jdk-24/src/hotspot/share/opto/postaloc.cpp
Claes Redestad fa3cfcd0cd 8256883: C2: Add a RegMask iterator
Reviewed-by: kvn, pliden, eosterlund
2020-11-24 14:35:51 +00:00

800 lines
33 KiB
C++

/*
* Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "opto/chaitin.hpp"
#include "opto/machnode.hpp"
// See if this register (or pairs, or vector) already contains the value.
static bool register_contains_value(Node* val, OptoReg::Name reg, int n_regs,
Node_List& value) {
for (int i = 0; i < n_regs; i++) {
OptoReg::Name nreg = OptoReg::add(reg,-i);
if (value[nreg] != val)
return false;
}
return true;
}
//---------------------------may_be_copy_of_callee-----------------------------
// Check to see if we can possibly be a copy of a callee-save value.
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
// Short circuit if there are no callee save registers
if (_matcher.number_of_saved_registers() == 0) return false;
// Expect only a spill-down and reload on exit for callee-save spills.
// Chains of copies cannot be deep.
// 5008997 - This is wishful thinking. Register allocator seems to
// be splitting live ranges for callee save registers to such
// an extent that in large methods the chains can be very long
// (50+). The conservative answer is to return true if we don't
// know as this prevents optimizations from occurring.
const int limit = 60;
int i;
for( i=0; i < limit; i++ ) {
if( def->is_Proj() && def->in(0)->is_Start() &&
_matcher.is_save_on_entry(lrgs(_lrg_map.live_range_id(def)).reg()))
return true; // Direct use of callee-save proj
if( def->is_Copy() ) // Copies carry value through
def = def->in(def->is_Copy());
else if( def->is_Phi() ) // Phis can merge it from any direction
def = def->in(1);
else
break;
guarantee(def != NULL, "must not resurrect dead copy");
}
// If we reached the end and didn't find a callee save proj
// then this may be a callee save proj so we return true
// as the conservative answer. If we didn't reach then end
// we must have discovered that it was not a callee save
// else we would have returned.
return i == limit;
}
//------------------------------yank-----------------------------------
// Helper function for yank_if_dead
int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
int blk_adjust=0;
Block *oldb = _cfg.get_block_for_node(old);
oldb->find_remove(old);
// Count 1 if deleting an instruction from the current block
if (oldb == current_block) {
blk_adjust++;
}
_cfg.unmap_node_from_block(old);
OptoReg::Name old_reg = lrgs(_lrg_map.live_range_id(old)).reg();
if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
value->map(old_reg,NULL); // Yank from value/regnd maps
regnd->map(old_reg,NULL); // This register's value is now unknown
}
return blk_adjust;
}
#ifdef ASSERT
static bool expected_yanked_node(Node *old, Node *orig_old) {
// This code is expected only next original nodes:
// - load from constant table node which may have next data input nodes:
// MachConstantBase, MachTemp, MachSpillCopy
// - Phi nodes that are considered Junk
// - load constant node which may have next data input nodes:
// MachTemp, MachSpillCopy
// - MachSpillCopy
// - MachProj and Copy dead nodes
if (old->is_MachSpillCopy()) {
return true;
} else if (old->is_Con()) {
return true;
} else if (old->is_MachProj()) { // Dead kills projection of Con node
return (old == orig_old);
} else if (old->is_Copy()) { // Dead copy of a callee-save value
return (old == orig_old);
} else if (old->is_MachTemp()) {
return orig_old->is_Con();
} else if (old->is_Phi()) { // Junk phi's
return true;
} else if (old->is_MachConstantBase()) {
return (orig_old->is_Con() && orig_old->is_MachConstant());
}
return false;
}
#endif
//------------------------------yank_if_dead-----------------------------------
// Removed edges from 'old'. Yank if dead. Return adjustment counts to
// iterators in the current block.
int PhaseChaitin::yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
Node_List *value, Node_List *regnd) {
int blk_adjust=0;
if (old->outcnt() == 0 && old != C->top()) {
#ifdef ASSERT
if (!expected_yanked_node(old, orig_old)) {
tty->print_cr("==============================================");
tty->print_cr("orig_old:");
orig_old->dump();
tty->print_cr("old:");
old->dump();
assert(false, "unexpected yanked node");
}
if (old->is_Con())
orig_old = old; // Reset to satisfy expected nodes checks.
