5cef85023b
Files that use ResourceMark are missing the include of resourceArea.hpp Reviewed-by: tschatzl, jwilhelm
1773 lines
61 KiB
C++
1773 lines
61 KiB
C++
/*
|
|
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "compiler/compilerDirectives.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "utilities/copy.hpp"
|
|
|
|
void Block_Array::grow( uint i ) {
|
|
assert(i >= Max(), "must be an overflow");
|
|
debug_only(_limit = i+1);
|
|
if( i < _size ) return;
|
|
if( !_size ) {
|
|
_size = 1;
|
|
_blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
|
|
_blocks[0] = NULL;
|
|
}
|
|
uint old = _size;
|
|
while( i >= _size ) _size <<= 1; // Double to fit
|
|
_blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
|
|
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
|
|
}
|
|
|
|
void Block_List::remove(uint i) {
|
|
assert(i < _cnt, "index out of bounds");
|
|
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
|
|
pop(); // shrink list by one block
|
|
}
|
|
|
|
void Block_List::insert(uint i, Block *b) {
|
|
push(b); // grow list by one block
|
|
Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
|
|
_blocks[i] = b;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void Block_List::print() {
|
|
for (uint i=0; i < size(); i++) {
|
|
tty->print("B%d ", _blocks[i]->_pre_order);
|
|
}
|
|
tty->print("size = %d\n", size());
|
|
}
|
|
#endif
|
|
|
|
uint Block::code_alignment() {
|
|
// Check for Root block
|
|
if (_pre_order == 0) return CodeEntryAlignment;
|
|
// Check for Start block
|
|
if (_pre_order == 1) return InteriorEntryAlignment;
|
|
// Check for loop alignment
|
|
if (has_loop_alignment()) return loop_alignment();
|
|
|
|
return relocInfo::addr_unit(); // no particular alignment
|
|
}
|
|
|
|
uint Block::compute_loop_alignment() {
|
|
Node *h = head();
|
|
int unit_sz = relocInfo::addr_unit();
|
|
if (h->is_Loop() && h->as_Loop()->is_inner_loop()) {
|
|
// Pre- and post-loops have low trip count so do not bother with
|
|
// NOPs for align loop head. The constants are hidden from tuning
|
|
// but only because my "divide by 4" heuristic surely gets nearly
|
|
// all possible gain (a "do not align at all" heuristic has a
|
|
// chance of getting a really tiny gain).
|
|
if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
|
|
h->as_CountedLoop()->is_post_loop())) {
|
|
return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
|
|
}
|
|
// Loops with low backedge frequency should not be aligned.
|
|
Node *n = h->in(LoopNode::LoopBackControl)->in(0);
|
|
if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
|
|
return unit_sz; // Loop does not loop, more often than not!
|
|
}
|
|
return OptoLoopAlignment; // Otherwise align loop head
|
|
}
|
|
|
|
return unit_sz; // no particular alignment
|
|
}
|
|
|
|
// Compute the size of first 'inst_cnt' instructions in this block.
|
|
// Return the number of instructions left to compute if the block has
|
|
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
|
|
// exceeds OptoLoopAlignment.
|
|
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
|
|
PhaseRegAlloc* ra) {
|
|
uint last_inst = number_of_nodes();
|
|
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
|
|
uint inst_size = get_node(j)->size(ra);
|
|
if( inst_size > 0 ) {
|
|
inst_cnt--;
|
|
uint sz = sum_size + inst_size;
|
|
if( sz <= (uint)OptoLoopAlignment ) {
|
|
// Compute size of instructions which fit into fetch buffer only
|
|
// since all inst_cnt instructions will not fit even if we align them.
|
|
sum_size = sz;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return inst_cnt;
|
|
}
|
|
|
|
uint Block::find_node( const Node *n ) const {
|
|
for( uint i = 0; i < number_of_nodes(); i++ ) {
|
|
if( get_node(i) == n )
|
|
return i;
|
|
}
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
// Find and remove n from block list
|
|
void Block::find_remove( const Node *n ) {
|
|
remove_node(find_node(n));
|
|
}
|
|
|
|
bool Block::contains(const Node *n) const {
|
|
return _nodes.contains(n);
|
|
}
|
|
|
|
// Return empty status of a block. Empty blocks contain only the head, other
|
|
// ideal nodes, and an optional trailing goto.
|
|
int Block::is_Empty() const {
|
|
|
|
// Root or start block is not considered empty
|
|
if (head()->is_Root() || head()->is_Start()) {
|
|
return not_empty;
|
|
}
|
|
|
|
int success_result = completely_empty;
|
|
int end_idx = number_of_nodes() - 1;
|
|
|
|
// Check for ending goto
|
|
if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
|
|
success_result = empty_with_goto;
|
|
end_idx--;
|
|
}
|
|
|
|
// Unreachable blocks are considered empty
|
|
if (num_preds() <= 1) {
|
|
return success_result;
|
|
}
|
|
|
|
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes
|
|
// turn directly into code, because only MachNodes have non-trivial
|
|
// emit() functions.
|
|
while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
|
|
end_idx--;
|
|
}
|
|
|
|
// No room for any interesting instructions?
|
|
if (end_idx == 0) {
|
|
return success_result;
|
|
}
|
|
|
|
return not_empty;
|
|
}
|
|
|
|
// Return true if the block's code implies that it is likely to be
|
|
// executed infrequently. Check to see if the block ends in a Halt or
|
|
// a low probability call.
|
|
bool Block::has_uncommon_code() const {
|
|
Node* en = end();
|
|
|
|
if (en->is_MachGoto())
|
|
en = en->in(0);
|
|
if (en->is_Catch())
|
|
en = en->in(0);
|
|
if (en->is_MachProj() && en->in(0)->is_MachCall()) {
|
|
MachCallNode* call = en->in(0)->as_MachCall();
|
|
if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
|
|
// This is true for slow-path stubs like new_{instance,array},
|
|
// slow_arraycopy, complete_monitor_locking, uncommon_trap.
|
|
// The magic number corresponds to the probability of an uncommon_trap,
|
|
// even though it is a count not a probability.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
|
|
return op == Op_Halt;
|
|
}
|
|
|
|
// True if block is low enough frequency or guarded by a test which
|
|
// mostly does not go here.
|
|
bool PhaseCFG::is_uncommon(const Block* block) {
|
|
// Initial blocks must never be moved, so are never uncommon.
|
|
if (block->head()->is_Root() || block->head()->is_Start()) return false;
|
|
|
|
// Check for way-low freq
|
|
if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
|
|
|
|
// Look for code shape indicating uncommon_trap or slow path
|
|
if (block->has_uncommon_code()) return true;
|
|
|
|
const float epsilon = 0.05f;
|
|
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
|
|
uint uncommon_preds = 0;
|
|
uint freq_preds = 0;
|
|
uint uncommon_for_freq_preds = 0;
|
|
|
|
for( uint i=1; i< block->num_preds(); i++ ) {
|
|
Block* guard = get_block_for_node(block->pred(i));
|
|
// Check to see if this block follows its guard 1 time out of 10000
|
|
// or less.
|
|
//
|
|
// See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
|
|
// we intend to be "uncommon", such as slow-path TLE allocation,
|
|
// predicted call failure, and uncommon trap triggers.
|
|
//
|
|
// Use an epsilon value of 5% to allow for variability in frequency
|
|
// predictions and floating point calculations. The net effect is
|
|
// that guard_factor is set to 9500.
|
|
//
|
|
// Ignore low-frequency blocks.
|
|
// The next check is (guard->_freq < 1.e-5 * 9500.).
|
|
if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
|
|
uncommon_preds++;
|
|
} else {
|
|
freq_preds++;
|
|
if(block->_freq < guard->_freq * guard_factor ) {
|
|
uncommon_for_freq_preds++;
|
|
}
|
|
}
|
|
}
|
|
if( block->num_preds() > 1 &&
|
|
// The block is uncommon if all preds are uncommon or
|
|
(uncommon_preds == (block->num_preds()-1) ||
|
|
// it is uncommon for all frequent preds.
