16526e000e
Reviewed-by: ihse, alanb, roland, coleenp, iveresov, kvn, kbarrett
588 lines
20 KiB
C++
588 lines
20 KiB
C++
/*
|
|
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef CPU_X86_VM_NATIVEINST_X86_HPP
|
|
#define CPU_X86_VM_NATIVEINST_X86_HPP
|
|
|
|
#include "asm/assembler.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "utilities/top.hpp"
|
|
|
|
// We have interfaces for the following instructions:
|
|
// - NativeInstruction
|
|
// - - NativeCall
|
|
// - - NativeMovConstReg
|
|
// - - NativeMovConstRegPatching
|
|
// - - NativeMovRegMem
|
|
// - - NativeMovRegMemPatching
|
|
// - - NativeJump
|
|
// - - NativeIllegalOpCode
|
|
// - - NativeGeneralJump
|
|
// - - NativeReturn
|
|
// - - NativeReturnX (return with argument)
|
|
// - - NativePushConst
|
|
// - - NativeTstRegMem
|
|
|
|
// The base class for different kinds of native instruction abstractions.
|
|
// Provides the primitive operations to manipulate code relative to this.
|
|
|
|
class NativeInstruction VALUE_OBJ_CLASS_SPEC {
|
|
friend class Relocation;
|
|
|
|
public:
|
|
enum Intel_specific_constants {
|
|
nop_instruction_code = 0x90,
|
|
nop_instruction_size = 1
|
|
};
|
|
|
|
bool is_nop() { return ubyte_at(0) == nop_instruction_code; }
|
|
inline bool is_call();
|
|
inline bool is_call_reg();
|
|
inline bool is_illegal();
|
|
inline bool is_return();
|
|
inline bool is_jump();
|
|
inline bool is_cond_jump();
|
|
inline bool is_safepoint_poll();
|
|
inline bool is_mov_literal64();
|
|
|
|
protected:
|
|
address addr_at(int offset) const { return address(this) + offset; }
|
|
|
|
s_char sbyte_at(int offset) const { return *(s_char*) addr_at(offset); }
|
|
u_char ubyte_at(int offset) const { return *(u_char*) addr_at(offset); }
|
|
|
|
jint int_at(int offset) const { return *(jint*) addr_at(offset); }
|
|
|
|
intptr_t ptr_at(int offset) const { return *(intptr_t*) addr_at(offset); }
|
|
|
|
oop oop_at (int offset) const { return *(oop*) addr_at(offset); }
|
|
|
|
|
|
void set_char_at(int offset, char c) { *addr_at(offset) = (u_char)c; wrote(offset); }
|
|
void set_int_at(int offset, jint i) { *(jint*)addr_at(offset) = i; wrote(offset); }
|
|
void set_ptr_at (int offset, intptr_t ptr) { *(intptr_t*) addr_at(offset) = ptr; wrote(offset); }
|
|
void set_oop_at (int offset, oop o) { *(oop*) addr_at(offset) = o; wrote(offset); }
|
|
|
|
// This doesn't really do anything on Intel, but it is the place where
|
|
// cache invalidation belongs, generically:
|
|
void wrote(int offset);
|
|
|
|
public:
|
|
|
|
// unit test stuff
|
|
static void test() {} // override for testing
|
|
|
|
inline friend NativeInstruction* nativeInstruction_at(address address);
|
|
};
|
|
|
|
inline NativeInstruction* nativeInstruction_at(address address) {
|
|
NativeInstruction* inst = (NativeInstruction*)address;
|
|
#ifdef ASSERT
|
|
//inst->verify();
|
|
#endif
|
|
return inst;
|
|
}
|
|
|
|
inline NativeCall* nativeCall_at(address address);
|
|
// The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
|
|
// instructions (used to manipulate inline caches, primitive & dll calls, etc.).
|
|
|
|
class NativeCall: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xE8,
|
|
instruction_size = 5,
|
|
instruction_offset = 0,
|
|
displacement_offset = 1,
|
|
return_address_offset = 5
|
|
};
|
|
|
|
enum { cache_line_size = BytesPerWord }; // conservative estimate!