#endif
blk_adjust += yank(old, current_block, value, regnd);
for (uint i = 1; i < old->req(); i++) {
Node* n = old->in(i);
if (n != NULL) {
old->set_req(i, NULL);
blk_adjust += yank_if_dead_recurse(n, orig_old, current_block, value, regnd);
}
}
// Disconnect control and remove precedence edges if any exist
old->disconnect_inputs(C);
}
return blk_adjust;
}
//------------------------------use_prior_register-----------------------------
// Use the prior value instead of the current value, in an effort to make
// the current value go dead. Return block iterator adjustment, in case
// we yank some instructions from this block.
int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
// No effect?
if( def == n->in(idx) ) return 0;
// Def is currently dead and can be removed? Do not resurrect
if( def->outcnt() == 0 ) return 0;
// Not every pair of physical registers are assignment compatible,
// e.g. on sparc floating point registers are not assignable to integer
// registers.
const LRG &def_lrg = lrgs(_lrg_map.live_range_id(def));
OptoReg::Name def_reg = def_lrg.reg();
const RegMask &use_mask = n->in_RegMask(idx);
bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
: (use_mask.is_AllStack() != 0));
if (!RegMask::is_vector(def->ideal_reg())) {
// Check for a copy to or from a misaligned pair.
// It is workaround for a sparc with misaligned pairs.
can_use = can_use && !use_mask.is_misaligned_pair() && !def_lrg.mask().is_misaligned_pair();
}
if (!can_use)
return 0;
// Capture the old def in case it goes dead...
Node *old = n->in(idx);
// Save-on-call copies can only be elided if the entire copy chain can go
// away, lest we get the same callee-save value alive in 2 locations at
// once. We check for the obvious trivial case here. Although it can
// sometimes be elided with cooperation outside our scope, here we will just
// miss the opportunity. :-(
if( may_be_copy_of_callee(def) ) {
if( old->outcnt() > 1 ) return 0; // We're the not last user
int idx = old->is_Copy();
assert( idx, "chain of copies being removed" );
Node *old2 = old->in(idx); // Chain of copies
if( old2->outcnt() > 1 ) return 0; // old is not the last user
int idx2 = old2->is_Copy();
if( !idx2 ) return 0; // Not a chain of 2 copies
if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
}
// Use the new def
n->set_req(idx,def);
_post_alloc++;
// Is old def now dead? We successfully yanked a copy?
return yank_if_dead(old,current_block,&value,&regnd);
}
//------------------------------skip_copies------------------------------------
// Skip through any number of copies (that don't mod oop-i-ness)
Node *PhaseChaitin::skip_copies( Node *c ) {
int idx = c->is_Copy();
uint is_oop = lrgs(_lrg_map.live_range_id(c))._is_oop;
while (idx != 0) {
guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
if (lrgs(_lrg_map.live_range_id(c->in(idx)))._is_oop != is_oop) {
break; // casting copy, not the same value
}
c = c->in(idx);
idx = c->is_Copy();
}
return c;
}
//------------------------------elide_copy-------------------------------------
// Remove (bypass) copies along Node n, edge k.
int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
int blk_adjust = 0;
uint nk_idx = _lrg_map.live_range_id(n->in(k));
OptoReg::Name nk_reg = lrgs(nk_idx).reg();
// Remove obvious same-register copies
Node *x = n->in(k);
int idx;
while( (idx=x->is_Copy()) != 0 ) {
Node *copy = x->in(idx);
guarantee(copy != NULL, "must not resurrect dead copy");
if(lrgs(_lrg_map.live_range_id(copy)).reg() != nk_reg) {
break;
}
blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
if (n->in(k) != copy) {
break; // Failed for some cutout?