|
|
uncommon_for_freq_preds == freq_preds) ) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void Block::dump_bidx(const Block* orig, outputStream* st) const {
|
|
if (_pre_order) st->print("B%d",_pre_order);
|
|
else st->print("N%d", head()->_idx);
|
|
|
|
if (Verbose && orig != this) {
|
|
// Dump the original block's idx
|
|
st->print(" (");
|
|
orig->dump_bidx(orig, st);
|
|
st->print(")");
|
|
}
|
|
}
|
|
|
|
void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
|
|
if (is_connector()) {
|
|
for (uint i=1; i<num_preds(); i++) {
|
|
Block *p = cfg->get_block_for_node(pred(i));
|
|
p->dump_pred(cfg, orig, st);
|
|
}
|
|
} else {
|
|
dump_bidx(orig, st);
|
|
st->print(" ");
|
|
}
|
|
}
|
|
|
|
void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
|
|
// Print the basic block
|
|
dump_bidx(this, st);
|
|
st->print(": #\t");
|
|
|
|
// Print the incoming CFG edges and the outgoing CFG edges
|
|
for( uint i=0; i<_num_succs; i++ ) {
|
|
non_connector_successor(i)->dump_bidx(_succs[i], st);
|
|
st->print(" ");
|
|
}
|
|
st->print("<- ");
|
|
if( head()->is_block_start() ) {
|
|
for (uint i=1; i<num_preds(); i++) {
|
|
Node *s = pred(i);
|
|
if (cfg != NULL) {
|
|
Block *p = cfg->get_block_for_node(s);
|
|
p->dump_pred(cfg, p, st);
|
|
} else {
|
|
while (!s->is_block_start())
|
|
s = s->in(0);
|
|
st->print("N%d ", s->_idx );
|
|
}
|
|
}
|
|
} else {
|
|
st->print("BLOCK HEAD IS JUNK ");
|
|
}
|
|
|
|
// Print loop, if any
|
|
const Block *bhead = this; // Head of self-loop
|
|
Node *bh = bhead->head();
|
|
|
|
if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
|
|
LoopNode *loop = bh->as_Loop();
|
|
const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
|
|
while (bx->is_connector()) {
|
|
bx = cfg->get_block_for_node(bx->pred(1));
|
|
}
|
|
st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
|
|
// Dump any loop-specific bits, especially for CountedLoops.
|
|
loop->dump_spec(st);
|
|
} else if (has_loop_alignment()) {
|
|
st->print(" top-of-loop");
|
|
}
|
|
st->print(" Freq: %g",_freq);
|
|
if( Verbose || WizardMode ) {
|
|
st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
|
|
st->print(" RegPressure: %d",_reg_pressure);
|
|
st->print(" IHRP Index: %d",_ihrp_index);
|
|
st->print(" FRegPressure: %d",_freg_pressure);
|
|
st->print(" FHRP Index: %d",_fhrp_index);
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
void Block::dump() const {
|
|
dump(NULL);
|
|
}
|
|
|
|
void Block::dump(const PhaseCFG* cfg) const {
|
|
dump_head(cfg);
|
|
for (uint i=0; i< number_of_nodes(); i++) {
|
|
get_node(i)->dump();
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
#endif
|
|
|
|
PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
|
|
: Phase(CFG)
|
|
, _block_arena(arena)
|
|
, _regalloc(NULL)
|
|
, _scheduling_for_pressure(false)
|
|
, _root(root)
|
|
, _matcher(matcher)
|
|
, _node_to_block_mapping(arena)
|
|
, _node_latency(NULL)
|
|
#ifndef PRODUCT
|
|
, _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
|
|
#endif
|
|
#ifdef ASSERT
|
|
, _raw_oops(arena)
|
|
#endif
|
|
{
|
|
ResourceMark rm;
|
|
// I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
|
|
// then Match it into a machine-specific Node. Then clone the machine
|
|
// Node on demand.
|
|
Node *x = new GotoNode(NULL);
|
|
x->init_req(0, x);
|
|
_goto = matcher.match_tree(x);
|
|
assert(_goto != NULL, "");
|
|
_goto->set_req(0,_goto);
|
|
|
|
// Build the CFG in Reverse Post Order
|
|
_number_of_blocks = build_cfg();
|
|
_root_block = get_block_for_node(_root);
|
|
}
|
|
|
|
// Build a proper looking CFG. Make every block begin with either a StartNode
|
|
// or a RegionNode. Make every block end with either a Goto, If or Return.
|
|
// The RootNode both starts and ends it's own block. Do this with a recursive
|
|
// backwards walk over the control edges.
|
|
uint PhaseCFG::build_cfg() {
|
|
Arena *a = Thread::current()->resource_area();
|
|
VectorSet visited(a);
|
|
|
|
// Allocate stack with enough space to avoid frequent realloc
|
|
Node_Stack nstack(a, C->live_nodes() >> 1);
|
|
nstack.push(_root, 0);
|
|
uint sum = 0; // Counter for blocks
|
|
|
|
while (nstack.is_nonempty()) {
|
|
// node and in's index from stack's top
|
|
// 'np' is _root (see above) or RegionNode, StartNode: we push on stack
|
|
// only nodes which point to the start of basic block (see below).
|
|
Node *np = nstack.node();
|
|
// idx > 0, except for the first node (_root) pushed on stack
|
|
// at the beginning when idx == 0.
|
|
// We will use the condition (idx == 0) later to end the build.
|
|
uint idx = nstack.index();
|
|
Node *proj = np->in(idx);
|
|
const Node *x = proj->is_block_proj();
|
|
// Does the block end with a proper block-ending Node? One of Return,
|
|
// If or Goto? (This check should be done for visited nodes also).
|
|
if (x == NULL) { // Does not end right...
|
|
Node *g = _goto->clone(); // Force it to end in a Goto
|
|
g->set_req(0, proj);
|
|
np->set_req(idx, g);
|
|
x = proj = g;
|
|
}
|
|
if (!visited.test_set(x->_idx)) { // Visit this block once
|
|
// Skip any control-pinned middle'in stuff
|
|
Node *p = proj;
|
|
do {
|
|
proj = p; // Update pointer to last Control
|
|
p = p->in(0); // Move control forward
|
|
} while( !p->is_block_proj() &&
|
|
!p->is_block_start() );
|
|
// Make the block begin with one of Region or StartNode.
|
|
if( !p->is_block_start() ) {
|
|
RegionNode *r = new RegionNode( 2 );
|
|
r->init_req(1, p); // Insert RegionNode in the way
|
|
proj->set_req(0, r); // Insert RegionNode in the way
|
|
p = r;
|
|
}
|
|
// 'p' now points to the start of this basic block
|
|
|
|
// Put self in array of basic blocks
|
|
Block *bb = new (_block_arena) Block(_block_arena, p);
|
|
map_node_to_block(p, bb);
|
|
map_node_to_block(x, bb);
|
|
if( x != p ) { // Only for root is x == p
|
|
bb->push_node((Node*)x);
|
|
}
|
|
// Now handle predecessors
|
|
++sum; // Count 1 for self block
|
|
uint cnt = bb->num_preds();
|
|
for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
|
|
Node *prevproj = p->in(i); // Get prior input
|
|
assert( !prevproj->is_Con(), "dead input not removed" );
|
|
// Check to see if p->in(i) is a "control-dependent" CFG edge -
|
|
// i.e., it splits at the source (via an IF or SWITCH) and merges
|
|
// at the destination (via a many-input Region).
|
|
// This breaks critical edges. The RegionNode to start the block
|
|
// will be added when <p,i> is pulled off the node stack
|
|
if ( cnt > 2 ) { // Merging many things?
