3d460bd295
Reviewed-by: kvn, thartmann, vlivanov
1765 lines
68 KiB
C++
1765 lines
68 KiB
C++
/*
|
|
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/c2/barrierSetC2.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/movenode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
// Optimization - Graph Style
|
|
|
|
#include "math.h"
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
// If right input is a constant 0, return the left input.
|
|
Node* SubNode::Identity(PhaseGVN* phase) {
|
|
assert(in(1) != this, "Must already have called Value");
|
|
assert(in(2) != this, "Must already have called Value");
|
|
|
|
// Remove double negation
|
|
const Type *zero = add_id();
|
|
if( phase->type( in(1) )->higher_equal( zero ) &&
|
|
in(2)->Opcode() == Opcode() &&
|
|
phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
|
|
return in(2)->in(2);
|
|
}
|
|
|
|
// Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
|
|
if (in(1)->Opcode() == Op_AddI) {
|
|
if (in(1)->in(2) == in(2)) {
|
|
return in(1)->in(1);
|
|
}
|
|
if (in(1)->in(1) == in(2)) {
|
|
return in(1)->in(2);
|
|
}
|
|
|
|
// Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
|
|
// trip counter and X is likely to be loop-invariant (that's how O2 Nodes
|
|
// are originally used, although the optimizer sometimes jiggers things).
|
|
// This folding through an O2 removes a loop-exit use of a loop-varying
|
|
// value and generally lowers register pressure in and around the loop.
|
|
if (in(1)->in(2)->Opcode() == Op_Opaque2 && in(1)->in(2)->in(1) == in(2)) {
|
|
return in(1)->in(1);
|
|
}
|
|
}
|
|
|
|
return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type* SubNode::Value_common(PhaseTransform *phase) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not correct for SubFnode and AddFNode (must check for infinity)
|
|
// Equal? Subtract is zero
|
|
if (in1->eqv_uncast(in2)) return add_id();
|
|
|
|
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
|
|
return bottom_type();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const Type* SubNode::Value(PhaseGVN* phase) const {
|
|
const Type* t = Value_common(phase);
|
|
if (t != NULL) {
|
|
return t;
|
|
}
|
|
const Type* t1 = phase->type(in(1));
|
|
const Type* t2 = phase->type(in(2));
|
|
return sub(t1,t2); // Local flavor of type subtraction
|
|
|
|
}
|
|
|
|
SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) {
|
|
switch (bt) {
|
|
case T_INT:
|
|
return new SubINode(in1, in2);
|
|
case T_LONG:
|
|
return new SubLNode(in1, in2);
|
|
default:
|
|
fatal("Not implemented for %s", type2name(bt));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Helper function--------------------------------
|
|
|
|
static bool is_cloop_increment(Node* inc) {
|
|
precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL);
|
|
|
|
if (!inc->in(1)->is_Phi()) {
|
|
return false;
|
|
}
|
|
const PhiNode* phi = inc->in(1)->as_Phi();
|
|
|
|
if (!phi->region()->is_CountedLoop()) {
|
|
return false;
|
|
}
|
|
|
|
return inc == phi->region()->as_CountedLoop()->incr();
|
|
}
|
|
|
|
// Given the expression '(x + C) - v', or
|
|
// 'v - (x + C)', we examine nodes '+' and 'v':
|
|
//
|
|
// 1. Do not convert if '+' is a counted-loop increment, because the '-' is
|
|
// loop invariant and converting extends the live-range of 'x' to overlap
|
|
// with the '+', forcing another register to be used in the loop.
|
|
//
|
|
// 2. Do not convert if 'v' is a counted-loop induction variable, because
|
|
// 'x' might be invariant.
|
|
//
|
|
static bool ok_to_convert(Node* inc, Node* var) {
|
|
return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
Node *in1 = in(1);
|
|
Node *in2 = in(2);
|
|
uint op1 = in1->Opcode();
|
|
uint op2 = in2->Opcode();
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if ((in1 == this) || (in2 == this) ||
|
|
((op1 == Op_AddI || op1 == Op_SubI) &&
|
|
((in1->in(1) == this) || (in1->in(2) == this) ||
|
|
(in1->in(1) == in1) || (in1->in(2) == in1)))) {
|
|
assert(false, "dead loop in SubINode::Ideal");
|
|
}
|
|
#endif
|
|
|
|
const Type *t2 = phase->type( in2 );
|
|
if( t2 == Type::TOP ) return NULL;
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::Int ){ // Might be bottom or top...
