865413485d
Created new "new" operator for CHeapObj that allows malloc to fail without causing fatal error. Also replaced "HeapAllocate" with "os::malloc" in decoder code to allow decoder to handle low memory scenario. Reviewed-by: coleenp, dholmes
660 lines
22 KiB
C++
660 lines
22 KiB
C++
/*
|
|
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/task.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
#ifdef TARGET_OS_FAMILY_linux
|
|
# include "os_linux.inline.hpp"
|
|
#endif
|
|
#ifdef TARGET_OS_FAMILY_solaris
|
|
# include "os_solaris.inline.hpp"
|
|
#endif
|
|
#ifdef TARGET_OS_FAMILY_windows
|
|
# include "os_windows.inline.hpp"
|
|
#endif
|
|
|
|
void* CHeapObj::operator new(size_t size){
|
|
return (void *) AllocateHeap(size, "CHeapObj-new");
|
|
}
|
|
|
|
void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant) {
|
|
char* p = (char*) os::malloc(size);
|
|
#ifdef ASSERT
|
|
if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
void CHeapObj::operator delete(void* p){
|
|
FreeHeap(p);
|
|
}
|
|
|
|
void* StackObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
|
|
void StackObj::operator delete(void* p) { ShouldNotCallThis(); };
|
|
void* _ValueObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
|
|
void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); };
|
|
|
|
void* ResourceObj::operator new(size_t size, allocation_type type) {
|
|
address res;
|
|
switch (type) {
|
|
case C_HEAP:
|
|
res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
|
|
DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
|
|
break;
|
|
case RESOURCE_AREA:
|
|
// new(size) sets allocation type RESOURCE_AREA.
|
|
res = (address)operator new(size);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void ResourceObj::operator delete(void* p) {
|
|
assert(((ResourceObj *)p)->allocated_on_C_heap(),
|
|
"delete only allowed for C_HEAP objects");
|
|
DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
|
|
FreeHeap(p);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void ResourceObj::set_allocation_type(address res, allocation_type type) {
|
|
// Set allocation type in the resource object
|
|
uintptr_t allocation = (uintptr_t)res;
|
|
assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
|
|
assert(type <= allocation_mask, "incorrect allocation type");
|
|
ResourceObj* resobj = (ResourceObj *)res;
|
|
resobj->_allocation_t[0] = ~(allocation + type);
|
|
if (type != STACK_OR_EMBEDDED) {
|
|
// Called from operator new() and CollectionSetChooser(),
|
|
// set verification value.
|
|
resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
|
|
}
|
|
}
|
|
|
|
ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
|
|
assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
|
|
return (allocation_type)((~_allocation_t[0]) & allocation_mask);
|
|
}
|
|
|
|
bool ResourceObj::is_type_set() const {
|
|
allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
|
|
return get_allocation_type() == type &&
|
|
(_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
|
|
}
|
|
|
|
ResourceObj::ResourceObj() { // default constructor
|
|
if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
|
|
// Operator new() is not called for allocations
|
|
// on stack and for embedded objects.
|
|
set_allocation_type((address)this, STACK_OR_EMBEDDED);
|
|
} else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
|
|
// For some reason we got a value which resembles
|
|
// an embedded or stack object (operator new() does not
|
|
// set such type). Keep it since it is valid value
|
|
// (even if it was garbage).
|
|
// Ignore garbage in other fields.
|
|
} else if (is_type_set()) {
|
|
// Operator new() was called and type was set.
|
|
assert(!allocated_on_stack(),
|
|
err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
|
|
this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
|
|
} else {
|
|
// Operator new() was not called.
|
|
// Assume that it is embedded or stack object.
|
|
set_allocation_type((address)this, STACK_OR_EMBEDDED);
|
|
}
|
|
_allocation_t[1] = 0; // Zap verification value
|
|
}
|
|
|
|
ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
|
|
// Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
|
|
// Note: garbage may resembles valid value.
|
|
assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
|
|
err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
|
|
this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
|
|
set_allocation_type((address)this, STACK_OR_EMBEDDED);
|
|
_allocation_t[1] = 0; // Zap verification value
|
|
}
|
|
|
|
ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
|
|
// Used in InlineTree::ok_to_inline() for WarmCallInfo.