}
x = copy; // Progress, try again
}
// Phis and 2-address instructions cannot change registers so easily - their
// outputs must match their input.
if( !can_change_regs )
return blk_adjust; // Only check stupid copies!
// Loop backedges won't have a value-mapping yet
if( &value == NULL ) return blk_adjust;
// Skip through all copies to the _value_ being used. Do not change from
// int to pointer. This attempts to jump through a chain of copies, where
// intermediate copies might be illegal, i.e., value is stored down to stack
// then reloaded BUT survives in a register the whole way.
Node *val = skip_copies(n->in(k));
if (val == x) return blk_adjust; // No progress?
uint val_idx = _lrg_map.live_range_id(val);
OptoReg::Name val_reg = lrgs(val_idx).reg();
int n_regs = RegMask::num_registers(val->ideal_reg(), lrgs(val_idx));
// See if it happens to already be in the correct register!
// (either Phi's direct register, or the common case of the name
// never-clobbered original-def register)
if (register_contains_value(val, val_reg, n_regs, value)) {
blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
if( n->in(k) == regnd[val_reg] ) // Success! Quit trying
return blk_adjust;
}
// See if we can skip the copy by changing registers. Don't change from
// using a register to using the stack unless we know we can remove a
// copy-load. Otherwise we might end up making a pile of Intel cisc-spill
// ops reading from memory instead of just loading once and using the
// register.
// Also handle duplicate copies here.
const Type *t = val->is_Con() ? val->bottom_type() : NULL;
// Scan all registers to see if this value is around already
for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
if (reg == (uint)nk_reg) {
// Found ourselves so check if there is only one user of this
// copy and keep on searching for a better copy if so.
bool ignore_self = true;
x = n->in(k);
DUIterator_Fast imax, i = x->fast_outs(imax);
Node* first = x->fast_out(i); i++;
while (i < imax && ignore_self) {
Node* use = x->fast_out(i); i++;
if (use != first) ignore_self = false;
}
if (ignore_self) continue;
}
Node *vv = value[reg];
// For scalable register, number of registers may be inconsistent between
// "val_reg" and "reg". For example, when "val" resides in register
// but "reg" is located in stack.
if (lrgs(val_idx).is_scalable()) {
assert(val->ideal_reg() == Op_VecA, "scalable vector register");
if (OptoReg::is_stack(reg)) {
n_regs = lrgs(val_idx).scalable_reg_slots();
} else {
n_regs = RegMask::SlotsPerVecA;
}
}
if (n_regs > 1) { // Doubles and vectors check for aligned-adjacent set
uint last;
if (lrgs(val_idx).is_scalable()) {
assert(val->ideal_reg() == Op_VecA, "scalable vector register");
// For scalable vector register, regmask is always SlotsPerVecA bits aligned
last = RegMask::SlotsPerVecA - 1;
} else {
last = (n_regs-1); // Looking for the last part of a set
}
if ((reg&last) != last) continue; // Wrong part of a set
if (!register_contains_value(vv, reg, n_regs, value)) continue; // Different value
}
if( vv == val || // Got a direct hit?
(t && vv && vv->bottom_type() == t && vv->is_Mach() &&
vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
OptoReg::is_reg(reg) || // turning into a register use OR
regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
if( n->in(k) == regnd[reg] ) // Success! Quit trying
return blk_adjust;
} // End of if not degrading to a stack
} // End of if found value in another register
} // End of scan all machine registers
return blk_adjust;
}
//
// Check if nreg already contains the constant value val. Normal copy
// elimination doesn't doesn't work on constants because multiple
// nodes can represent the same constant so the type and rule of the
// MachNode must be checked to ensure equivalence.
//
bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
Block *current_block,
Node_List& value, Node_List& regnd,
OptoReg::Name nreg, OptoReg::Name nreg2) {
if (value[nreg] != val && val->is_Con() &&
value[nreg] != NULL && value[nreg]->is_Con() &&
(nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
value[nreg]->bottom_type() == val->bottom_type() &&
value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
// This code assumes that two MachNodes representing constants
// which have the same rule and the same bottom type will produce
// identical effects into a register. This seems like it must be
// objectively true unless there are hidden inputs to the nodes
// but if that were to change this code would need to updated.