|
|
const TypeInt *i = t2->is_int();
|
|
if( i->is_con() )
|
|
return new AddINode(in1, phase->intcon(-i->get_con()));
|
|
}
|
|
|
|
// Convert "(x+c0) - y" into (x-y) + c0"
|
|
// Do not collapse (x+c0)-y if "+" is a loop increment or
|
|
// if "y" is a loop induction variable.
|
|
if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
|
|
const Type *tadd = phase->type( in1->in(2) );
|
|
if( tadd->singleton() && tadd != Type::TOP ) {
|
|
Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
|
|
return new AddINode( sub2, in1->in(2) );
|
|
}
|
|
}
|
|
|
|
|
|
// Convert "x - (y+c0)" into "(x-y) - c0"
|
|
// Need the same check as in above optimization but reversed.
|
|
if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
|
|
Node* in21 = in2->in(1);
|
|
Node* in22 = in2->in(2);
|
|
const TypeInt* tcon = phase->type(in22)->isa_int();
|
|
if (tcon != NULL && tcon->is_con()) {
|
|
Node* sub2 = phase->transform( new SubINode(in1, in21) );
|
|
Node* neg_c0 = phase->intcon(- tcon->get_con());
|
|
return new AddINode(sub2, neg_c0);
|
|
}
|
|
}
|
|
|
|
const Type *t1 = phase->type( in1 );
|
|
if( t1 == Type::TOP ) return NULL;
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if ((op2 == Op_AddI || op2 == Op_SubI) &&
|
|
((in2->in(1) == this) || (in2->in(2) == this) ||
|
|
(in2->in(1) == in2) || (in2->in(2) == in2))) {
|
|
assert(false, "dead loop in SubINode::Ideal");
|
|
}
|
|
#endif
|
|
|
|
// Convert "x - (x+y)" into "-y"
|
|
if (op2 == Op_AddI && in1 == in2->in(1)) {
|
|
return new SubINode(phase->intcon(0), in2->in(2));
|
|
}
|
|
// Convert "(x-y) - x" into "-y"
|
|
if (op1 == Op_SubI && in1->in(1) == in2) {
|
|
return new SubINode(phase->intcon(0), in1->in(2));
|
|
}
|
|
// Convert "x - (y+x)" into "-y"
|
|
if (op2 == Op_AddI && in1 == in2->in(2)) {
|
|
return new SubINode(phase->intcon(0), in2->in(1));
|
|
}
|
|
|
|
// Convert "0 - (x-y)" into "y-x"
|
|
if( t1 == TypeInt::ZERO && op2 == Op_SubI )
|
|
return new SubINode( in2->in(2), in2->in(1) );
|
|
|
|
// Convert "0 - (x+con)" into "-con-x"
|
|
jint con;
|
|
if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
|
|
(con = in2->in(2)->find_int_con(0)) != 0 )
|
|
return new SubINode( phase->intcon(-con), in2->in(1) );
|
|
|
|
// Convert "(X+A) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
|
|
return new SubINode( in1->in(2), in2->in(2) );
|
|
|
|
// Convert "(A+X) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
|
|
return new SubINode( in1->in(1), in2->in(1) );
|
|
|
|
// Convert "(A+X) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
|
|
return new SubINode( in1->in(1), in2->in(2) );
|
|
|
|
// Convert "(X+A) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
|
|
return new SubINode( in1->in(2), in2->in(1) );
|
|
|
|
// Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
|
|
// nicer to optimize than subtract.
