jdk-24/hotspot/src/share/vm/opto/convertnode.cpp
Tobias Hartmann ca56200977 6675699: need comprehensive fix for unconstrained ConvI2L with narrowed type
Emit CastII to make narrow ConvI2L dependent on the corresponding range check.

Reviewed-by: kvn, roland
2016-01-18 08:40:25 +01:00

524 lines
21 KiB
C++

/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/matcher.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "runtime/sharedRuntime.hpp"
//=============================================================================
//------------------------------Identity---------------------------------------
Node* Conv2BNode::Identity(PhaseGVN* phase) {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return in(1);
if( t == TypeInt::ZERO ) return in(1);
if( t == TypeInt::ONE ) return in(1);
if( t == TypeInt::BOOL ) return in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* Conv2BNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == TypeInt::ZERO ) return TypeInt::ZERO;
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
const TypePtr *tp = t->isa_ptr();
if( tp != NULL ) {
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
return TypeInt::BOOL;
}
if (t->base() != Type::Int) return TypeInt::BOOL;
const TypeInt *ti = t->is_int();
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
return TypeInt::BOOL;
}
// The conversions operations are all Alpha sorted. Please keep it that way!
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return Type::FLOAT;
const TypeD *td = t->is_double_constant();
return TypeF::make( (float)td->getd() );
}
//------------------------------Identity---------------------------------------
// Float's can be converted to doubles with no loss of bits. Hence
// converting a float to a double and back to a float is a NOP.
Node* ConvD2FNode::Identity(PhaseGVN* phase) {
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return TypeInt::INT;
const TypeD *td = t->is_double_constant();
return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
}
//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( in(1)->Opcode() == Op_RoundDouble )
set_req(1,in(1)->in(1));
return NULL;
}
//------------------------------Identity---------------------------------------
// Int's can be converted to doubles with no loss of bits. Hence
// converting an integer to a double and back to an integer is a NOP.
Node* ConvD2INode::Identity(PhaseGVN* phase) {
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::DOUBLE ) return TypeLong::LONG;
const TypeD *td = t->is_double_constant();
return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvD2LNode::Identity(PhaseGVN* phase) {
// Remove ConvD2L->ConvL2D->ConvD2L sequences.
if( in(1) ->Opcode() == Op_ConvL2D &&
in(1)->in(1)->Opcode() == Op_ConvD2L )
return in(1)->in(1);
return this;
}
//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( in(1)->Opcode() == Op_RoundDouble )
set_req(1,in(1)->in(1));
return NULL;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return Type::DOUBLE;
const TypeF *tf = t->is_float_constant();
return TypeD::make( (double)tf->getf() );
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return TypeInt::INT;
const TypeF *tf = t->is_float_constant();
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvF2INode::Identity(PhaseGVN* phase) {
// Remove ConvF2I->ConvI2F->ConvF2I sequences.
if( in(1) ->Opcode() == Op_ConvI2F &&
in(1)->in(1)->Opcode() == Op_ConvF2I )
return in(1)->in(1);
return this;
}
//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( in(1)->Opcode() == Op_RoundFloat )
set_req(1,in(1)->in(1));
return NULL;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
if( t == Type::FLOAT ) return TypeLong::LONG;
const TypeF *tf = t->is_float_constant();
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
}
//------------------------------Identity---------------------------------------
Node* ConvF2LNode::Identity(PhaseGVN* phase) {
// Remove ConvF2L->ConvL2F->ConvF2L sequences.
if( in(1) ->Opcode() == Op_ConvL2F &&
in(1)->in(1)->Opcode() == Op_ConvF2L )
return in(1)->in(1);
return this;
}
//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( in(1)->Opcode() == Op_RoundFloat )
set_req(1,in(1)->in(1));
return NULL;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeInt *ti = t->is_int();
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
return bottom_type();
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeInt *ti = t->is_int();
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
return bottom_type();
}
//------------------------------Identity---------------------------------------
Node* ConvI2FNode::Identity(PhaseGVN* phase) {
// Remove ConvI2F->ConvF2I->ConvI2F sequences.
if( in(1) ->Opcode() == Op_ConvF2I &&
in(1)->in(1)->Opcode() == Op_ConvI2F )
return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeInt *ti = t->is_int();
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
// Join my declared type against my incoming type.
tl = tl->filter(_type);
return tl;
}
#ifdef _LP64
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
jlong lo2, jlong hi2) {
// Two ranges overlap iff one range's low point falls in the other range.