// Since they are equivalent the second one if redundant and can
// be removed.
//
// n will be replaced with the old value but n might have
// kills projections associated with it so remove them now so that
// yank_if_dead will be able to eliminate the copy once the uses
// have been transferred to the old[value].
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node* use = n->fast_out(i);
if (use->is_Proj() && use->outcnt() == 0) {
// Kill projections have no users and one input
use->set_req(0, C->top());
yank_if_dead(use, current_block, &value, &regnd);
--i; --imax;
}
}
_post_alloc++;
return true;
}
return false;
}
// The algorithms works as follows:
// We traverse the block top to bottom. possibly_merge_multidef() is invoked for every input edge k
// of the instruction n. We check to see if the input is a multidef lrg. If it is, we record the fact that we've
// seen a definition (coming as an input) and add that fact to the reg2defuse array. The array maps registers to their
// current reaching definitions (we track only multidefs though). With each definition we also associate the first
// instruction we saw use it. If we encounter the situation when we observe an def (an input) that is a part of the
// same lrg but is different from the previous seen def we merge the two with a MachMerge node and substitute
// all the uses that we've seen so far to use the merge. After that we keep replacing the new defs in the same lrg
// as they get encountered with the merge node and keep adding these defs to the merge inputs.
void PhaseChaitin::merge_multidefs() {
Compile::TracePhase tp("mergeMultidefs", &timers[_t_mergeMultidefs]);
ResourceMark rm;
// Keep track of the defs seen in registers and collect their uses in the block.
RegToDefUseMap reg2defuse(_max_reg, _max_reg, RegDefUse());
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block* block = _cfg.get_block(i);
for (uint j = 1; j < block->number_of_nodes(); j++) {
Node* n = block->get_node(j);
if (n->is_Phi()) continue;
for (uint k = 1; k < n->req(); k++) {
j += possibly_merge_multidef(n, k, block, reg2defuse);
}
// Null out the value produced by the instruction itself, since we're only interested in defs
// implicitly defined by the uses. We are actually interested in tracking only redefinitions
// of the multidef lrgs in the same register. For that matter it's enough to track changes in
// the base register only and ignore other effects of multi-register lrgs and fat projections.
// It is also ok to ignore defs coming from singledefs. After an implicit overwrite by one of
// those our register is guaranteed to be used by another lrg and we won't attempt to merge it.
uint lrg = _lrg_map.live_range_id(n);
if (lrg > 0 && lrgs(lrg).is_multidef()) {
OptoReg::Name reg = lrgs(lrg).reg();
reg2defuse.at(reg).clear();
}
}
// Clear reg->def->use tracking for the next block
for (int j = 0; j < reg2defuse.length(); j++) {
reg2defuse.at(j).clear();
}
}
}
int PhaseChaitin::possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse) {
int blk_adjust = 0;
uint lrg = _lrg_map.live_range_id(n->in(k));
if (lrg > 0 && lrgs(lrg).is_multidef()) {
OptoReg::Name reg = lrgs(lrg).reg();
Node* def = reg2defuse.at(reg).def();
if (def != NULL && lrg == _lrg_map.live_range_id(def) && def != n->in(k)) {
// Same lrg but different node, we have to merge.