|
|
if( op2 == Op_SubI && in2->outcnt() == 1) {
|
|
Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
|
|
return new SubINode( add1, in2->in(1) );
|
|
}
|
|
|
|
// Convert "0-(A>>31)" into "(A>>>31)"
|
|
if ( op2 == Op_RShiftI ) {
|
|
Node *in21 = in2->in(1);
|
|
Node *in22 = in2->in(2);
|
|
const TypeInt *zero = phase->type(in1)->isa_int();
|
|
const TypeInt *t21 = phase->type(in21)->isa_int();
|
|
const TypeInt *t22 = phase->type(in22)->isa_int();
|
|
if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
|
|
return new URShiftINode(in21, in22);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
int32_t lo = java_subtract(r0->_lo, r1->_hi);
|
|
int32_t hi = java_subtract(r0->_hi, r1->_lo);
|
|
|
|
// We next check for 32-bit overflow.
|
|
// If that happens, we just assume all integers are possible.
|
|
if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
|
|
((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
|
|
(((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
|
|
((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
|
|
return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
|
|
else // Overflow; assume all integers
|
|
return TypeInt::INT;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
Node *in1 = in(1);
|
|
Node *in2 = in(2);
|
|
uint op1 = in1->Opcode();
|
|
uint op2 = in2->Opcode();
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if ((in1 == this) || (in2 == this) ||
|
|
((op1 == Op_AddL || op1 == Op_SubL) &&
|
|
((in1->in(1) == this) || (in1->in(2) == this) ||
|
|
(in1->in(1) == in1) || (in1->in(2) == in1)))) {
|
|
assert(false, "dead loop in SubLNode::Ideal");
|
|
}
|
|
#endif
|
|
|
|
if( phase->type( in2 ) == Type::TOP ) return NULL;
|
|
const TypeLong *i = phase->type( in2 )->isa_long();
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( i && // Might be bottom or top...
|
|
i->is_con() )
|
|
return new AddLNode(in1, phase->longcon(-i->get_con()));
|
|
|
|
// Convert "(x+c0) - y" into (x-y) + c0"
|
|
// Do not collapse (x+c0)-y if "+" is a loop increment or
|
|
// if "y" is a loop induction variable.
|
|
if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
|
|
Node *in11 = in1->in(1);
|
|
const Type *tadd = phase->type( in1->in(2) );
|
|
if( tadd->singleton() && tadd != Type::TOP ) {
|
|
Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
|
|
return new AddLNode( sub2, in1->in(2) );
|
|
}
|
|
}
|
|
|
|
// Convert "x - (y+c0)" into "(x-y) - c0"
|
|
// Need the same check as in above optimization but reversed.
|
|
if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
|
|
Node* in21 = in2->in(1);
|
|
Node* in22 = in2->in(2);
|
|
const TypeLong* tcon = phase->type(in22)->isa_long();
|
|
if (tcon != NULL && tcon->is_con()) {
|
|
Node* sub2 = phase->transform( new SubLNode(in1, in21) );
|
|
Node* neg_c0 = phase->longcon(- tcon->get_con());
|
|
return new AddLNode(sub2, neg_c0);
|
|
}
|
|
}
|
|
|
|
const Type *t1 = phase->type( in1 );
|
|
if( t1 == Type::TOP ) return NULL;
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if ((op2 == Op_AddL || op2 == Op_SubL) &&
|
|
((in2->in(1) == this) || (in2->in(2) == this) ||
|
|
(in2->in(1) == in2) || (in2->in(2) == in2))) {
|
|
assert(false, "dead loop in SubLNode::Ideal");
|
|
}
|
|
#endif
|
|
|
|
// Convert "x - (x+y)" into "-y"
|
|
if (op2 == Op_AddL && in1 == in2->in(1)) {
|
|
return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2));
|
|
}
|
|
// Convert "x - (y+x)" into "-y"
|
|
if (op2 == Op_AddL && in1 == in2->in(2)) {
|
|
return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1));
|
|
}
|
|
|
|
// Convert "0 - (x-y)" into "y-x"
|
|
if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
|
|
return new SubLNode( in2->in(2), in2->in(1) );
|
|
|
|
// Convert "(X+A) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
|
|
return new SubLNode( in1->in(2), in2->in(2) );
|
|
|
|
// Convert "(A+X) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
|
|
return new SubLNode( in1->in(1), in2->in(1) );
|
|
|
|
// Convert "A-(B-C)" into (A+C)-B"
|
|
if( op2 == Op_SubL && in2->outcnt() == 1) {
|
|
Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
|
|
return new SubLNode( add1, in2->in(1) );
|
|
}
|
|
|
|
// Convert "0L-(A>>63)" into "(A>>>63)"
|
|
if ( op2 == Op_RShiftL ) {
|
|
Node *in21 = in2->in(1);
|
|
Node *in22 = in2->in(2);
|
|
const TypeLong *zero = phase->type(in1)->isa_long();
|
|
const TypeLong *t21 = phase->type(in21)->isa_long();
|
|
const TypeInt *t22 = phase->type(in22)->isa_int();
|
|
if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
|
|
return new URShiftLNode(in21, in22);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeLong *r0 = t1->is_long(); // Handy access
|
|
const TypeLong *r1 = t2->is_long();
|
|
jlong lo = java_subtract(r0->_lo, r1->_hi);
|
|
jlong hi = java_subtract(r0->_hi, r1->_lo);
|
|
|
|
// We next check for 32-bit overflow.
