ) {
|
|
n->set_req(inpidx, def);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
// COPY DOWN HERE - NO DEF - NO CISC SPILL
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++; // Reset iterator to skip USE side split
|
|
// Check for debug-info split. Capture it for later
|
|
// debug splits of the same value
|
|
if (jvms && jvms->debug_start() <= inpidx && inpidx < oopoff)
|
|
debug_defs[slidx] = n->in(inpidx);
|
|
|
|
}
|
|
else { // DOWN, Split-UP and check register pressure
|
|
if( is_high_pressure( b, &lrgs(useidx), insidx ) ) {
|
|
// COPY UP HERE - NO DEF - CISC SPILL
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,true,true, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
insidx++; // Reset iterator to skip USE side split
|
|
} else { // LRP
|
|
// COPY UP HERE - WITH DEF - NO CISC SPILL
|
|
maxlrg = split_USE(def,b,n,inpidx,maxlrg,true,false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
// Flag this lift-up in a low-pressure block as
|
|
// already-spilled, so if it spills again it will
|
|
// spill hard (instead of not spilling hard and
|
|
// coalescing away).
|
|
set_was_spilled(n->in(inpidx));
|
|
// Since this is a new DEF, update Reachblock & UP
|
|
Reachblock[slidx] = n->in(inpidx);
|
|
UPblock[slidx] = true;
|
|
insidx++; // Reset iterator to skip USE side split
|
|
}
|
|
} // End else DOWN
|
|
} // End dup != uup
|
|
} // End if Spill USE
|
|
} // End For All Inputs
|
|
} // End If not nullcheck
|
|
|
|
// ********** Handle DEFS **********
|
|
// DEFS either Split DOWN in HRP regions or when the LRG is bound, or
|
|
// just reset the Reaches info in LRP regions. DEFS must always update
|
|
// UP info.
|
|
if( deflrg.reg() >= LRG::SPILL_REG ) { // Spilled?
|
|
uint slidx = lrg2reach[defidx];
|
|
// Add to defs list for later assignment of new live range number
|
|
defs->push(n);
|
|
// Set a flag on the Node indicating it has already spilled.
|
|
// Only do it for capacity spills not conflict spills.
|
|
if( !deflrg._direct_conflict )
|
|
set_was_spilled(n);
|
|
assert(!n->is_Phi(),"Cannot insert Phi into DEFS list");
|
|
// Grab UP info for DEF
|
|
const RegMask &dmask = n->out_RegMask();
|
|
bool defup = dmask.is_UP();
|
|
// Only split at Def if this is a HRP block or bound (and spilled once)
|
|
if( !n->rematerialize() &&
|
|
(((dmask.is_bound1() || dmask.is_bound2() || dmask.is_misaligned_Pair()) &&
|
|
(deflrg._direct_conflict || deflrg._must_spill)) ||
|
|
// Check for LRG being up in a register and we are inside a high
|
|
// pressure area. Spill it down immediately.
|
|
(defup && is_high_pressure(b,&deflrg,insidx))) ) {
|
|
assert( !n->rematerialize(), "" );
|
|
assert( !n->is_SpillCopy(), "" );
|
|
// Do a split at the def site.
|
|
maxlrg = split_DEF( n, b, insidx, maxlrg, Reachblock, debug_defs, splits, slidx );
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
// Split DEF's Down
|
|
UPblock[slidx] = 0;
|
|
#ifndef PRODUCT
|
|
// DEBUG
|
|
if( trace_spilling() ) {
|
|
tty->print("\nNew Split DOWN DEF of Spill Idx ");
|
|
tty->print("%d, UP %d:\n",slidx,false);
|
|
n->dump();
|
|
}
|
|
#endif
|
|
}
|
|
else { // Neither bound nor HRP, must be LRP
|
|
// otherwise, just record the def
|
|
Reachblock[slidx] = n;
|
|
// UP should come from the outRegmask() of the DEF
|
|
UPblock[slidx] = defup;
|
|
// Update debug list of reaching down definitions, kill if DEF is UP
|
|
debug_defs[slidx] = defup ? NULL : n;
|
|
#ifndef PRODUCT
|
|
// DEBUG
|
|
if( trace_spilling() ) {
|
|
tty->print("\nNew DEF of Spill Idx ");
|
|
tty->print("%d, UP %d:\n",slidx,defup);
|
|
n->dump();
|
|
}
|
|
#endif
|
|
} // End else LRP
|
|
} // End if spill def
|
|
|
|
// ********** Split Left Over Mem-Mem Moves **********
|
|
// Check for mem-mem copies and split them now. Do not do this
|
|
// to copies about to be spilled; they will be Split shortly.