|
|
assert( prevproj== bb->pred(i),"");
|
|
if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
|
|
// Force a block on the control-dependent edge
|
|
Node *g = _goto->clone(); // Force it to end in a Goto
|
|
g->set_req(0,prevproj);
|
|
p->set_req(i,g);
|
|
}
|
|
}
|
|
nstack.push(p, i); // 'p' is RegionNode or StartNode
|
|
}
|
|
} else { // Post-processing visited nodes
|
|
nstack.pop(); // remove node from stack
|
|
// Check if it the fist node pushed on stack at the beginning.
|
|
if (idx == 0) break; // end of the build
|
|
// Find predecessor basic block
|
|
Block *pb = get_block_for_node(x);
|
|
// Insert into nodes array, if not already there
|
|
if (!has_block(proj)) {
|
|
assert( x != proj, "" );
|
|
// Map basic block of projection
|
|
map_node_to_block(proj, pb);
|
|
pb->push_node(proj);
|
|
}
|
|
// Insert self as a child of my predecessor block
|
|
pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
|
|
assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
|
|
"too many control users, not a CFG?" );
|
|
}
|
|
}
|
|
// Return number of basic blocks for all children and self
|
|
return sum;
|
|
}
|
|
|
|
// Inserts a goto & corresponding basic block between
|
|
// block[block_no] and its succ_no'th successor block
|
|
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
|
|
// get block with block_no
|
|
assert(block_no < number_of_blocks(), "illegal block number");
|
|
Block* in = get_block(block_no);
|
|
// get successor block succ_no
|
|
assert(succ_no < in->_num_succs, "illegal successor number");
|
|
Block* out = in->_succs[succ_no];
|
|
// Compute frequency of the new block. Do this before inserting
|
|
// new block in case succ_prob() needs to infer the probability from
|
|
// surrounding blocks.
|
|
float freq = in->_freq * in->succ_prob(succ_no);
|
|
// get ProjNode corresponding to the succ_no'th successor of the in block
|
|
ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
|
|
// create region for basic block
|
|
RegionNode* region = new RegionNode(2);
|
|
region->init_req(1, proj);
|
|
// setup corresponding basic block
|
|
Block* block = new (_block_arena) Block(_block_arena, region);
|
|
map_node_to_block(region, block);
|
|
C->regalloc()->set_bad(region->_idx);
|
|
// add a goto node
|
|
Node* gto = _goto->clone(); // get a new goto node
|
|
gto->set_req(0, region);
|
|
// add it to the basic block
|
|
block->push_node(gto);
|
|
map_node_to_block(gto, block);
|
|
C->regalloc()->set_bad(gto->_idx);
|
|
// hook up successor block
|
|
block->_succs.map(block->_num_succs++, out);
|
|
// remap successor's predecessors if necessary
|
|
for (uint i = 1; i < out->num_preds(); i++) {
|
|
if (out->pred(i) == proj) out->head()->set_req(i, gto);
|
|
}
|
|
// remap predecessor's successor to new block
|
|
in->_succs.map(succ_no, block);
|
|
// Set the frequency of the new block
|
|
block->_freq = freq;
|
|
// add new basic block to basic block list
|
|
add_block_at(block_no + 1, block);
|
|
}
|
|
|
|
// Does this block end in a multiway branch that cannot have the default case
|
|
// flipped for another case?
|
|
static bool no_flip_branch(Block *b) {
|
|
int branch_idx = b->number_of_nodes() - b->_num_succs-1;
|
|
if (branch_idx < 1) {
|
|
return false;
|
|
}
|
|
Node *branch = b->get_node(branch_idx);
|
|
if (branch->is_Catch()) {
|
|
return true;
|
|
}
|
|
if (branch->is_Mach()) {
|
|
if (branch->is_MachNullCheck()) {
|
|
return true;
|
|
}
|
|
int iop = branch->as_Mach()->ideal_Opcode();
|
|
if (iop == Op_FastLock || iop == Op_FastUnlock) {
|
|
return true;
|
|
}
|
|
// Don't flip if branch has an implicit check.
|
|
if (branch->as_Mach()->is_TrapBasedCheckNode()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check for NeverBranch at block end. This needs to become a GOTO to the
|
|
// true target. NeverBranch are treated as a conditional branch that always
|
|
// goes the same direction for most of the optimizer and are used to give a
|
|
// fake exit path to infinite loops. At this late stage they need to turn
|
|
// into Goto's so that when you enter the infinite loop you indeed hang.
|
|
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
|
|
// Find true target
|
|
int end_idx = b->end_idx();
|
|
int idx = b->get_node(end_idx+1)->as_Proj()->_con;
|
|
Block *succ = b->_succs[idx];
|
|
Node* gto = _goto->clone(); // get a new goto node
|
|
gto->set_req(0, b->head());
|
|
Node *bp = b->get_node(end_idx);
|
|
b->map_node(gto, end_idx); // Slam over NeverBranch
|
|
map_node_to_block(gto, b);
|
|
C->regalloc()->set_bad(gto->_idx);
|
|
b->pop_node(); // Yank projections
|
|
b->pop_node(); // Yank projections
|
|
b->_succs.map(0,succ); // Map only successor
|
|
b->_num_succs = 1;
|
|
// remap successor's predecessors if necessary
|
|
uint j;
|
|
for( j = 1; j < succ->num_preds(); j++)
|
|
if( succ->pred(j)->in(0) == bp )
|
|
succ->head()->set_req(j, gto);
|
|
// Kill alternate exit path
|
|
Block *dead = b->_succs[1-idx];
|
|
for( j = 1; j < dead->num_preds(); j++)
|
|
if( dead->pred(j)->in(0) == bp )
|
|
break;
|
|
// Scan through block, yanking dead path from
|
|
// all regions and phis.
|
|
dead->head()->del_req(j);
|
|
for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
|
|
dead->get_node(k)->del_req(j);
|
|
}
|
|
|
|
// Helper function to move block bx to the slot following b_index. Return
|
|
// true if the move is successful, otherwise false
|
|
bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
|
|
if (bx == NULL) return false;
|
|
|
|
// Return false if bx is already scheduled.
|
|
uint bx_index = bx->_pre_order;
|
|
if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
|
|
return false;
|
|
}
|
|
|
|
// Find the current index of block bx on the block list
|
|
bx_index = b_index + 1;
|
|
while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
|
|
bx_index++;
|
|
}
|
|
assert(get_block(bx_index) == bx, "block not found");
|
|
|
|
// If the previous block conditionally falls into bx, return false,
|
|
// because moving bx will create an extra jump.
|
|
for(uint k = 1; k < bx->num_preds(); k++ ) {
|
|
Block* pred = get_block_for_node(bx->pred(k));
|
|
if (pred == get_block(bx_index - 1)) {
|
|
if (pred->_num_succs != 1) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reinsert bx just past block 'b'
|
|
_blocks.remove(bx_index);
|
|
_blocks.insert(b_index + 1, bx);
|
|
return true;
|
|
}
|
|
|
|
// Move empty and uncommon blocks to the end.
|
|
void PhaseCFG::move_to_end(Block *b, uint i) {
|
|
int e = b->is_Empty();
|
|
if (e != Block::not_empty) {
|
|
if (e == Block::empty_with_goto) {
|
|
// Remove the goto, but leave the block.
|
|
b->pop_node();
|
|
}
|
|
// Mark this block as a connector block, which will cause it to be
|
|
// ignored in certain functions such as non_connector_successor().
|
|
b->set_connector();
|
|
}
|
|
// Move the empty block to the end, and don't recheck.
|
|
_blocks.remove(i);
|
|
_blocks.push(b);
|
|
}
|
|
|
|
// Set loop alignment for every block
|
|
void PhaseCFG::set_loop_alignment() {
|
|
uint last = number_of_blocks();
|
|
assert(get_block(0) == get_root_block(), "");
|
|
|
|
for (uint i = 1; i < last; i++) {
|
|
Block* block = get_block(i);
|
|
if (block->head()->is_Loop()) {
|
|
block->set_loop_alignment(block);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
|
|
// to the end.