|
|
// If that happens, we just assume all integers are possible.
|
|
if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
|
|
((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
|
|
(((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
|
|
((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
|
|
return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
|
|
else // Overflow; assume all integers
|
|
return TypeLong::LONG;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type* SubFPNode::Value(PhaseGVN* phase) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// if both operands are infinity of same sign, the result is NaN; do
|
|
// not replace with zero
|
|
if (t1->is_finite() && t2->is_finite() && in1 == in2) {
|
|
return add_id();
|
|
}
|
|
|
|
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
const Type *bot = bottom_type();
|
|
if( (t1 == bot) || (t2 == bot) ||
|
|
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
return bot;
|
|
|
|
return sub(t1,t2); // Local flavor of type subtraction
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
const Type *t2 = phase->type( in(2) );
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
|
|
// return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
|
|
}
|
|
|
|
// Not associative because of boundary conditions (infinity)
|
|
if (IdealizedNumerics && !phase->C->method()->is_strict() &&
|
|
in(2)->is_Add() && in(1) == in(2)->in(1)) {
|
|
// Convert "x - (x+y)" into "-y"
|
|
return new SubFNode(phase->makecon(TypeF::ZERO), in(2)->in(2));
|
|
}
|
|
|
|
// Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
|
|
// 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
|
|
//if( phase->type(in(1)) == TypeF::ZERO )
|
|
//return new (phase->C, 2) NegFNode(in(2));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
|
|
// no folding if one of operands is infinity or NaN, do not do constant folding
|
|
if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
|
|
return TypeF::make( t1->getf() - t2->getf() );
|
|
}
|
|
else if( g_isnan(t1->getf()) ) {
|
|
return t1;
|
|
}
|
|
else if( g_isnan(t2->getf()) ) {
|
|
return t2;
|
|
}
|
|
else {
|
|
return Type::FLOAT;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
const Type *t2 = phase->type( in(2) );
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
|
|
// return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
|
|
}
|
|
|
|
// Not associative because of boundary conditions (infinity)
|
|
if (IdealizedNumerics && !phase->C->method()->is_strict() &&
|
|
in(2)->is_Add() && in(1) == in(2)->in(1)) {
|
|
// Convert "x - (x+y)" into "-y"
|
|
return new SubDNode(phase->makecon(TypeD::ZERO), in(2)->in(2));
|
|
}
|
|
|
|
// Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
|
|
// 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
|
|
//if( phase->type(in(1)) == TypeD::ZERO )
|
|
//return new (phase->C, 2) NegDNode(in(2));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
|
|
// no folding if one of operands is infinity or NaN, do not do constant folding
|
|
if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
|
|
return TypeD::make( t1->getd() - t2->getd() );
|
|
}
|
|
else if( g_isnan(t1->getd()) ) {
|
|
return t1;
|
|
}
|
|
else if( g_isnan(t2->getd()) ) {
|
|
return t2;
|
|
}
|
|
else {
|
|
return Type::DOUBLE;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Idealize---------------------------------------
|
|
// Unlike SubNodes, compare must still flatten return value to the
|
|
// range -1, 0, 1.