|
|
assert(allocated_on_stack(),
|
|
err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
|
|
this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
|
|
// Keep current _allocation_t value;
|
|
return *this;
|
|
}
|
|
|
|
ResourceObj::~ResourceObj() {
|
|
// allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
|
|
if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
|
|
_allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
|
|
void trace_heap_malloc(size_t size, const char* name, void* p) {
|
|
// A lock is not needed here - tty uses a lock internally
|
|
tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
|
|
}
|
|
|
|
|
|
void trace_heap_free(void* p) {
|
|
// A lock is not needed here - tty uses a lock internally
|
|
tty->print_cr("Heap free " INTPTR_FORMAT, p);
|
|
}
|
|
|
|
bool warn_new_operator = false; // see vm_main
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// ChunkPool implementation
|
|
|
|
// MT-safe pool of chunks to reduce malloc/free thrashing
|
|
// NB: not using Mutex because pools are used before Threads are initialized
|
|
class ChunkPool {
|
|
Chunk* _first; // first cached Chunk; its first word points to next chunk
|
|
size_t _num_chunks; // number of unused chunks in pool
|
|
size_t _num_used; // number of chunks currently checked out
|
|
const size_t _size; // size of each chunk (must be uniform)
|
|
|
|
// Our three static pools
|
|
static ChunkPool* _large_pool;
|
|
static ChunkPool* _medium_pool;
|
|
static ChunkPool* _small_pool;
|
|
|
|
// return first element or null
|
|
void* get_first() {
|
|
Chunk* c = _first;
|
|
if (_first) {
|
|
_first = _first->next();
|
|
_num_chunks--;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
public:
|
|
// All chunks in a ChunkPool has the same size
|
|
ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
|
|
|
|
// Allocate a new chunk from the pool (might expand the pool)
|
|
void* allocate(size_t bytes) {
|
|
assert(bytes == _size, "bad size");
|
|
void* p = NULL;
|
|
{ ThreadCritical tc;
|
|
_num_used++;
|
|
p = get_first();
|
|
if (p == NULL) p = os::malloc(bytes);
|
|
}
|
|
if (p == NULL)
|
|
vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
|
|
|
|
return p;
|
|
}
|
|
|
|
// Return a chunk to the pool
|
|
void free(Chunk* chunk) {
|
|
assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
|
|
ThreadCritical tc;
|
|
_num_used--;
|
|
|
|
// Add chunk to list
|
|
chunk->set_next(_first);
|
|
_first = chunk;
|
|
_num_chunks++;
|
|
}
|
|
|
|
// Prune the pool
|
|
void free_all_but(size_t n) {
|
|
// if we have more than n chunks, free all of them
|
|
ThreadCritical tc;
|
|
if (_num_chunks > n) {
|
|
// free chunks at end of queue, for better locality
|
|
Chunk* cur = _first;
|
|
for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
|
|
|
|
if (cur != NULL) {
|
|
Chunk* next = cur->next();
|
|
cur->set_next(NULL);
|
|
cur = next;
|
|
|
|
// Free all remaining chunks
|
|
while(cur != NULL) {
|
|
next = cur->next();
|
|
os::free(cur);
|
|
_num_chunks--;
|
|
cur = next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Accessors to preallocated pool's
|
|
static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
|
|
static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
|
|
static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
|
|
|
|
static void initialize() {
|
|
_large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
|
|
_medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
|
|
_small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
|
|
}
|
|
|
|
static void clean() {
|
|
enum { BlocksToKeep = 5 };
|
|
_small_pool->free_all_but(BlocksToKeep);
|
|
_medium_pool->free_all_but(BlocksToKeep);
|
|
_large_pool->free_all_but(BlocksToKeep);
|
|
}
|
|
};
|
|
|
|
ChunkPool* ChunkPool::_large_pool = NULL;
|
|
ChunkPool* ChunkPool::_medium_pool = NULL;
|
|
ChunkPool* ChunkPool::_small_pool = NULL;
|
|
|
|
void chunkpool_init() {
|
|
ChunkPool::initialize();
|
|
}
|
|
|
|
void
|
|
Chunk::clean_chunk_pool() {
|
|
ChunkPool::clean();
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// ChunkPoolCleaner implementation
|
|
//
|
|
|
|
class ChunkPoolCleaner : public PeriodicTask {
|
|
enum { CleaningInterval = 5000 }; // cleaning interval in ms
|
|
|
|
public:
|
|
ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
|
|
void task() {
|
|
ChunkPool::clean();
|
|
}
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// Chunk implementation
|
|
|
|
void* Chunk::operator new(size_t requested_size, size_t length) {
|
|
// requested_size is equal to sizeof(Chunk) but in order for the arena
|
|
// allocations to come out aligned as expected the size must be aligned
|
|
// to expected arean alignment.