|
|
void PhaseCFG::remove_empty_blocks() {
|
|
// Move uncommon blocks to the end
|
|
uint last = number_of_blocks();
|
|
assert(get_block(0) == get_root_block(), "");
|
|
|
|
for (uint i = 1; i < last; i++) {
|
|
Block* block = get_block(i);
|
|
if (block->is_connector()) {
|
|
break;
|
|
}
|
|
|
|
// Check for NeverBranch at block end. This needs to become a GOTO to the
|
|
// true target. NeverBranch are treated as a conditional branch that
|
|
// always goes the same direction for most of the optimizer and are used
|
|
// to give a fake exit path to infinite loops. At this late stage they
|
|
// need to turn into Goto's so that when you enter the infinite loop you
|
|
// indeed hang.
|
|
if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
|
|
convert_NeverBranch_to_Goto(block);
|
|
}
|
|
|
|
// Look for uncommon blocks and move to end.
|
|
if (!C->do_freq_based_layout()) {
|
|
if (is_uncommon(block)) {
|
|
move_to_end(block, i);
|
|
last--; // No longer check for being uncommon!
|
|
if (no_flip_branch(block)) { // Fall-thru case must follow?
|
|
// Find the fall-thru block
|
|
block = get_block(i);
|
|
move_to_end(block, i);
|
|
last--;
|
|
}
|
|
// backup block counter post-increment
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move empty blocks to the end
|
|
last = number_of_blocks();
|
|
for (uint i = 1; i < last; i++) {
|
|
Block* block = get_block(i);
|
|
if (block->is_Empty() != Block::not_empty) {
|
|
move_to_end(block, i);
|
|
last--;
|
|
i--;
|
|
}
|
|
} // End of for all blocks
|
|
}
|
|
|
|
Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
|
|
// Trap based checks must fall through to the successor with
|
|
// PROB_ALWAYS.
|
|
// They should be an If with 2 successors.
|
|
assert(branch->is_MachIf(), "must be If");
|
|
assert(block->_num_succs == 2, "must have 2 successors");
|
|
|
|
// Get the If node and the projection for the first successor.
|
|
MachIfNode *iff = block->get_node(block->number_of_nodes()-3)->as_MachIf();
|
|
ProjNode *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
|
|
ProjNode *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
|
|
ProjNode *projt = (proj0->Opcode() == Op_IfTrue) ? proj0 : proj1;
|
|
ProjNode *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
|
|
|
|
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
|
|
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
|
|
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
|
|
|
|
ProjNode *proj_always;
|
|
ProjNode *proj_never;
|
|
// We must negate the branch if the implicit check doesn't follow
|
|
// the branch's TRUE path. Then, the new TRUE branch target will
|
|
// be the old FALSE branch target.
|
|
if (iff->_prob <= 2*PROB_NEVER) { // There are small rounding errors.
|
|
proj_never = projt;
|
|
proj_always = projf;
|
|
} else {
|
|
// We must negate the branch if the trap doesn't follow the
|
|
// branch's TRUE path. Then, the new TRUE branch target will
|
|
// be the old FALSE branch target.
|
|
proj_never = projf;
|
|
proj_always = projt;
|
|
iff->negate();
|
|
}
|
|
assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
|
|
// Map the successors properly
|
|
block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0))); // The target of the trap.
|
|
block->_succs.map(1, get_block_for_node(proj_always->raw_out(0))); // The fall through target.
|
|
|
|
if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
|
|
block->map_node(proj_never, block->number_of_nodes() - block->_num_succs + 0);
|
|
block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
|
|
}
|
|
|
|
// Place the fall through block after this block.
|
|
Block *bs1 = block->non_connector_successor(1);
|
|
if (bs1 != bnext && move_to_next(bs1, block_pos)) {
|
|
bnext = bs1;
|
|
}
|
|
// If the fall through block still is not the next block, insert a goto.
|
|
if (bs1 != bnext) {
|
|
insert_goto_at(block_pos, 1);
|
|
}
|
|
return bnext;
|
|
}
|
|
|
|
// Fix up the final control flow for basic blocks.
|
|
void PhaseCFG::fixup_flow() {
|
|
// Fixup final control flow for the blocks. Remove jump-to-next
|
|
// block. If neither arm of an IF follows the conditional branch, we
|
|
// have to add a second jump after the conditional. We place the
|
|
// TRUE branch target in succs[0] for both GOTOs and IFs.
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
block->_pre_order = i; // turn pre-order into block-index
|
|
|
|
// Connector blocks need no further processing.
|
|
if (block->is_connector()) {
|
|
assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
|
|
continue;
|
|
}
|
|
assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
|
|
|
|
Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
|
|
Block* bs0 = block->non_connector_successor(0);
|
|
|
|
// Check for multi-way branches where I cannot negate the test to
|
|
// exchange the true and false targets.
|
|
if (no_flip_branch(block)) {
|
|
// Find fall through case - if must fall into its target.
|
|
// Get the index of the branch's first successor.
|
|
int branch_idx = block->number_of_nodes() - block->_num_succs;
|
|
|
|
// The branch is 1 before the branch's first successor.
|
|
Node *branch = block->get_node(branch_idx-1);
|
|
|
|
// Handle no-flip branches which have implicit checks and which require
|
|
// special block ordering and individual semantics of the 'fall through
|
|
// case'.
|
|
if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
|
|
branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
|
|
bnext = fixup_trap_based_check(branch, block, i, bnext);
|
|
} else {
|
|
// Else, default handling for no-flip branches
|
|
for (uint j2 = 0; j2 < block->_num_succs; j2++) {
|
|
const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
|
|
if (p->_con == 0) {
|
|
// successor j2 is fall through case
|
|
if (block->non_connector_successor(j2) != bnext) {
|
|
// but it is not the next block => insert a goto
|
|
insert_goto_at(i, j2);
|
|
}
|
|
// Put taken branch in slot 0
|
|
if (j2 == 0 && block->_num_succs == 2) {
|
|
// Flip targets in succs map
|
|
Block *tbs0 = block->_succs[0];
|
|
Block *tbs1 = block->_succs[1];
|
|
block->_succs.map(0, tbs1);
|
|
block->_succs.map(1, tbs0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove all CatchProjs
|
|
for (uint j = 0; j < block->_num_succs; j++) {
|
|
block->pop_node();
|
|
}
|
|
|
|
} else if (block->_num_succs == 1) {
|
|
// Block ends in a Goto?
|
|
if (bnext == bs0) {
|
|
// We fall into next block; remove the Goto
|
|
block->pop_node();
|
|
}
|
|
|
|
} else if(block->_num_succs == 2) { // Block ends in a If?
|
|
// Get opcode of 1st projection (matches _succs[0])
|
|
// Note: Since this basic block has 2 exits, the last 2 nodes must
|
|
// be projections (in any order), the 3rd last node must be
|
|
// the IfNode (we have excluded other 2-way exits such as
|
|
// CatchNodes already).
|
|
MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach();
|
|
ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
|
|
ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
|
|
|
|
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
|
|
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
|
|
assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
|
|
|
|
Block* bs1 = block->non_connector_successor(1);
|
|
|
|
// Check for neither successor block following the current
|
|
// block ending in a conditional. If so, move one of the
|
|
// successors after the current one, provided that the
|
|
// successor was previously unscheduled, but moveable
|
|
// (i.e., all paths to it involve a branch).
|
|
if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
|
|
// Choose the more common successor based on the probability
|
|
// of the conditional branch.
|
|
Block* bx = bs0;
|
|
Block* by = bs1;
|
|
|
|
// _prob is the probability of taking the true path. Make
|
|
// p the probability of taking successor #1.