|
|
// And optimizations like those for (X + Y) - X fail if overflow happens.
|
|
Node* CmpNode::Identity(PhaseGVN* phase) {
|
|
return this;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//----------------------------related------------------------------------------
|
|
// Related nodes of comparison nodes include all data inputs (until hitting a
|
|
// control boundary) as well as all outputs until and including control nodes
|
|
// as well as their projections. In compact mode, data inputs till depth 1 and
|
|
// all outputs till depth 1 are considered.
|
|
void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
if (compact) {
|
|
this->collect_nodes(in_rel, 1, false, true);
|
|
this->collect_nodes(out_rel, -1, false, false);
|
|
} else {
|
|
this->collect_nodes_in_all_data(in_rel, false);
|
|
this->collect_nodes_out_all_ctrl_boundary(out_rel);
|
|
// Now, find all control nodes in out_rel, and include their projections
|
|
// and projection targets (if any) in the result.
|
|
GrowableArray<Node*> proj(Compile::current()->unique());
|
|
for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
|
|
Node* n = *it;
|
|
if (n->is_CFG() && !n->is_Proj()) {
|
|
// Assume projections and projection targets are found at levels 1 and 2.
|
|
n->collect_nodes(&proj, -2, false, false);
|
|
for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
|
|
out_rel->append_if_missing(*p);
|
|
}
|
|
proj.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) {
|
|
switch (bt) {
|
|
case T_INT:
|
|
if (unsigned_comp) {
|
|
return new CmpUNode(in1, in2);
|
|
}
|
|
return new CmpINode(in1, in2);
|
|
case T_LONG:
|
|
if (unsigned_comp) {
|
|
return new CmpULNode(in1, in2);
|
|
}
|
|
return new CmpLNode(in1, in2);
|
|
default:
|
|
fatal("Not implemented for %s", type2name(bt));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------cmp--------------------------------------------
|
|
// Simplify a CmpI (compare 2 integers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
|
|
if( r0->_hi < r1->_lo ) // Range is always low?
|
|
return TypeInt::CC_LT;
|
|
else if( r0->_lo > r1->_hi ) // Range is always high?
|
|
return TypeInt::CC_GT;
|
|
|
|
else if( r0->is_con() && r1->is_con() ) { // comparing constants?
|
|
assert(r0->get_con() == r1->get_con(), "must be equal");
|
|
return TypeInt::CC_EQ; // Equal results.
|
|
} else if( r0->_hi == r1->_lo ) // Range is never high?
|
|
return TypeInt::CC_LE;
|
|
else if( r0->_lo == r1->_hi ) // Range is never low?
|
|
return TypeInt::CC_GE;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
// Simplify a CmpU (compare 2 integers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
|
|
assert(!t1->isa_ptr(), "obsolete usage of CmpU");
|
|
|
|
// comparing two unsigned ints
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
|
|
// Current installed version
|
|
// Compare ranges for non-overlap
|
|
juint lo0 = r0->_lo;
|
|
juint hi0 = r0->_hi;
|
|
juint lo1 = r1->_lo;
|
|
juint hi1 = r1->_hi;
|
|
|
|
// If either one has both negative and positive values,
|
|
// it therefore contains both 0 and -1, and since [0..-1] is the
|
|
// full unsigned range, the type must act as an unsigned bottom.
|
|
bool bot0 = ((jint)(lo0 ^ hi0) < 0);
|
|
bool bot1 = ((jint)(lo1 ^ hi1) < 0);
|
|
|
|
if (bot0 || bot1) {
|
|
// All unsigned values are LE -1 and GE 0.
|
|
if (lo0 == 0 && hi0 == 0) {
|
|
return TypeInt::CC_LE; // 0 <= bot
|
|
} else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
|
|
return TypeInt::CC_GE; // -1 >= bot
|
|
} else if (lo1 == 0 && hi1 == 0) {
|
|
return TypeInt::CC_GE; // bot >= 0
|
|
} else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
|
|
return TypeInt::CC_LE; // bot <= -1
|
|
}
|
|
} else {
|
|
// We can use ranges of the form [lo..hi] if signs are the same.