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
}
#endif
//------------------------------Ideal------------------------------------------
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const TypeLong* this_type = this->type()->is_long();
Node* this_changed = NULL;
// If _major_progress, then more loop optimizations follow. Do NOT
// remove this node's type assertion until no more loop ops can happen.
// The progress bit is set in the major loop optimizations THEN comes the
// call to IterGVN and any chance of hitting this code. Cf. Opaque1Node.
if (can_reshape && !phase->C->major_progress()) {
const TypeInt* in_type = phase->type(in(1))->isa_int();
if (in_type != NULL && this_type != NULL &&
(in_type->_lo != this_type->_lo ||
in_type->_hi != this_type->_hi)) {
// Although this WORSENS the type, it increases GVN opportunities,
// because I2L nodes with the same input will common up, regardless
// of slightly differing type assertions. Such slight differences
// arise routinely as a result of loop unrolling, so this is a
// post-unrolling graph cleanup. Choose a type which depends only
// on my input. (Exception: Keep a range assertion of >=0 or <0.)
jlong lo1 = this_type->_lo;
jlong hi1 = this_type->_hi;
int w1 = this_type->_widen;
if (lo1 != (jint)lo1 ||
hi1 != (jint)hi1 ||
lo1 > hi1) {
// Overflow leads to wraparound, wraparound leads to range saturation.
lo1 = min_jint; hi1 = max_jint;
} else if (lo1 >= 0) {
// Keep a range assertion of >=0.
lo1 = 0; hi1 = max_jint;
} else if (hi1 < 0) {
// Keep a range assertion of <0.
lo1 = min_jint; hi1 = -1;
} else {
lo1 = min_jint; hi1 = max_jint;
}
const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
MIN2((jlong)in_type->_hi, hi1),
MAX2((int)in_type->_widen, w1));
if (wtype != type()) {
set_type(wtype);
// Note: this_type still has old type value, for the logic below.
this_changed = this;
}
}
}
#ifdef _LP64
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) or
// ConvI2L(CastII(AddI(x, y))) to AddL(ConvI2L(CastII(x)), ConvI2L(CastII(y))),
// but only if x and y have subranges that cannot cause 32-bit overflow,
// under the assumption that x+y is in my own subrange this->type().
// This assumption is based on a constraint (i.e., type assertion)
// established in Parse::array_addressing or perhaps elsewhere.
// This constraint has been adjoined to the "natural" type of
// the incoming argument in(0). We know (because of runtime
// checks) - that the result value I2L(x+y) is in the joined range.
// Hence we can restrict the incoming terms (x, y) to values such
// that their sum also lands in that range.
// This optimization is useful only on 64-bit systems, where we hope
// the addition will end up subsumed in an addressing mode.
// It is necessary to do this when optimizing an unrolled array
// copy loop such as x[i++] = y[i++].
// On 32-bit systems, it's better to perform as much 32-bit math as
// possible before the I2L conversion, because 32-bit math is cheaper.
// There's no common reason to "leak" a constant offset through the I2L.
// Addressing arithmetic will not absorb it as part of a 64-bit AddL.
Node* z = in(1);
int op = z->Opcode();
Node* ctrl = NULL;
if (op == Op_CastII && z->as_CastII()->has_range_check()) {
// Skip CastII node but save control dependency
ctrl = z->in(0);
z = z->in(1);
op = z->Opcode();
}
if (op == Op_AddI || op == Op_SubI) {
Node* x = z->in(1);
Node* y = z->in(2);
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
if (phase->type(x) == Type::TOP) return this_changed;
if (phase->type(y) == Type::TOP) return this_changed;
const TypeInt* tx = phase->type(x)->is_int();
const TypeInt* ty = phase->type(y)->is_int();
const TypeLong* tz = this_type;
jlong xlo = tx->_lo;
jlong xhi = tx->_hi;
jlong ylo = ty->_lo;
jlong yhi = ty->_hi;
jlong zlo = tz->_lo;
jlong zhi = tz->_hi;
jlong vbit = CONST64(1) << BitsPerInt;
int widen = MAX2(tx->_widen, ty->_widen);
if (op == Op_SubI) {
jlong ylo0 = ylo;
ylo = -yhi;
yhi = -ylo0;
}
// See if x+y can cause positive overflow into z+2**32
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
return this_changed;
}
// See if x+y can cause negative overflow into z-2**32
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
return this_changed;
}
// Now it's always safe to assume x+y does not overflow.