MachMergeNode* merge;
if (def->is_MachMerge()) { // is it already a merge?
merge = def->as_MachMerge();
} else {
merge = new MachMergeNode(def);
// Insert the merge node into the block before the first use.
uint use_index = block->find_node(reg2defuse.at(reg).first_use());
block->insert_node(merge, use_index++);
_cfg.map_node_to_block(merge, block);
// Let the allocator know about the new node, use the same lrg
_lrg_map.extend(merge->_idx, lrg);
blk_adjust++;
// Fixup all the uses (there is at least one) that happened between the first
// use and before the current one.
for (; use_index < block->number_of_nodes(); use_index++) {
Node* use = block->get_node(use_index);
if (use == n) {
break;
}
use->replace_edge(def, merge);
}
}
if (merge->find_edge(n->in(k)) == -1) {
merge->add_req(n->in(k));
}
n->set_req(k, merge);
}
// update the uses
reg2defuse.at(reg).update(n->in(k), n);
}
return blk_adjust;
}
//------------------------------post_allocate_copy_removal---------------------
// Post-Allocation peephole copy removal. We do this in 1 pass over the
// basic blocks. We maintain a mapping of registers to Nodes (an array of
// Nodes indexed by machine register or stack slot number). NULL means that a
// register is not mapped to any Node. We can (want to have!) have several
// registers map to the same Node. We walk forward over the instructions
// updating the mapping as we go. At merge points we force a NULL if we have
// to merge 2 different Nodes into the same register. Phi functions will give
// us a new Node if there is a proper value merging. Since the blocks are
// arranged in some RPO, we will visit all parent blocks before visiting any
// successor blocks (except at loops).
//
// If we find a Copy we look to see if the Copy's source register is a stack
// slot and that value has already been loaded into some machine register; if
// so we use machine register directly. This turns a Load into a reg-reg
// Move. We also look for reloads of identical constants.
//
// When we see a use from a reg-reg Copy, we will attempt to use the copy's
// source directly and make the copy go dead.
void PhaseChaitin::post_allocate_copy_removal() {
Compile::TracePhase tp("postAllocCopyRemoval", &timers[_t_postAllocCopyRemoval]);
ResourceMark rm;
// Need a mapping from basic block Node_Lists. We need a Node_List to
// map from register number to value-producing Node.
Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
memset(blk2value, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));
// Need a mapping from basic block Node_Lists. We need a Node_List to
// map from register number to register-defining Node.
Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
memset(blk2regnd, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));
// We keep unused Node_Lists on a free_list to avoid wasting
// memory.
GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
// For all blocks
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
uint j;
Block* block = _cfg.get_block(i);
// Count of Phis in block
uint phi_dex;
for (phi_dex = 1; phi_dex < block->number_of_nodes(); phi_dex++) {
Node* phi = block->get_node(phi_dex);
if (!phi->is_Phi()) {
break;
}
}
// If any predecessor has not been visited, we do not know the state
// of registers at the start. Check for this, while updating copies
// along Phi input edges
bool missing_some_inputs = false;
Block *freed = NULL;
for (j = 1; j < block->num_preds(); j++) {
Block* pb = _cfg.get_block_for_node(block->pred(j));
// Remove copies along phi edges
for (uint k = 1; k < phi_dex; k++) {
elide_copy(block->get_node(k), j, block, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false);
}
if (blk2value[pb->_pre_order]) { // Have a mapping on this edge?
// See if this predecessor's mappings have been used by everybody
// who wants them. If so, free 'em.
uint k;
for (k = 0; k < pb->_num_succs; k++) {
Block* pbsucc = pb->_succs[k];
if (!blk2value[pbsucc->_pre_order] && pbsucc != block) {
break; // Found a future user
}
}
if (k >= pb->_num_succs) { // No more uses, free!
freed = pb; // Record last block freed
free_list.push(blk2value[pb->_pre_order]);
free_list.push(blk2regnd[pb->_pre_order]);
}
} else { // This block has unvisited (loopback) inputs
missing_some_inputs = true;
}
}
// Extract Node_List mappings. If 'freed' is non-zero, we just popped
// 'freed's blocks off the list
Node_List &regnd = *(free_list.is_empty() ? new Node_List(_max_reg) : free_list.pop());
Node_List &value = *(free_list.is_empty() ? new Node_List(_max_reg) : free_list.pop());
assert( !freed || blk2value[freed->_pre_order] == &value, "" );
// Set mappings as OUR mappings
blk2value[block->_pre_order] = &value;
blk2regnd[block->_pre_order] = &regnd;
// Initialize value & regnd for this block
if (missing_some_inputs) {
// Some predecessor has not yet been visited; zap map to empty if necessary
if (freed) {
value.clear();
regnd.clear();
}
} else {
if (!freed) { // Didn't get a freebie prior block
// Must clone some data
freed = _cfg.get_block_for_node(block->pred(1));
value.copy(*blk2value[freed->_pre_order]);
regnd.copy(*blk2regnd[freed->_pre_order]);
}
// Merge all inputs together, setting to NULL any conflicts.