|
|
// expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
|
|
assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
|
|
size_t bytes = ARENA_ALIGN(requested_size) + length;
|
|
switch (length) {
|
|
case Chunk::size: return ChunkPool::large_pool()->allocate(bytes);
|
|
case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
|
|
case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes);
|
|
default: {
|
|
void *p = os::malloc(bytes);
|
|
if (p == NULL)
|
|
vm_exit_out_of_memory(bytes, "Chunk::new");
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Chunk::operator delete(void* p) {
|
|
Chunk* c = (Chunk*)p;
|
|
switch (c->length()) {
|
|
case Chunk::size: ChunkPool::large_pool()->free(c); break;
|
|
case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
|
|
case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
|
|
default: os::free(c);
|
|
}
|
|
}
|
|
|
|
Chunk::Chunk(size_t length) : _len(length) {
|
|
_next = NULL; // Chain on the linked list
|
|
}
|
|
|
|
|
|
void Chunk::chop() {
|
|
Chunk *k = this;
|
|
while( k ) {
|
|
Chunk *tmp = k->next();
|
|
// clear out this chunk (to detect allocation bugs)
|
|
if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
|
|
delete k; // Free chunk (was malloc'd)
|
|
k = tmp;
|
|
}
|
|
}
|
|
|
|
void Chunk::next_chop() {
|
|
_next->chop();
|
|
_next = NULL;
|
|
}
|
|
|
|
|
|
void Chunk::start_chunk_pool_cleaner_task() {
|
|
#ifdef ASSERT
|
|
static bool task_created = false;
|
|
assert(!task_created, "should not start chuck pool cleaner twice");
|
|
task_created = true;
|
|
#endif
|
|
ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
|
|
cleaner->enroll();
|
|
}
|
|
|
|
//------------------------------Arena------------------------------------------
|
|
|
|
Arena::Arena(size_t init_size) {
|
|
size_t round_size = (sizeof (char *)) - 1;
|
|
init_size = (init_size+round_size) & ~round_size;
|
|
_first = _chunk = new (init_size) Chunk(init_size);
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
set_size_in_bytes(init_size);
|
|
}
|
|
|
|
Arena::Arena() {
|
|
_first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
set_size_in_bytes(Chunk::init_size);
|
|
}
|
|
|
|
Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
|
|
set_size_in_bytes(a->size_in_bytes());
|
|
}
|
|
|
|
Arena *Arena::move_contents(Arena *copy) {
|
|
copy->destruct_contents();
|
|
copy->_chunk = _chunk;
|
|
copy->_hwm = _hwm;
|
|
copy->_max = _max;
|
|
copy->_first = _first;
|
|
copy->set_size_in_bytes(size_in_bytes());
|
|
// Destroy original arena
|
|
reset();
|
|
return copy; // Return Arena with contents
|
|
}
|
|
|
|
Arena::~Arena() {
|
|
destruct_contents();
|
|
}
|
|
|
|
// Destroy this arenas contents and reset to empty
|
|
void Arena::destruct_contents() {
|
|
if (UseMallocOnly && _first != NULL) {
|
|
char* end = _first->next() ? _first->top() : _hwm;
|
|
free_malloced_objects(_first, _first->bottom(), end, _hwm);
|
|
}
|
|
_first->chop();
|
|
reset();
|
|
}
|
|
|
|
|
|
// Total of all Chunks in arena
|
|
size_t Arena::used() const {
|
|
size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
|
|
register Chunk *k = _first;
|
|
while( k != _chunk) { // Whilst have Chunks in a row
|
|
sum += k->length(); // Total size of this Chunk
|
|
k = k->next(); // Bump along to next Chunk
|
|
}
|
|
return sum; // Return total consumed space.