|
|
|
|
address instruction_address() const { return addr_at(instruction_offset); }
|
|
address next_instruction_address() const { return addr_at(return_address_offset); }
|
|
int displacement() const { return (jint) int_at(displacement_offset); }
|
|
address displacement_address() const { return addr_at(displacement_offset); }
|
|
address return_address() const { return addr_at(return_address_offset); }
|
|
address destination() const;
|
|
void set_destination(address dest) {
|
|
#ifdef AMD64
|
|
assert((labs((intptr_t) dest - (intptr_t) return_address()) &
|
|
0xFFFFFFFF00000000) == 0,
|
|
"must be 32bit offset");
|
|
#endif // AMD64
|
|
set_int_at(displacement_offset, dest - return_address());
|
|
}
|
|
void set_destination_mt_safe(address dest);
|
|
|
|
void verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
|
|
void verify();
|
|
void print();
|
|
|
|
// Creation
|
|
inline friend NativeCall* nativeCall_at(address address);
|
|
inline friend NativeCall* nativeCall_before(address return_address);
|
|
|
|
static bool is_call_at(address instr) {
|
|
return ((*instr) & 0xFF) == NativeCall::instruction_code;
|
|
}
|
|
|
|
static bool is_call_before(address return_address) {
|
|
return is_call_at(return_address - NativeCall::return_address_offset);
|
|
}
|
|
|
|
static bool is_call_to(address instr, address target) {
|
|
return nativeInstruction_at(instr)->is_call() &&
|
|
nativeCall_at(instr)->destination() == target;
|
|
}
|
|
|
|
// MT-safe patching of a call instruction.
|
|
static void insert(address code_pos, address entry);
|
|
|
|
static void replace_mt_safe(address instr_addr, address code_buffer);
|
|
};
|
|
|
|
inline NativeCall* nativeCall_at(address address) {
|
|
NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
|
|
#ifdef ASSERT
|
|
call->verify();
|
|
#endif
|
|
return call;
|
|
}
|
|
|
|
inline NativeCall* nativeCall_before(address return_address) {
|
|
NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
|
|
#ifdef ASSERT
|
|
call->verify();
|
|
#endif
|
|
return call;
|
|
}
|
|
|
|
class NativeCallReg: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xFF,
|
|
instruction_offset = 0,
|
|
return_address_offset_norex = 2,
|
|
return_address_offset_rex = 3
|
|
};
|
|
|
|
int next_instruction_offset() const {
|
|
if (ubyte_at(0) == NativeCallReg::instruction_code) {
|
|
return return_address_offset_norex;
|
|
} else {
|
|
return return_address_offset_rex;
|
|
}
|
|
}
|
|
};
|
|
|
|
// An interface for accessing/manipulating native mov reg, imm32 instructions.
|
|
// (used to manipulate inlined 32bit data dll calls, etc.)