|
|
if( copyidx ) {
|
|
Node *use = n->in(copyidx);
|
|
uint useidx = Find_id(use);
|
|
if( useidx < _maxlrg && // This is not a new split
|
|
OptoReg::is_stack(deflrg.reg()) &&
|
|
deflrg.reg() < LRG::SPILL_REG ) { // And DEF is from stack
|
|
LRG &uselrg = lrgs(useidx);
|
|
if( OptoReg::is_stack(uselrg.reg()) &&
|
|
uselrg.reg() < LRG::SPILL_REG && // USE is from stack
|
|
deflrg.reg() != uselrg.reg() ) { // Not trivially removed
|
|
uint def_ideal_reg = Matcher::base2reg[n->bottom_type()->base()];
|
|
const RegMask &def_rm = *Matcher::idealreg2regmask[def_ideal_reg];
|
|
const RegMask &use_rm = n->in_RegMask(copyidx);
|
|
if( def_rm.overlap(use_rm) && n->is_SpillCopy() ) { // Bug 4707800, 'n' may be a storeSSL
|
|
if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) { // Check when generating nodes
|
|
return 0;
|
|
}
|
|
Node *spill = new (C) MachSpillCopyNode(use,use_rm,def_rm);
|
|
n->set_req(copyidx,spill);
|
|
n->as_MachSpillCopy()->set_in_RegMask(def_rm);
|
|
// Put the spill just before the copy
|
|
insert_proj( b, insidx++, spill, maxlrg++ );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // End For All Instructions in Block - Non-PHI Pass
|
|
|
|
// Check if each LRG is live out of this block so as not to propagate
|
|
// beyond the last use of a LRG.
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ ) {
|
|
uint defidx = lidxs.at(slidx);
|
|
IndexSet *liveout = _live->live(b);
|
|
if( !liveout->member(defidx) ) {
|
|
#ifdef ASSERT
|
|
// The index defidx is not live. Check the liveout array to ensure that
|
|
// it contains no members which compress to defidx. Finding such an
|
|
// instance may be a case to add liveout adjustment in compress_uf_map().
|
|
// See 5063219.
|
|
uint member;
|
|
IndexSetIterator isi(liveout);
|
|
while ((member = isi.next()) != 0) {
|
|
assert(defidx != Find_const(member), "Live out member has not been compressed");
|
|
}
|
|
#endif
|
|
Reachblock[slidx] = NULL;
|
|
} else {
|
|
assert(Reachblock[slidx] != NULL,"No reaching definition for liveout value");
|
|
}
|
|
}
|
|
#ifndef PRODUCT
|
|
if( trace_spilling() )
|
|
b->dump();
|
|
#endif
|
|
} // End For All Blocks
|
|
|
|
//----------PASS 2----------
|
|
// Reset all DEF live range numbers here
|
|
for( insidx = 0; insidx < defs->size(); insidx++ ) {
|
|
// Grab the def
|
|
n1 = defs->at(insidx);
|
|
// Set new lidx for DEF
|
|
new_lrg(n1, maxlrg++);
|
|
}
|
|
//----------Phi Node Splitting----------
|
|
// Clean up a phi here, and assign a new live range number
|
|
// Cycle through this block's predecessors, collecting Reaches
|
|
// info for each spilled LRG and update edges.
|
|
// Walk the phis list to patch inputs, split phis, and name phis
|
|
for( insidx = 0; insidx < phis->size(); insidx++ ) {
|
|
Node *phi = phis->at(insidx);
|
|
assert(phi->is_Phi(),"This list must only contain Phi Nodes");
|
|
Block *b = _cfg._bbs[phi->_idx];
|
|
// Grab the live range number
|
|
uint lidx = Find_id(phi);
|
|
uint slidx = lrg2reach[lidx];
|
|
// Update node to lidx map
|
|
new_lrg(phi, maxlrg++);
|
|
// Get PASS1's up/down decision for the block.
|
|
int phi_up = !!UP_entry[slidx]->test(b->_pre_order);
|
|
|
|
// Force down if double-spilling live range
|
|
if( lrgs(lidx)._was_spilled1 )
|
|
phi_up = false;
|
|
|
|
// When splitting a Phi we an split it normal or "inverted".
|
|
// An inverted split makes the splits target the Phi's UP/DOWN
|
|
// sense inverted; then the Phi is followed by a final def-side
|
|
// split to invert back. It changes which blocks the spill code
|
|
// goes in.
|
|
|
|
// Walk the predecessor blocks and assign the reaching def to the Phi.