for (j = 1; j < block->num_preds(); j++) {
Block* pb = _cfg.get_block_for_node(block->pred(j));
if (pb == freed) {
continue; // Did self already via freelist
}
Node_List &p_regnd = *blk2regnd[pb->_pre_order];
for (uint k = 0; k < (uint)_max_reg; k++) {
if (regnd[k] != p_regnd[k]) { // Conflict on reaching defs?
value.map(k, NULL); // Then no value handy
regnd.map(k, NULL);
}
}
}
}
// For all Phi's
for (j = 1; j < phi_dex; j++) {
uint k;
Node *phi = block->get_node(j);
uint pidx = _lrg_map.live_range_id(phi);
OptoReg::Name preg = lrgs(pidx).reg();
// Remove copies remaining on edges. Check for junk phi.
Node *u = NULL;
for (k = 1; k < phi->req(); k++) {
Node *x = phi->in(k);
if( phi != x && u != x ) // Found a different input
u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
}
if (u != NodeSentinel) { // Junk Phi. Remove
phi->replace_by(u);
j -= yank_if_dead(phi, block, &value, &regnd);
phi_dex--;
continue;
}
// Note that if value[pidx] exists, then we merged no new values here
// and the phi is useless. This can happen even with the above phi
// removal for complex flows. I cannot keep the better known value here
// because locally the phi appears to define a new merged value. If I
// keep the better value then a copy of the phi, being unable to use the
// global flow analysis, can't "peek through" the phi to the original
// reaching value and so will act like it's defining a new value. This
// can lead to situations where some uses are from the old and some from
// the new values. Not illegal by itself but throws the over-strong
// assert in scheduling.
if (pidx) {
value.map(preg, phi);
regnd.map(preg, phi);
int n_regs = RegMask::num_registers(phi->ideal_reg(), lrgs(pidx));
for (int l = 1; l < n_regs; l++) {
OptoReg::Name preg_lo = OptoReg::add(preg,-l);
value.map(preg_lo, phi);
regnd.map(preg_lo, phi);
}
}
}
// For all remaining instructions
for (j = phi_dex; j < block->number_of_nodes(); j++) {
Node* n = block->get_node(j);
if(n->outcnt() == 0 && // Dead?
n != C->top() && // (ignore TOP, it has no du info)
!n->is_Proj() ) { // fat-proj kills
j -= yank_if_dead(n, block, &value, &regnd);
continue;
}
// Improve reaching-def info. Occasionally post-alloc's liveness gives
// up (at loop backedges, because we aren't doing a full flow pass).
// The presence of a live use essentially asserts that the use's def is
// alive and well at the use (or else the allocator fubar'd). Take
// advantage of this info to set a reaching def for the use-reg.