|
|
float p = iff->as_MachIf()->_prob;
|
|
if (proj0->Opcode() == Op_IfTrue) {
|
|
p = 1.0 - p;
|
|
}
|
|
|
|
// Prefer successor #1 if p > 0.5
|
|
if (p > PROB_FAIR) {
|
|
bx = bs1;
|
|
by = bs0;
|
|
}
|
|
|
|
// Attempt the more common successor first
|
|
if (move_to_next(bx, i)) {
|
|
bnext = bx;
|
|
} else if (move_to_next(by, i)) {
|
|
bnext = by;
|
|
}
|
|
}
|
|
|
|
// Check for conditional branching the wrong way. Negate
|
|
// conditional, if needed, so it falls into the following block
|
|
// and branches to the not-following block.
|
|
|
|
// Check for the next block being in succs[0]. We are going to branch
|
|
// to succs[0], so we want the fall-thru case as the next block in
|
|
// succs[1].
|
|
if (bnext == bs0) {
|
|
// Fall-thru case in succs[0], so flip targets in succs map
|
|
Block* tbs0 = block->_succs[0];
|
|
Block* tbs1 = block->_succs[1];
|
|
block->_succs.map(0, tbs1);
|
|
block->_succs.map(1, tbs0);
|
|
// Flip projection for each target
|
|
ProjNode* tmp = proj0;
|
|
proj0 = proj1;
|
|
proj1 = tmp;
|
|
|
|
} else if(bnext != bs1) {
|
|
// Need a double-branch
|
|
// The existing conditional branch need not change.
|
|
// Add a unconditional branch to the false target.
|
|
// Alas, it must appear in its own block and adding a
|
|
// block this late in the game is complicated. Sigh.
|
|
insert_goto_at(i, 1);
|
|
}
|
|
|
|
// Make sure we TRUE branch to the target
|
|
if (proj0->Opcode() == Op_IfFalse) {
|
|
iff->as_MachIf()->negate();
|
|
}
|
|
|
|
block->pop_node(); // Remove IfFalse & IfTrue projections
|
|
block->pop_node();
|
|
|
|
} else {
|
|
// Multi-exit block, e.g. a switch statement
|
|
// But we don't need to do anything here
|
|
}
|
|
} // End of for all blocks
|
|
}
|
|
|
|
|
|
// postalloc_expand: Expand nodes after register allocation.
|
|
//
|
|
// postalloc_expand has to be called after register allocation, just
|
|
// before output (i.e. scheduling). It only gets called if
|
|
// Matcher::require_postalloc_expand is true.
|
|
//
|
|
// Background:
|
|
//
|
|
// Nodes that are expandend (one compound node requiring several
|
|
// assembler instructions to be implemented split into two or more
|
|
// non-compound nodes) after register allocation are not as nice as
|
|
// the ones expanded before register allocation - they don't
|
|
// participate in optimizations as global code motion. But after
|
|
// register allocation we can expand nodes that use registers which
|
|
// are not spillable or registers that are not allocated, because the
|
|
// old compound node is simply replaced (in its location in the basic
|
|
// block) by a new subgraph which does not contain compound nodes any
|
|
// more. The scheduler called during output can later on process these
|
|
// non-compound nodes.
|
|
//
|
|
// Implementation:
|
|
//
|
|
// Nodes requiring postalloc expand are specified in the ad file by using
|
|
// a postalloc_expand statement instead of ins_encode. A postalloc_expand
|
|
// contains a single call to an encoding, as does an ins_encode
|
|
// statement. Instead of an emit() function a postalloc_expand() function
|
|
// is generated that doesn't emit assembler but creates a new
|
|
// subgraph. The code below calls this postalloc_expand function for each
|
|
// node with the appropriate attribute. This function returns the new
|
|
// nodes generated in an array passed in the call. The old node,
|
|
// potential MachTemps before and potential Projs after it then get
|
|
// disconnected and replaced by the new nodes. The instruction
|
|
// generating the result has to be the last one in the array. In
|
|
// general it is assumed that Projs after the node expanded are
|
|
// kills. These kills are not required any more after expanding as
|
|
// there are now explicitly visible def-use chains and the Projs are
|
|
// removed. This does not hold for calls: They do not only have
|
|
// kill-Projs but also Projs defining values. Therefore Projs after
|
|
// the node expanded are removed for all but for calls. If a node is
|
|
// to be reused, it must be added to the nodes list returned, and it
|
|
// will be added again.
|
|
//
|
|
// Implementing the postalloc_expand function for a node in an enc_class
|
|
// is rather tedious. It requires knowledge about many node details, as
|
|
// the nodes and the subgraph must be hand crafted. To simplify this,
|
|
// adlc generates some utility variables into the postalloc_expand function,
|
|
// e.g., holding the operands as specified by the postalloc_expand encoding
|
|
// specification, e.g.:
|
|
// * unsigned idx_<par_name> holding the index of the node in the ins
|
|
// * Node *n_<par_name> holding the node loaded from the ins
|
|
// * MachOpnd *op_<par_name> holding the corresponding operand
|
|
//
|
|
// The ordering of operands can not be determined by looking at a
|
|
// rule. Especially if a match rule matches several different trees,
|
|
// several nodes are generated from one instruct specification with
|
|
// different operand orderings. In this case the adlc generated
|
|
// variables are the only way to access the ins and operands
|
|
// deterministically.
|
|
//
|
|
// If assigning a register to a node that contains an oop, don't
|
|
// forget to call ra_->set_oop() for the node.
|
|
void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
|
|
GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
|
|
GrowableArray <Node *> remove(32);
|
|
GrowableArray <Node *> succs(32);
|
|
unsigned int max_idx = C->unique(); // Remember to distinguish new from old nodes.
|
|
DEBUG_ONLY(bool foundNode = false);
|
|
|
|
// for all blocks
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block *b = _blocks[i];
|
|
// For all instructions in the current block.
|
|
for (uint j = 0; j < b->number_of_nodes(); j++) {
|
|
Node *n = b->get_node(j);
|
|
if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
|
|
#ifdef ASSERT
|
|
if (TracePostallocExpand) {
|
|
if (!foundNode) {
|
|
foundNode = true;
|
|
tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
|
|
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
|
|
}
|
|
tty->print(" postalloc expanding "); n->dump();
|
|
if (Verbose) {
|
|
tty->print(" with ins:\n");
|
|
for (uint k = 0; k < n->len(); ++k) {
|
|
if (n->in(k)) { tty->print(" "); n->in(k)->dump(); }
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
new_nodes.clear();
|
|
// Collect nodes that have to be removed from the block later on.
|
|
uint req = n->req();
|
|
remove.clear();
|
|
for (uint k = 0; k < req; ++k) {
|
|
if (n->in(k) && n->in(k)->is_MachTemp()) {
|
|
remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
|
|
n->in(k)->del_req(0);
|
|
j--;
|
|
}
|
|
}
|
|
|
|
// Check whether we can allocate enough nodes. We set a fix limit for
|
|
// the size of postalloc expands with this.
|
|
uint unique_limit = C->unique() + 40;
|
|
if (unique_limit >= _ra->node_regs_max_index()) {
|
|
Compile::current()->record_failure("out of nodes in postalloc expand");
|
|
return;
|
|
}
|
|
|
|
// Emit (i.e. generate new nodes).
|
|
n->as_Mach()->postalloc_expand(&new_nodes, _ra);
|
|
|
|
assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
|
|
|
|
// Disconnect the inputs of the old node.
|
|
//
|
|
// We reuse MachSpillCopy nodes. If we need to expand them, there
|
|
// are many, so reusing pays off. If reused, the node already
|
|
// has the new ins. n must be the last node on new_nodes list.
|
|
if (!n->is_MachSpillCopy()) {
|
|
for (int k = req - 1; k >= 0; --k) {
|
|
n->del_req(k);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Check that all nodes have proper operands.
|
|
for (int k = 0; k < new_nodes.length(); ++k) {
|
|
if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
|
|
MachNode *m = new_nodes.at(k)->as_Mach();
|
|
for (unsigned int l = 0; l < m->num_opnds(); ++l) {
|
|
if (MachOper::notAnOper(m->_opnds[l])) {
|
|
outputStream *os = tty;
|
|
os->print("Node %s ", m->Name());
|
|
os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
|
|
assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Collect succs of old node in remove (for projections) and in succs (for
|
|
// all other nodes) do _not_ collect projections in remove (but in succs)
|
|
// in case the node is a call. We need the projections for calls as they are
|
|
// associated with registes (i.e. they are defs).