|
|
}
|
|
|
|
void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
|
|
vm_exit_out_of_memory(sz, whence);
|
|
}
|
|
|
|
// Grow a new Chunk
|
|
void* Arena::grow( size_t x ) {
|
|
// Get minimal required size. Either real big, or even bigger for giant objs
|
|
size_t len = MAX2(x, (size_t) Chunk::size);
|
|
|
|
Chunk *k = _chunk; // Get filled-up chunk address
|
|
_chunk = new (len) Chunk(len);
|
|
|
|
if (_chunk == NULL) {
|
|
signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
|
|
}
|
|
|
|
if (k) k->set_next(_chunk); // Append new chunk to end of linked list
|
|
else _first = _chunk;
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
set_size_in_bytes(size_in_bytes() + len);
|
|
void* result = _hwm;
|
|
_hwm += x;
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// Reallocate storage in Arena.
|
|
void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
|
|
assert(new_size >= 0, "bad size");
|
|
if (new_size == 0) return NULL;
|
|
#ifdef ASSERT
|
|
if (UseMallocOnly) {
|
|
// always allocate a new object (otherwise we'll free this one twice)
|
|
char* copy = (char*)Amalloc(new_size);
|
|
size_t n = MIN2(old_size, new_size);
|
|
if (n > 0) memcpy(copy, old_ptr, n);
|
|
Afree(old_ptr,old_size); // Mostly done to keep stats accurate
|
|
return copy;
|
|
}
|
|
#endif
|
|
char *c_old = (char*)old_ptr; // Handy name
|
|
// Stupid fast special case
|
|
if( new_size <= old_size ) { // Shrink in-place
|
|
if( c_old+old_size == _hwm) // Attempt to free the excess bytes
|
|
_hwm = c_old+new_size; // Adjust hwm
|
|
return c_old;
|
|
}
|
|
|
|
// make sure that new_size is legal
|
|
size_t corrected_new_size = ARENA_ALIGN(new_size);
|
|
|
|
// See if we can resize in-place
|
|
if( (c_old+old_size == _hwm) && // Adjusting recent thing
|
|
(c_old+corrected_new_size <= _max) ) { // Still fits where it sits
|
|
_hwm = c_old+corrected_new_size; // Adjust hwm
|
|
return c_old; // Return old pointer
|
|
}
|
|
|
|
// Oops, got to relocate guts
|
|
void *new_ptr = Amalloc(new_size);
|
|
memcpy( new_ptr, c_old, old_size );
|
|
Afree(c_old,old_size); // Mostly done to keep stats accurate
|
|
return new_ptr;
|
|
}
|
|
|
|
|
|
// Determine if pointer belongs to this Arena or not.
|
|
bool Arena::contains( const void *ptr ) const {
|
|
#ifdef ASSERT
|
|
if (UseMallocOnly) {
|
|
// really slow, but not easy to make fast
|
|
if (_chunk == NULL) return false;
|
|
char** bottom = (char**)_chunk->bottom();
|
|
for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
|
|
if (*p == ptr) return true;
|
|
}
|
|
for (Chunk *c = _first; c != NULL; c = c->next()) {
|
|
if (c == _chunk) continue; // current chunk has been processed
|
|
char** bottom = (char**)c->bottom();
|
|
for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
|
|
if (*p == ptr) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
|
|
return true; // Check for in this chunk
|
|
for (Chunk *c = _first; c; c = c->next()) {
|
|
if (c == _chunk) continue; // current chunk has been processed
|
|
if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
|
|
return true; // Check for every chunk in Arena
|
|
}
|
|
}
|
|
return false; // Not in any Chunk, so not in Arena
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
void* Arena::malloc(size_t size) {
|
|
assert(UseMallocOnly, "shouldn't call");
|
|
// use malloc, but save pointer in res. area for later freeing
|
|
char** save = (char**)internal_malloc_4(sizeof(char*));
|
|
return (*save = (char*)os::malloc(size));
|
|
}
|
|
|
|
// for debugging with UseMallocOnly
|
|
void* Arena::internal_malloc_4(size_t x) {
|
|
assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
|
|
check_for_overflow(x, "Arena::internal_malloc_4");
|
|
if (_hwm + x > _max) {
|
|
return grow(x);
|
|
} else {
|
|
char *old = _hwm;
|
|
_hwm += x;
|
|
return old;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// Non-product code
|
|
|
|
#ifndef PRODUCT
|
|
// The global operator new should never be called since it will usually indicate
|
|
// a memory leak. Use CHeapObj as the base class of such objects to make it explicit
|
|
// that they're allocated on the C heap.