|
|
class NativeMovConstReg: public NativeInstruction {
|
|
#ifdef AMD64
|
|
static const bool has_rex = true;
|
|
static const int rex_size = 1;
|
|
#else
|
|
static const bool has_rex = false;
|
|
static const int rex_size = 0;
|
|
#endif // AMD64
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xB8,
|
|
instruction_size = 1 + rex_size + wordSize,
|
|
instruction_offset = 0,
|
|
data_offset = 1 + rex_size,
|
|
next_instruction_offset = instruction_size,
|
|
register_mask = 0x07
|
|
};
|
|
|
|
address instruction_address() const { return addr_at(instruction_offset); }
|
|
address next_instruction_address() const { return addr_at(next_instruction_offset); }
|
|
intptr_t data() const { return ptr_at(data_offset); }
|
|
void set_data(intptr_t x) { set_ptr_at(data_offset, x); }
|
|
|
|
void verify();
|
|
void print();
|
|
|
|
// unit test stuff
|
|
static void test() {}
|
|
|
|
// Creation
|
|
inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
|
|
inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
|
|
};
|
|
|
|
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
|
|
NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
|
|
#ifdef ASSERT
|
|
test->verify();
|
|
#endif
|
|
return test;
|
|
}
|
|
|
|
inline NativeMovConstReg* nativeMovConstReg_before(address address) {
|
|
NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
|
|
#ifdef ASSERT
|
|
test->verify();
|
|
#endif
|
|
return test;
|
|
}
|
|
|
|
class NativeMovConstRegPatching: public NativeMovConstReg {
|
|
private:
|
|
friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
|
|
NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
|
|
#ifdef ASSERT
|
|
test->verify();
|
|
#endif
|
|
return test;
|
|
}
|
|
};
|
|
|
|
// An interface for accessing/manipulating native moves of the form:
|
|
// mov[b/w/l/q] [reg + offset], reg (instruction_code_reg2mem)
|
|
// mov[b/w/l/q] reg, [reg+offset] (instruction_code_mem2reg
|
|
// mov[s/z]x[w/b/q] [reg + offset], reg
|
|
// fld_s [reg+offset]
|
|
// fld_d [reg+offset]
|
|
// fstp_s [reg + offset]
|
|
// fstp_d [reg + offset]
|
|
// mov_literal64 scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
|
|
//
|
|
// Warning: These routines must be able to handle any instruction sequences
|
|
// that are generated as a result of the load/store byte,word,long
|
|
// macros. For example: The load_unsigned_byte instruction generates
|
|
// an xor reg,reg inst prior to generating the movb instruction. This
|
|
// class must skip the xor instruction.
|
|
|
|
class NativeMovRegMem: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_prefix_wide_lo = Assembler::REX,
|
|
instruction_prefix_wide_hi = Assembler::REX_WRXB,
|
|
instruction_code_xor = 0x33,
|
|
instruction_extended_prefix = 0x0F,
|
|
instruction_code_mem2reg_movslq = 0x63,
|
|
instruction_code_mem2reg_movzxb = 0xB6,
|
|
instruction_code_mem2reg_movsxb = 0xBE,
|
|
instruction_code_mem2reg_movzxw = 0xB7,
|
|
instruction_code_mem2reg_movsxw = 0xBF,
|
|
instruction_operandsize_prefix = 0x66,
|
|
instruction_code_reg2mem = 0x89,
|
|
instruction_code_mem2reg = 0x8b,
|
|
instruction_code_reg2memb = 0x88,
|
|
instruction_code_mem2regb = 0x8a,
|
|
instruction_code_float_s = 0xd9,
|
|
instruction_code_float_d = 0xdd,
|
|
instruction_code_long_volatile = 0xdf,
|
|
instruction_code_xmm_ss_prefix = 0xf3,
|
|
instruction_code_xmm_sd_prefix = 0xf2,
|
|
instruction_code_xmm_code = 0x0f,
|
|
instruction_code_xmm_load = 0x10,
|
|
instruction_code_xmm_store = 0x11,
|
|
instruction_code_xmm_lpd = 0x12,
|
|
|
|
instruction_VEX_prefix_2bytes = Assembler::VEX_2bytes,
|
|
instruction_VEX_prefix_3bytes = Assembler::VEX_3bytes,
|
|
|
|
instruction_size = 4,
|
|
instruction_offset = 0,
|
|
data_offset = 2,
|
|
next_instruction_offset = 4
|
|
};
|
|
|
|
// helper
|
|
int instruction_start() const;
|
|
|
|
address instruction_address() const;
|
|
|
|
address next_instruction_address() const;
|
|
|
|
int offset() const;
|
|
|
|
void set_offset(int x);
|
|
|
|
void add_offset_in_bytes(int add_offset) { set_offset ( ( offset() + add_offset ) ); }
|
|
|
|