|
|
succs.clear();
|
|
for (DUIterator k = n->outs(); n->has_out(k); k++) {
|
|
if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
|
|
remove.push(n->out(k));
|
|
} else {
|
|
succs.push(n->out(k));
|
|
}
|
|
}
|
|
// Replace old node n as input of its succs by last of the new nodes.
|
|
for (int k = 0; k < succs.length(); ++k) {
|
|
Node *succ = succs.at(k);
|
|
for (uint l = 0; l < succ->req(); ++l) {
|
|
if (succ->in(l) == n) {
|
|
succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
|
|
}
|
|
}
|
|
for (uint l = succ->req(); l < succ->len(); ++l) {
|
|
if (succ->in(l) == n) {
|
|
succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Index of old node in block.
|
|
uint index = b->find_node(n);
|
|
// Insert new nodes into block and map them in nodes->blocks array
|
|
// and remember last node in n2.
|
|
Node *n2 = NULL;
|
|
for (int k = 0; k < new_nodes.length(); ++k) {
|
|
n2 = new_nodes.at(k);
|
|
b->insert_node(n2, ++index);
|
|
map_node_to_block(n2, b);
|
|
}
|
|
|
|
// Add old node n to remove and remove them all from block.
|
|
remove.push(n);
|
|
j--;
|
|
#ifdef ASSERT
|
|
if (TracePostallocExpand && Verbose) {
|
|
tty->print(" removing:\n");
|
|
for (int k = 0; k < remove.length(); ++k) {
|
|
tty->print(" "); remove.at(k)->dump();
|
|
}
|
|
tty->print(" inserting:\n");
|
|
for (int k = 0; k < new_nodes.length(); ++k) {
|
|
tty->print(" "); new_nodes.at(k)->dump();
|
|
}
|
|
}
|
|
#endif
|
|
for (int k = 0; k < remove.length(); ++k) {
|
|
if (b->contains(remove.at(k))) {
|
|
b->find_remove(remove.at(k));
|
|
} else {
|
|
assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
|
|
}
|
|
}
|
|
// If anything has been inserted (n2 != NULL), continue after last node inserted.
|
|
// This does not always work. Some postalloc expands don't insert any nodes, if they
|
|
// do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
|
|
j = n2 ? b->find_node(n2) : j;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (foundNode) {
|
|
tty->print("FINISHED %d %s\n", C->compile_id(),
|
|
C->method() ? C->method()->name()->as_utf8() : C->stub_name());
|
|
tty->flush();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
//------------------------------dump-------------------------------------------
|
|
#ifndef PRODUCT
|
|
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
|
|
const Node *x = end->is_block_proj();
|
|
assert( x, "not a CFG" );
|
|
|
|
// Do not visit this block again
|
|
if( visited.test_set(x->_idx) ) return;
|
|
|
|
// Skip through this block
|
|
const Node *p = x;
|
|
do {
|
|
p = p->in(0); // Move control forward
|
|
assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
|
|
} while( !p->is_block_start() );
|
|
|
|
// Recursively visit
|
|
for (uint i = 1; i < p->req(); i++) {
|
|
_dump_cfg(p->in(i), visited);
|
|
}
|
|
|
|
// Dump the block
|
|
get_block_for_node(p)->dump(this);
|
|
}
|
|
|
|
void PhaseCFG::dump( ) const {
|
|
tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
|
|
if (_blocks.size()) { // Did we do basic-block layout?
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
const Block* block = get_block(i);
|
|
block->dump(this);
|
|
}
|
|
} else { // Else do it with a DFS
|
|
VectorSet visited(_block_arena);
|
|
_dump_cfg(_root,visited);
|
|
}
|
|
}
|
|
|
|
void PhaseCFG::dump_headers() {
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
if (block != NULL) {
|
|
block->dump_head(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PhaseCFG::verify() const {
|
|
#ifdef ASSERT
|
|
// Verify sane CFG
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
uint cnt = block->number_of_nodes();
|
|
uint j;
|
|
for (j = 0; j < cnt; j++) {
|
|
Node *n = block->get_node(j);
|
|
assert(get_block_for_node(n) == block, "");
|
|
if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
|
|
assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
|
|
}
|
|
for (uint k = 0; k < n->req(); k++) {
|
|
Node *def = n->in(k);
|
|
if (def && def != n) {
|
|
assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
|
|
// Verify that instructions in the block is in correct order.
|
|
// Uses must follow their definition if they are at the same block.
|
|
// Mostly done to check that MachSpillCopy nodes are placed correctly
|
|
// when CreateEx node is moved in build_ifg_physical().
|
|
if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
|
|
// See (+++) comment in reg_split.cpp
|
|
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
|
|
bool is_loop = false;
|
|
if (n->is_Phi()) {
|
|
for (uint l = 1; l < def->req(); l++) {
|
|
if (n == def->in(l)) {
|
|
is_loop = true;
|
|
break; // Some kind of loop
|
|
}
|
|
}
|
|
}
|
|
assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
j = block->end_idx();
|
|
Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
|
|
assert(bp, "last instruction must be a block proj");
|
|
assert(bp == block->get_node(j), "wrong number of successors for this block");
|
|
if (bp->is_Catch()) {
|
|
while (block->get_node(--j)->is_MachProj()) {
|
|
;
|
|
}
|
|
assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
|
|
} else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
|
|
assert(block->_num_succs == 2, "Conditional branch must have two targets");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
|
|
Copy::zero_to_bytes( _indices, sizeof(uint)*max );
|
|
}
|
|
|
|
void UnionFind::extend( uint from_idx, uint to_idx ) {
|
|
_nesting.check();
|
|
if( from_idx >= _max ) {
|
|
uint size = 16;
|
|
while( size <= from_idx ) size <<=1;
|
|
_indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
|
|
_max = size;
|
|
}
|
|
while( _cnt <= from_idx ) _indices[_cnt++] = 0;
|
|
_indices[from_idx] = to_idx;
|
|
}
|
|
|
|
void UnionFind::reset( uint max ) {
|
|
// Force the Union-Find mapping to be at least this large
|
|
extend(max,0);
|
|
// Initialize to be the ID mapping.
|
|
for( uint i=0; i<max; i++ ) map(i,i);
|
|
}
|
|
|
|
// Straight out of Tarjan's union-find algorithm
|
|
uint UnionFind::Find_compress( uint idx ) {
|
|
uint cur = idx;
|
|
uint next = lookup(cur);
|
|
while( next != cur ) { // Scan chain of equivalences
|
|
assert( next < cur, "always union smaller" );
|
|
cur = next; // until find a fixed-point
|
|
next = lookup(cur);
|
|
}
|
|
// Core of union-find algorithm: update chain of
|
|
// equivalences to be equal to the root.
|
|
while( idx != next ) {
|
|
uint tmp = lookup(idx);
|
|
map(idx, next);
|
|
idx = tmp;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
// Like Find above, but no path compress, so bad asymptotic behavior
|
|
uint UnionFind::Find_const( uint idx ) const {
|
|
if( idx == 0 ) return idx; // Ignore the zero idx
|
|
// Off the end? This can happen during debugging dumps
|
|
// when data structures have not finished being updated.
|
|
if( idx >= _max ) return idx;
|
|
uint next = lookup(idx);
|
|
while( next != idx ) { // Scan chain of equivalences
|
|
idx = next; // until find a fixed-point
|
|
next = lookup(idx);
|
|
}
|
|
return next;
|
|
}
|
|
|
|
// union 2 sets together.