|
|
// Commented out in product version to avoid conflicts with third-party C++ native code.
|
|
// %% note this is causing a problem on solaris debug build. the global
|
|
// new is being called from jdk source and causing data corruption.
|
|
// src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
|
|
// define CATCH_OPERATOR_NEW_USAGE if you want to use this.
|
|
#ifdef CATCH_OPERATOR_NEW_USAGE
|
|
void* operator new(size_t size){
|
|
static bool warned = false;
|
|
if (!warned && warn_new_operator)
|
|
warning("should not call global (default) operator new");
|
|
warned = true;
|
|
return (void *) AllocateHeap(size, "global operator new");
|
|
}
|
|
#endif
|
|
|
|
void AllocatedObj::print() const { print_on(tty); }
|
|
void AllocatedObj::print_value() const { print_value_on(tty); }
|
|
|
|
void AllocatedObj::print_on(outputStream* st) const {
|
|
st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
|
|
}
|
|
|
|
void AllocatedObj::print_value_on(outputStream* st) const {
|
|
st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
|
|
}
|
|
|
|
julong Arena::_bytes_allocated = 0;
|
|
|
|
void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
|
|
|
|
AllocStats::AllocStats() {
|
|
start_mallocs = os::num_mallocs;
|
|
start_frees = os::num_frees;
|
|
start_malloc_bytes = os::alloc_bytes;
|
|
start_mfree_bytes = os::free_bytes;
|
|
start_res_bytes = Arena::_bytes_allocated;
|
|
}
|
|
|
|
julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
|
|
julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
|
|
julong AllocStats::num_frees() { return os::num_frees - start_frees; }
|
|
julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; }
|
|
julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
|
|
void AllocStats::print() {
|
|
tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
|
|
UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
|
|
num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
|
|
}
|
|
|
|
|
|
// debugging code
|
|
inline void Arena::free_all(char** start, char** end) {
|
|
for (char** p = start; p < end; p++) if (*p) os::free(*p);
|
|
}
|
|
|
|
void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
|
|
assert(UseMallocOnly, "should not call");
|
|
// free all objects malloced since resource mark was created; resource area
|
|
// contains their addresses
|
|
if (chunk->next()) {
|
|
// this chunk is full, and some others too
|
|
for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
|
|
char* top = c->top();
|
|
if (c->next() == NULL) {
|
|
top = hwm2; // last junk is only used up to hwm2
|
|
assert(c->contains(hwm2), "bad hwm2");
|
|
}
|
|
free_all((char**)c->bottom(), (char**)top);
|
|
}
|
|
assert(chunk->contains(hwm), "bad hwm");
|
|
assert(chunk->contains(max), "bad max");
|
|
free_all((char**)hwm, (char**)max);
|
|
} else {
|
|
// this chunk was partially used
|
|
assert(chunk->contains(hwm), "bad hwm");
|
|
assert(chunk->contains(hwm2), "bad hwm2");
|
|
free_all((char**)hwm, (char**)hwm2);
|
|
}
|
|
}
|
|
|
|
|
|
ReallocMark::ReallocMark() {
|
|
#ifdef ASSERT
|
|
Thread *thread = ThreadLocalStorage::get_thread_slow();
|
|
_nesting = thread->resource_area()->nesting();
|
|
#endif
|
|
}
|
|
|
|
void ReallocMark::check() {
|
|
#ifdef ASSERT
|
|
if (_nesting != Thread::current()->resource_area()->nesting()) {
|
|
fatal("allocation bug: array could grow within nested ResourceMark");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // Non-product
|