void verify();
|
|
void print ();
|
|
|
|
// unit test stuff
|
|
static void test() {}
|
|
|
|
private:
|
|
inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
|
|
};
|
|
|
|
inline NativeMovRegMem* nativeMovRegMem_at (address address) {
|
|
NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
|
|
#ifdef ASSERT
|
|
test->verify();
|
|
#endif
|
|
return test;
|
|
}
|
|
|
|
|
|
// An interface for accessing/manipulating native leal instruction of form:
|
|
// leal reg, [reg + offset]
|
|
|
|
class NativeLoadAddress: public NativeMovRegMem {
|
|
#ifdef AMD64
|
|
static const bool has_rex = true;
|
|
static const int rex_size = 1;
|
|
#else
|
|
static const bool has_rex = false;
|
|
static const int rex_size = 0;
|
|
#endif // AMD64
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_prefix_wide = Assembler::REX_W,
|
|
instruction_prefix_wide_extended = Assembler::REX_WB,
|
|
lea_instruction_code = 0x8D,
|
|
mov64_instruction_code = 0xB8
|
|
};
|
|
|
|
void verify();
|
|
void print ();
|
|
|
|
// unit test stuff
|
|
static void test() {}
|
|
|
|
private:
|
|
friend NativeLoadAddress* nativeLoadAddress_at (address address) {
|
|
NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
|
|
#ifdef ASSERT
|
|
test->verify();
|
|
#endif
|
|
return test;
|
|
}
|
|
};
|
|
|
|
// jump rel32off
|
|
|
|
class NativeJump: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xe9,
|
|
instruction_size = 5,
|
|
instruction_offset = 0,
|
|
data_offset = 1,
|
|
next_instruction_offset = 5
|
|
};
|
|
|
|
address instruction_address() const { return addr_at(instruction_offset); }
|
|
address next_instruction_address() const { return addr_at(next_instruction_offset); }
|
|
address jump_destination() const {
|
|
address dest = (int_at(data_offset)+next_instruction_address());
|
|
// 32bit used to encode unresolved jmp as jmp -1
|
|
// 64bit can't produce this so it used jump to self.
|
|
// Now 32bit and 64bit use jump to self as the unresolved address
|
|
// which the inline cache code (and relocs) know about
|
|
|
|
// return -1 if jump to self
|
|
dest = (dest == (address) this) ? (address) -1 : dest;
|
|
return dest;
|
|
}
|
|
|
|
void set_jump_destination(address dest) {
|
|
intptr_t val = dest - next_instruction_address();
|
|
if (dest == (address) -1) {
|
|
val = -5; // jump to self
|
|
}
|
|
#ifdef AMD64
|
|
assert((labs(val) & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
|
|
#endif // AMD64
|
|
set_int_at(data_offset, (jint)val);
|
|
}
|
|
|
|
// Creation
|
|
inline friend NativeJump* nativeJump_at(address address);
|
|
|
|
void verify();
|
|
|
|
// Unit testing stuff
|
|
static void test() {}
|
|
|
|
// Insertion of native jump instruction
|
|
static void insert(address code_pos, address entry);
|
|
// MT-safe insertion of native jump at verified method entry
|
|
static void check_verified_entry_alignment(address entry, address verified_entry);
|
|
static void patch_verified_entry(address entry, address verified_entry, address dest);
|
|
};
|
|
|
|
inline NativeJump* nativeJump_at(address address) {
|
|
NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
|
|
#ifdef ASSERT
|
|
jump->verify();
|
|
#endif
|
|
return jump;
|
|
}
|
|
|
|
// Handles all kinds of jump on Intel. Long/far, conditional/unconditional
|
|
class NativeGeneralJump: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
// Constants does not apply, since the lengths and offsets depends on the actual jump
|
|
// used
|
|
// Instruction codes:
|
|
// Unconditional jumps: 0xE9 (rel32off), 0xEB (rel8off)
|
|
// Conditional jumps: 0x0F8x (rel32off), 0x7x (rel8off)
|
|
unconditional_long_jump = 0xe9,
|
|
unconditional_short_jump = 0xeb,
|
|
instruction_size = 5
|
|
};
|
|
|
|
address instruction_address() const { return addr_at(0); }
|
|
address jump_destination() const;
|
|
|
|
// Creation
|
|
inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
|
|
|
|
// Insertion of native general jump instruction
|
|
static void insert_unconditional(address code_pos, address entry);
|
|
static void replace_mt_safe(address instr_addr, address code_buffer);