|
|
void UnionFind::Union( uint idx1, uint idx2 ) {
|
|
uint src = Find(idx1);
|
|
uint dst = Find(idx2);
|
|
assert( src, "" );
|
|
assert( dst, "" );
|
|
assert( src < _max, "oob" );
|
|
assert( dst < _max, "oob" );
|
|
assert( src < dst, "always union smaller" );
|
|
map(dst,src);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void Trace::dump( ) const {
|
|
tty->print_cr("Trace (freq %f)", first_block()->_freq);
|
|
for (Block *b = first_block(); b != NULL; b = next(b)) {
|
|
tty->print(" B%d", b->_pre_order);
|
|
if (b->head()->is_Loop()) {
|
|
tty->print(" (L%d)", b->compute_loop_alignment());
|
|
}
|
|
if (b->has_loop_alignment()) {
|
|
tty->print(" (T%d)", b->code_alignment());
|
|
}
|
|
}
|
|
tty->cr();
|
|
}
|
|
|
|
void CFGEdge::dump( ) const {
|
|
tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
|
|
from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
|
|
switch(state()) {
|
|
case connected:
|
|
tty->print("connected");
|
|
break;
|
|
case open:
|
|
tty->print("open");
|
|
break;
|
|
case interior:
|
|
tty->print("interior");
|
|
break;
|
|
}
|
|
if (infrequent()) {
|
|
tty->print(" infrequent");
|
|
}
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
|
|
// Comparison function for edges
|
|
static int edge_order(CFGEdge **e0, CFGEdge **e1) {
|
|
float freq0 = (*e0)->freq();
|
|
float freq1 = (*e1)->freq();
|
|
if (freq0 != freq1) {
|
|
return freq0 > freq1 ? -1 : 1;
|
|
}
|
|
|
|
int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
|
|
int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
|
|
|
|
return dist1 - dist0;
|
|
}
|
|
|
|
// Comparison function for edges
|
|
extern "C" int trace_frequency_order(const void *p0, const void *p1) {
|
|
Trace *tr0 = *(Trace **) p0;
|
|
Trace *tr1 = *(Trace **) p1;
|
|
Block *b0 = tr0->first_block();
|
|
Block *b1 = tr1->first_block();
|
|
|
|
// The trace of connector blocks goes at the end;
|
|
// we only expect one such trace
|
|
if (b0->is_connector() != b1->is_connector()) {
|
|
return b1->is_connector() ? -1 : 1;
|
|
}
|
|
|
|
// Pull more frequently executed blocks to the beginning
|
|
float freq0 = b0->_freq;
|
|
float freq1 = b1->_freq;
|
|
if (freq0 != freq1) {
|
|
return freq0 > freq1 ? -1 : 1;
|
|
}
|
|
|
|
int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
|
|
|
|
return diff;
|
|
}
|
|
|
|
// Find edges of interest, i.e, those which can fall through. Presumes that
|
|
// edges which don't fall through are of low frequency and can be generally
|
|
// ignored. Initialize the list of traces.
|
|
void PhaseBlockLayout::find_edges() {
|
|
// Walk the blocks, creating edges and Traces
|
|
uint i;
|
|
Trace *tr = NULL;
|
|
for (i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
Block* b = _cfg.get_block(i);
|
|
tr = new Trace(b, next, prev);
|
|
traces[tr->id()] = tr;
|
|
|
|
// All connector blocks should be at the end of the list
|
|
if (b->is_connector()) break;
|
|
|
|
// If this block and the next one have a one-to-one successor
|
|
// predecessor relationship, simply append the next block
|
|
int nfallthru = b->num_fall_throughs();
|
|
while (nfallthru == 1 &&
|
|
b->succ_fall_through(0)) {
|
|
Block *n = b->_succs[0];
|
|
|
|
// Skip over single-entry connector blocks, we don't want to
|
|
// add them to the trace.
|
|
while (n->is_connector() && n->num_preds() == 1) {
|
|
n = n->_succs[0];
|
|
}
|
|
|
|
// We see a merge point, so stop search for the next block
|
|
if (n->num_preds() != 1) break;
|
|
|
|
i++;
|
|
assert(n = _cfg.get_block(i), "expecting next block");
|
|
tr->append(n);
|
|
uf->map(n->_pre_order, tr->id());
|
|
traces[n->_pre_order] = NULL;
|
|
nfallthru = b->num_fall_throughs();
|
|
b = n;
|
|
}
|
|
|
|
if (nfallthru > 0) {
|
|
// Create a CFGEdge for each outgoing
|
|
// edge that could be a fall-through.
|
|
for (uint j = 0; j < b->_num_succs; j++ ) {
|
|
if (b->succ_fall_through(j)) {
|
|
Block *target = b->non_connector_successor(j);
|
|
float freq = b->_freq * b->succ_prob(j);
|
|
int from_pct = (int) ((100 * freq) / b->_freq);
|
|
int to_pct = (int) ((100 * freq) / target->_freq);
|
|
edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Group connector blocks into one trace
|
|
for (i++; i < _cfg.number_of_blocks(); i++) {
|
|
Block *b = _cfg.get_block(i);
|
|
assert(b->is_connector(), "connector blocks at the end");
|
|
tr->append(b);
|
|
uf->map(b->_pre_order, tr->id());
|
|
traces[b->_pre_order] = NULL;
|
|
}
|
|
}
|
|
|
|
// Union two traces together in uf, and null out the trace in the list
|
|
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
|
|
uint old_id = old_trace->id();
|
|
uint updated_id = updated_trace->id();
|
|
|
|
uint lo_id = updated_id;
|
|
uint hi_id = old_id;
|
|
|
|
// If from is greater than to, swap values to meet
|
|
// UnionFind guarantee.
|
|
if (updated_id > old_id) {
|
|
lo_id = old_id;
|
|
hi_id = updated_id;
|
|
|
|
// Fix up the trace ids
|
|
traces[lo_id] = traces[updated_id];
|
|
updated_trace->set_id(lo_id);
|
|
}
|
|
|
|
// Union the lower with the higher and remove the pointer
|
|
// to the higher.
|
|
uf->Union(lo_id, hi_id);
|
|
traces[hi_id] = NULL;
|
|
}
|
|
|
|
// Append traces together via the most frequently executed edges
|
|
void PhaseBlockLayout::grow_traces() {
|
|
// Order the edges, and drive the growth of Traces via the most
|
|
// frequently executed edges.
|
|
edges->sort(edge_order);
|
|
for (int i = 0; i < edges->length(); i++) {
|
|
CFGEdge *e = edges->at(i);
|
|
|
|
if (e->state() != CFGEdge::open) continue;
|
|
|
|
Block *src_block = e->from();
|
|
Block *targ_block = e->to();
|
|
|
|
// Don't grow traces along backedges?
|
|
if (!BlockLayoutRotateLoops) {
|
|
if (targ_block->_rpo <= src_block->_rpo) {
|
|
targ_block->set_loop_alignment(targ_block);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Trace *src_trace = trace(src_block);
|
|
Trace *targ_trace = trace(targ_block);
|
|
|
|
// If the edge in question can join two traces at their ends,
|
|
// append one trace to the other.
|
|
if (src_trace->last_block() == src_block) {
|
|
if (src_trace == targ_trace) {
|
|
e->set_state(CFGEdge::interior);
|
|
if (targ_trace->backedge(e)) {
|
|
// Reset i to catch any newly eligible edge
|
|
// (Or we could remember the first "open" edge, and reset there)
|
|
i = 0;
|
|
}
|
|
} else if (targ_trace->first_block() == targ_block) {
|
|
e->set_state(CFGEdge::connected);
|
|
src_trace->append(targ_trace);
|
|
union_traces(src_trace, targ_trace);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Embed one trace into another, if the fork or join points are sufficiently
|
|
// balanced.
|
|
void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
|
|
// Walk the edge list a another time, looking at unprocessed edges.