|
|
// Split Phi nodes by placing USE side splits wherever the reaching
|
|
// DEF has the wrong UP/DOWN value.
|
|
for( uint i = 1; i < b->num_preds(); i++ ) {
|
|
// Get predecessor block pre-order number
|
|
Block *pred = _cfg._bbs[b->pred(i)->_idx];
|
|
pidx = pred->_pre_order;
|
|
// Grab reaching def
|
|
Node *def = Reaches[pidx][slidx];
|
|
assert( def, "must have reaching def" );
|
|
// If input up/down sense and reg-pressure DISagree
|
|
if( def->rematerialize() ) {
|
|
def = split_Rematerialize( def, pred, pred->end_idx(), maxlrg, splits, slidx, lrg2reach, Reachblock, false );
|
|
if( !def ) return 0; // Bail out
|
|
}
|
|
// Update the Phi's input edge array
|
|
phi->set_req(i,def);
|
|
// Grab the UP/DOWN sense for the input
|
|
u1 = UP[pidx][slidx];
|
|
if( u1 != (phi_up != 0)) {
|
|
maxlrg = split_USE(def, b, phi, i, maxlrg, !u1, false, splits,slidx);
|
|
// If it wasn't split bail
|
|
if (!maxlrg) {
|
|
return 0;
|
|
}
|
|
}
|
|
} // End for all inputs to the Phi
|
|
} // End for all Phi Nodes
|
|
// Update _maxlrg to save Union asserts
|
|
_maxlrg = maxlrg;
|
|
|
|
|
|
//----------PASS 3----------
|
|
// Pass over all Phi's to union the live ranges
|
|
for( insidx = 0; insidx < phis->size(); insidx++ ) {
|
|
Node *phi = phis->at(insidx);
|
|
assert(phi->is_Phi(),"This list must only contain Phi Nodes");
|
|
// Walk all inputs to Phi and Union input live range with Phi live range
|
|
for( uint i = 1; i < phi->req(); i++ ) {
|
|
// Grab the input node
|
|
Node *n = phi->in(i);
|
|
assert( n, "" );
|
|
uint lidx = Find(n);
|
|
uint pidx = Find(phi);
|
|
if( lidx < pidx )
|
|
Union(n, phi);
|
|
else if( lidx > pidx )
|
|
Union(phi, n);
|
|
} // End for all inputs to the Phi Node
|
|
} // End for all Phi Nodes
|
|
// Now union all two address instructions
|
|
for( insidx = 0; insidx < defs->size(); insidx++ ) {
|
|
// Grab the def
|
|
n1 = defs->at(insidx);
|
|
// Set new lidx for DEF & handle 2-addr instructions
|
|
if( n1->is_Mach() && ((twoidx = n1->as_Mach()->two_adr()) != 0) ) {
|
|
assert( Find(n1->in(twoidx)) < maxlrg,"Assigning bad live range index");
|
|
// Union the input and output live ranges
|
|
uint lr1 = Find(n1);
|
|
uint lr2 = Find(n1->in(twoidx));
|
|
if( lr1 < lr2 )
|
|
Union(n1, n1->in(twoidx));
|
|
else if( lr1 > lr2 )
|
|
Union(n1->in(twoidx), n1);
|
|
} // End if two address
|
|
} // End for all defs
|
|
// DEBUG
|
|
#ifdef ASSERT
|
|
// Validate all live range index assignments
|
|
for( bidx = 0; bidx < _cfg._num_blocks; bidx++ ) {
|
|
b = _cfg._blocks[bidx];
|
|
for( insidx = 0; insidx <= b->end_idx(); insidx++ ) {
|
|
Node *n = b->_nodes[insidx];
|
|
uint defidx = Find(n);
|
|
assert(defidx < _maxlrg,"Bad live range index in Split");
|
|
assert(defidx < maxlrg,"Bad live range index in Split");
|
|
}
|
|
}
|
|
// Issue a warning if splitting made no progress
|
|
int noprogress = 0;
|
|
for( slidx = 0; slidx < spill_cnt; slidx++ ) {
|
|
if( PrintOpto && WizardMode && splits.at(slidx) == 0 ) {
|
|
tty->print_cr("Failed to split live range %d", lidxs.at(slidx));
|
|
//BREAKPOINT;
|
|
}
|
|
else {
|
|
noprogress++;
|
|
}
|
|
}
|
|
if(!noprogress) {
|
|
tty->print_cr("Failed to make progress in Split");
|
|
//BREAKPOINT;
|
|
}
|
|
#endif
|
|
// Return updated count of live ranges
|
|
return maxlrg;
|
|
}
|