|
|
|
|
void verify();
|
|
};
|
|
|
|
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
|
|
NativeGeneralJump* jump = (NativeGeneralJump*)(address);
|
|
debug_only(jump->verify();)
|
|
return jump;
|
|
}
|
|
|
|
class NativePopReg : public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0x58,
|
|
instruction_size = 1,
|
|
instruction_offset = 0,
|
|
data_offset = 1,
|
|
next_instruction_offset = 1
|
|
};
|
|
|
|
// Insert a pop instruction
|
|
static void insert(address code_pos, Register reg);
|
|
};
|
|
|
|
|
|
class NativeIllegalInstruction: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0x0B0F, // Real byte order is: 0x0F, 0x0B
|
|
instruction_size = 2,
|
|
instruction_offset = 0,
|
|
next_instruction_offset = 2
|
|
};
|
|
|
|
// Insert illegal opcode as specific address
|
|
static void insert(address code_pos);
|
|
};
|
|
|
|
// return instruction that does not pop values of the stack
|
|
class NativeReturn: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xC3,
|
|
instruction_size = 1,
|
|
instruction_offset = 0,
|
|
next_instruction_offset = 1
|
|
};
|
|
};
|
|
|
|
// return instruction that does pop values of the stack
|
|
class NativeReturnX: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_code = 0xC2,
|
|
instruction_size = 2,
|
|
instruction_offset = 0,
|
|
next_instruction_offset = 2
|
|
};
|
|
};
|
|
|
|
// Simple test vs memory
|
|
class NativeTstRegMem: public NativeInstruction {
|
|
public:
|
|
enum Intel_specific_constants {
|
|
instruction_rex_prefix_mask = 0xF0,
|
|
instruction_rex_prefix = Assembler::REX,
|
|
instruction_code_memXregl = 0x85,
|
|
modrm_mask = 0x38, // select reg from the ModRM byte
|
|
modrm_reg = 0x00 // rax
|
|
};
|
|
};
|
|
|
|
inline bool NativeInstruction::is_illegal() { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
|
|
inline bool NativeInstruction::is_call() { return ubyte_at(0) == NativeCall::instruction_code; }
|
|
inline bool NativeInstruction::is_call_reg() { return ubyte_at(0) == NativeCallReg::instruction_code ||
|
|
(ubyte_at(1) == NativeCallReg::instruction_code &&
|
|
(ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
|
|
inline bool NativeInstruction::is_return() { return ubyte_at(0) == NativeReturn::instruction_code ||
|
|
ubyte_at(0) == NativeReturnX::instruction_code; }
|
|
inline bool NativeInstruction::is_jump() { return ubyte_at(0) == NativeJump::instruction_code ||
|
|
ubyte_at(0) == 0xEB; /* short jump */ }
|
|
inline bool NativeInstruction::is_cond_jump() { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
|
|
(ubyte_at(0) & 0xF0) == 0x70; /* short jump */ }
|
|
inline bool NativeInstruction::is_safepoint_poll() {
|
|
#ifdef AMD64
|
|
// Try decoding a near safepoint first:
|
|
if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
|
|
ubyte_at(1) == 0x05) { // 00 rax 101
|
|
address fault = addr_at(6) + int_at(2);
|
|
NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
|
|
return os::is_poll_address(fault);
|
|
}
|
|
// Now try decoding a far safepoint:
|
|
// two cases, depending on the choice of the base register in the address.
|
|
if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
|
|
ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
|
|
(ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
|
|
ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
|
|
(ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
|
|
NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
|
|
return true;
|
|
}
|
|
return false;
|
|
#else
|
|
return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
|
|
ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
|
|
(ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
|
|
(os::is_poll_address((address)int_at(2)));
|
|
#endif // AMD64
|
|
}
|
|
|
|
inline bool NativeInstruction::is_mov_literal64() {
|
|
#ifdef AMD64
|
|
return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
|
|
(ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
|
|
#else
|
|
return false;
|
|
#endif // AMD64
|
|
}
|
|
|
|
#endif // CPU_X86_VM_NATIVEINST_X86_HPP
|