uint k;
for (k = 1; k < n->req(); k++) {
Node *def = n->in(k); // n->in(k) is a USE; def is the DEF for this USE
guarantee(def != NULL, "no disconnected nodes at this point");
uint useidx = _lrg_map.live_range_id(def); // useidx is the live range index for this USE
if( useidx ) {
OptoReg::Name ureg = lrgs(useidx).reg();
if( !value[ureg] ) {
int idx; // Skip occasional useless copy
while( (idx=def->is_Copy()) != 0 &&
def->in(idx) != NULL && // NULL should not happen
ureg == lrgs(_lrg_map.live_range_id(def->in(idx))).reg())
def = def->in(idx);
Node *valdef = skip_copies(def); // tighten up val through non-useless copies
value.map(ureg,valdef); // record improved reaching-def info
regnd.map(ureg, def);
// Record other half of doubles
uint def_ideal_reg = def->ideal_reg();
int n_regs = RegMask::num_registers(def_ideal_reg, lrgs(_lrg_map.live_range_id(def)));
for (int l = 1; l < n_regs; l++) {
OptoReg::Name ureg_lo = OptoReg::add(ureg,-l);
if (!value[ureg_lo] &&
(!RegMask::can_represent(ureg_lo) ||
lrgs(useidx).mask().Member(ureg_lo))) { // Nearly always adjacent
value.map(ureg_lo,valdef); // record improved reaching-def info
regnd.map(ureg_lo, def);
}
}
}
}
}
const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
// Remove copies along input edges
for (k = 1; k < n->req(); k++) {
j -= elide_copy(n, k, block, value, regnd, two_adr != k);
}
// Unallocated Nodes define no registers
uint lidx = _lrg_map.live_range_id(n);
if (!lidx) {
continue;
}
// Update the register defined by this instruction
OptoReg::Name nreg = lrgs(lidx).reg();
// Skip through all copies to the _value_ being defined.
// Do not change from int to pointer
Node *val = skip_copies(n);
// Clear out a dead definition before starting so that the
// elimination code doesn't have to guard against it. The
// definition could in fact be a kill projection with a count of
// 0 which is safe but since those are uninteresting for copy
// elimination just delete them as well.
if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
regnd.map(nreg, NULL);
value.map(nreg, NULL);
}
uint n_ideal_reg = n->ideal_reg();
int n_regs = RegMask::num_registers(n_ideal_reg, lrgs(lidx));
if (n_regs == 1) {
// If Node 'n' does not change the value mapped by the register,
// then 'n' is a useless copy. Do not update the register->node
// mapping so 'n' will go dead.
if( value[nreg] != val ) {
if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, OptoReg::Bad)) {
j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} else {
// Update the mapping: record new Node defined by the register
regnd.map(nreg,n);
// Update mapping for defined *value*, which is the defined
// Node after skipping all copies.
value.map(nreg,val);
}
} else if( !may_be_copy_of_callee(n) ) {
assert(n->is_Copy(), "");
j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
}
} else if (RegMask::is_vector(n_ideal_reg)) {
// If Node 'n' does not change the value mapped by the register,
// then 'n' is a useless copy. Do not update the register->node
// mapping so 'n' will go dead.
if (!register_contains_value(val, nreg, n_regs, value)) {
// Update the mapping: record new Node defined by the register
regnd.map(nreg,n);
// Update mapping for defined *value*, which is the defined
// Node after skipping all copies.
value.map(nreg,val);
for (int l = 1; l < n_regs; l++) {
OptoReg::Name nreg_lo = OptoReg::add(nreg,-l);
regnd.map(nreg_lo, n );
value.map(nreg_lo,val);
}
} else if (n->is_Copy()) {
// Note: vector can't be constant and can't be copy of calee.
j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
}
} else {
// If the value occupies a register pair, record same info
// in both registers.
OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
if( RegMask::can_represent(nreg_lo) && // Either a spill slot, or
!lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
// Sparc occasionally has non-adjacent pairs.
// Find the actual other value
RegMask tmp = lrgs(lidx).mask();
tmp.Remove(nreg);
nreg_lo = tmp.find_first_elem();
}
if (value[nreg] != val || value[nreg_lo] != val) {
if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, nreg_lo)) {
j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} else {
regnd.map(nreg , n );
regnd.map(nreg_lo, n );
value.map(nreg ,val);
value.map(nreg_lo,val);
}
} else if (!may_be_copy_of_callee(n)) {
assert(n->is_Copy(), "");
j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
}
}
// Fat projections kill many registers
if (n_ideal_reg == MachProjNode::fat_proj) {
RegMaskIterator rmi(n->out_RegMask());
while (rmi.has_next()) {
nreg = rmi.next();
value.map(nreg, n);
regnd.map(nreg, n);
}
}
} // End of for all instructions in the block
} // End for all blocks
}