|
|
// Fold in diamonds
|
|
for (int i = 0; i < edges->length(); i++) {
|
|
CFGEdge *e = edges->at(i);
|
|
|
|
if (e->state() != CFGEdge::open) continue;
|
|
if (fall_thru_only) {
|
|
if (e->infrequent()) continue;
|
|
}
|
|
|
|
Block *src_block = e->from();
|
|
Trace *src_trace = trace(src_block);
|
|
bool src_at_tail = src_trace->last_block() == src_block;
|
|
|
|
Block *targ_block = e->to();
|
|
Trace *targ_trace = trace(targ_block);
|
|
bool targ_at_start = targ_trace->first_block() == targ_block;
|
|
|
|
if (src_trace == targ_trace) {
|
|
// This may be a loop, but we can't do much about it.
|
|
e->set_state(CFGEdge::interior);
|
|
continue;
|
|
}
|
|
|
|
if (fall_thru_only) {
|
|
// If the edge links the middle of two traces, we can't do anything.
|
|
// Mark the edge and continue.
|
|
if (!src_at_tail & !targ_at_start) {
|
|
continue;
|
|
}
|
|
|
|
// Don't grow traces along backedges?
|
|
if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
|
|
continue;
|
|
}
|
|
|
|
// If both ends of the edge are available, why didn't we handle it earlier?
|
|
assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
|
|
|
|
if (targ_at_start) {
|
|
// Insert the "targ" trace in the "src" trace if the insertion point
|
|
// is a two way branch.
|
|
// Better profitability check possible, but may not be worth it.
|
|
// Someday, see if the this "fork" has an associated "join";
|
|
// then make a policy on merging this trace at the fork or join.
|
|
// For example, other things being equal, it may be better to place this
|
|
// trace at the join point if the "src" trace ends in a two-way, but
|
|
// the insertion point is one-way.
|
|
assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
|
|
e->set_state(CFGEdge::connected);
|
|
src_trace->insert_after(src_block, targ_trace);
|
|
union_traces(src_trace, targ_trace);
|
|
} else if (src_at_tail) {
|
|
if (src_trace != trace(_cfg.get_root_block())) {
|
|
e->set_state(CFGEdge::connected);
|
|
targ_trace->insert_before(targ_block, src_trace);
|
|
union_traces(targ_trace, src_trace);
|
|
}
|
|
}
|
|
} else if (e->state() == CFGEdge::open) {
|
|
// Append traces, even without a fall-thru connection.
|
|
// But leave root entry at the beginning of the block list.
|
|
if (targ_trace != trace(_cfg.get_root_block())) {
|
|
e->set_state(CFGEdge::connected);
|
|
src_trace->append(targ_trace);
|
|
union_traces(src_trace, targ_trace);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Order the sequence of the traces in some desirable way, and fixup the
|
|
// jumps at the end of each block.
|
|
void PhaseBlockLayout::reorder_traces(int count) {
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
|
|
Block_List worklist;
|
|
int new_count = 0;
|
|
|
|
// Compact the traces.
|
|
for (int i = 0; i < count; i++) {
|
|
Trace *tr = traces[i];
|
|
if (tr != NULL) {
|
|
new_traces[new_count++] = tr;
|
|
}
|
|
}
|
|
|
|
// The entry block should be first on the new trace list.
|
|
Trace *tr = trace(_cfg.get_root_block());
|
|
assert(tr == new_traces[0], "entry trace misplaced");
|
|
|
|
// Sort the new trace list by frequency
|
|
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
|
|
|
|
// Patch up the successor blocks
|
|
_cfg.clear_blocks();
|
|
for (int i = 0; i < new_count; i++) {
|
|
Trace *tr = new_traces[i];
|
|
if (tr != NULL) {
|
|
tr->fixup_blocks(_cfg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Order basic blocks based on frequency
|
|
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
|
|
: Phase(BlockLayout)
|
|
, _cfg(cfg) {
|
|
ResourceMark rm;
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
|
|
// List of traces
|
|
int size = _cfg.number_of_blocks() + 1;
|
|
traces = NEW_ARENA_ARRAY(area, Trace *, size);
|
|
memset(traces, 0, size*sizeof(Trace*));
|
|
next = NEW_ARENA_ARRAY(area, Block *, size);
|
|
memset(next, 0, size*sizeof(Block *));
|
|
prev = NEW_ARENA_ARRAY(area, Block *, size);
|
|
memset(prev , 0, size*sizeof(Block *));
|
|
|
|
// List of edges
|
|
edges = new GrowableArray<CFGEdge*>;
|
|
|
|
// Mapping block index --> block_trace
|
|
uf = new UnionFind(size);
|
|
uf->reset(size);
|
|
|
|
// Find edges and create traces.
|
|
find_edges();
|
|
|
|
// Grow traces at their ends via most frequent edges.
|
|
grow_traces();
|
|
|
|
// Merge one trace into another, but only at fall-through points.
|
|
// This may make diamonds and other related shapes in a trace.
|
|
merge_traces(true);
|
|
|
|
// Run merge again, allowing two traces to be catenated, even if
|
|
// one does not fall through into the other. This appends loosely
|
|
// related traces to be near each other.
|
|
merge_traces(false);
|
|
|
|
// Re-order all the remaining traces by frequency
|
|
reorder_traces(size);
|
|
|
|
assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
|
|
}
|
|
|
|
|
|
// Edge e completes a loop in a trace. If the target block is head of the
|
|
// loop, rotate the loop block so that the loop ends in a conditional branch.
|
|
bool Trace::backedge(CFGEdge *e) {
|
|
bool loop_rotated = false;
|
|
Block *src_block = e->from();
|
|
Block *targ_block = e->to();
|
|
|
|
assert(last_block() == src_block, "loop discovery at back branch");
|
|
if (first_block() == targ_block) {
|
|
if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
|
|
// Find the last block in the trace that has a conditional
|
|
// branch.
|
|
Block *b;
|
|
for (b = last_block(); b != NULL; b = prev(b)) {
|
|
if (b->num_fall_throughs() == 2) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (b != last_block() && b != NULL) {
|
|
loop_rotated = true;
|
|
|
|
// Rotate the loop by doing two-part linked-list surgery.
|
|
append(first_block());
|
|
break_loop_after(b);
|
|
}
|
|
}
|
|
|
|
// Backbranch to the top of a trace
|
|
// Scroll forward through the trace from the targ_block. If we find
|
|
// a loop head before another loop top, use the the loop head alignment.
|
|
for (Block *b = targ_block; b != NULL; b = next(b)) {
|
|
if (b->has_loop_alignment()) {
|
|
break;
|
|
}
|
|
if (b->head()->is_Loop()) {
|
|
targ_block = b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
first_block()->set_loop_alignment(targ_block);
|
|
|
|
} else {
|
|
// Backbranch into the middle of a trace
|
|
targ_block->set_loop_alignment(targ_block);
|
|
}
|
|
|
|
return loop_rotated;
|
|
}
|
|
|
|
// push blocks onto the CFG list
|
|
// ensure that blocks have the correct two-way branch sense
|
|
void Trace::fixup_blocks(PhaseCFG &cfg) {
|
|
Block *last = last_block();
|
|
for (Block *b = first_block(); b != NULL; b = next(b)) {
|
|
cfg.add_block(b);
|
|
if (!b->is_connector()) {
|
|
int nfallthru = b->num_fall_throughs();
|
|
if (b != last) {
|
|
if (nfallthru == 2) {
|
|
// Ensure that the sense of the branch is correct
|
|
Block *bnext = next(b);
|
|
Block *bs0 = b->non_connector_successor(0);
|
|
|
|
MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
|
|
ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
|
|
ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
|
|
|
|
if (bnext == bs0) {
|
|
// Fall-thru case in succs[0], should be in succs[1]
|
|
|
|
// Flip targets in _succs map
|
|
Block *tbs0 = b->_succs[0];
|
|
Block *tbs1 = b->_succs[1];
|
|
b->_succs.map( 0, tbs1 );
|
|
b->_succs.map( 1, tbs0 );
|
|
|
|
// Flip projections to match targets
|
|
b->map_node(proj1, b->number_of_nodes() - 2);
|
|
b->map_node(proj0, b->number_of_nodes() - 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|