// This is true even if some pairs x,y might cause overflow, as long
// as that overflow value cannot fall into [zlo,zhi].
// Confident that the arithmetic is "as if infinite precision",
// we can now use z's range to put constraints on those of x and y.
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
// more "restricted" range by intersecting [xlo,xhi] with the
// range obtained by subtracting y's range from the asserted range
// of the I2L conversion. Here's the interval arithmetic algebra:
// x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
// => x in [zlo-yhi, zhi-ylo]
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
jlong rxlo = MAX2(xlo, zlo - yhi);
jlong rxhi = MIN2(xhi, zhi - ylo);
// And similarly, x changing place with y:
jlong rylo = MAX2(ylo, zlo - xhi);
jlong ryhi = MIN2(yhi, zhi - xlo);
if (rxlo > rxhi || rylo > ryhi) {
return this_changed; // x or y is dying; don't mess w/ it
}
if (op == Op_SubI) {
jlong rylo0 = rylo;
rylo = -ryhi;
ryhi = -rylo0;
}
assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), ctrl);
Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), ctrl);
switch (op) {
case Op_AddI: return new AddLNode(cx, cy);
case Op_SubI: return new SubLNode(cx, cy);
default: ShouldNotReachHere();
}
}
#endif //_LP64
return this_changed;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
return bottom_type();
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
return bottom_type();
}
//=============================================================================
//----------------------------Identity-----------------------------------------
Node* ConvL2INode::Identity(PhaseGVN* phase) {
// Convert L2I(I2L(x)) => x
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* ConvL2INode::Value(PhaseGVN* phase) const {
const Type *t = phase->type( in(1) );
if( t == Type::TOP ) return Type::TOP;
const TypeLong *tl = t->is_long();
if (tl->is_con())
// Easy case.
return TypeInt::make((jint)tl->get_con());
return bottom_type();
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Blow off prior masking to int
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node *andl = in(1);
uint andl_op = andl->Opcode();
if( andl_op == Op_AndL ) {
// Blow off prior masking to int
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
set_req(1,andl->in(1));
return this;
}
}
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
// This replaces an 'AddL' with an 'AddI'.
if( andl_op == Op_AddL ) {
// Don't do this for nodes which have more than one user since
// we'll end up computing the long add anyway.
if (andl->outcnt() > 1) return NULL;
Node* x = andl->in(1);
Node* y = andl->in(2);
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
if (phase->type(x) == Type::TOP) return NULL;
if (phase->type(y) == Type::TOP) return NULL;
Node *add1 = phase->transform(new ConvL2INode(x));
Node *add2 = phase->transform(new ConvL2INode(y));
return new AddINode(add1,add2);
}
// Disable optimization: LoadL->ConvL2I ==> LoadI.
// It causes problems (sizes of Load and Store nodes do not match)
// in objects initialization code and Escape Analysis.
return NULL;
}
//=============================================================================
//------------------------------Identity---------------------------------------
// Remove redundant roundings
Node* RoundFloatNode::Identity(PhaseGVN* phase) {
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
// Do not round constants
if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
int op = in(1)->Opcode();
// Redundant rounding
if( op == Op_RoundFloat ) return in(1);
// Already rounded
if( op == Op_Parm ) return in(1);
if( op == Op_LoadF ) return in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
return phase->type( in(1) );
}
//=============================================================================
//------------------------------Identity---------------------------------------
// Remove redundant roundings. Incoming arguments are already rounded.
Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
// Do not round constants
if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
int op = in(1)->Opcode();
// Redundant rounding
if( op == Op_RoundDouble ) return in(1);
// Already rounded
if( op == Op_Parm ) return in(1);
if( op == Op_LoadD ) return in(1);
if( op == Op_ConvF2D ) return in(1);
if( op == Op_ConvI2D ) return in(1);
return this;
}
//------------------------------Value------------------------------------------
const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
return phase->type( in(1) );
}