|
|
assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
|
|
// results are reversed, '-' > '+' for unsigned compare
|
|
if (hi0 < lo1) {
|
|
return TypeInt::CC_LT; // smaller
|
|
} else if (lo0 > hi1) {
|
|
return TypeInt::CC_GT; // greater
|
|
} else if (hi0 == lo1 && lo0 == hi1) {
|
|
return TypeInt::CC_EQ; // Equal results
|
|
} else if (lo0 >= hi1) {
|
|
return TypeInt::CC_GE;
|
|
} else if (hi0 <= lo1) {
|
|
// Check for special case in Hashtable::get. (See below.)
|
|
if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
|
|
return TypeInt::CC_LT;
|
|
return TypeInt::CC_LE;
|
|
}
|
|
}
|
|
// Check for special case in Hashtable::get - the hash index is
|
|
// mod'ed to the table size so the following range check is useless.
|
|
// Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
|
|
// to be positive.
|
|
// (This is a gross hack, since the sub method never
|
|
// looks at the structure of the node in any other case.)
|
|
if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
|
|
return TypeInt::CC_LT;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
const Type* CmpUNode::Value(PhaseGVN* phase) const {
|
|
const Type* t = SubNode::Value_common(phase);
|
|
if (t != NULL) {
|
|
return t;
|
|
}
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
const Type* t1 = phase->type(in1);
|
|
const Type* t2 = phase->type(in2);
|
|
assert(t1->isa_int(), "CmpU has only Int type inputs");
|
|
if (t2 == TypeInt::INT) { // Compare to bottom?
|
|
return bottom_type();
|
|
}
|
|
uint in1_op = in1->Opcode();
|
|
if (in1_op == Op_AddI || in1_op == Op_SubI) {
|
|
// The problem rise when result of AddI(SubI) may overflow
|
|
// signed integer value. Let say the input type is
|
|
// [256, maxint] then +128 will create 2 ranges due to
|
|
// overflow: [minint, minint+127] and [384, maxint].
|
|
// But C2 type system keep only 1 type range and as result
|
|
// it use general [minint, maxint] for this case which we
|
|
// can't optimize.
|
|
//
|
|
// Make 2 separate type ranges based on types of AddI(SubI) inputs
|
|
// and compare results of their compare. If results are the same
|
|
// CmpU node can be optimized.
|
|
const Node* in11 = in1->in(1);
|
|
const Node* in12 = in1->in(2);
|
|
const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
|
|
const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
|
|
// Skip cases when input types are top or bottom.
|
|
if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
|
|
(t12 != Type::TOP) && (t12 != TypeInt::INT)) {
|
|
const TypeInt *r0 = t11->is_int();
|
|
const TypeInt *r1 = t12->is_int();
|
|
jlong lo_r0 = r0->_lo;
|
|
jlong hi_r0 = r0->_hi;
|
|
jlong lo_r1 = r1->_lo;
|
|
jlong hi_r1 = r1->_hi;
|
|
if (in1_op == Op_SubI) {
|
|
jlong tmp = hi_r1;
|
|
hi_r1 = -lo_r1;
|
|
lo_r1 = -tmp;
|
|
// Note, for substructing [minint,x] type range
|
|
// long arithmetic provides correct overflow answer.
|
|
// The confusion come from the fact that in 32-bit
|
|
// -minint == minint but in 64-bit -minint == maxint+1.
|
|
}
|
|
jlong lo_long = lo_r0 + lo_r1;
|
|
jlong hi_long = hi_r0 + hi_r1;
|
|
int lo_tr1 = min_jint;
|
|
int hi_tr1 = (int)hi_long;
|
|
int lo_tr2 = (int)lo_long;
|
|
int hi_tr2 = max_jint;
|
|
bool underflow = lo_long != (jlong)lo_tr2;
|
|
bool overflow = hi_long != (jlong)hi_tr1;
|
|
// Use sub(t1, t2) when there is no overflow (one type range)
|
|
// or when both overflow and underflow (too complex).
|
|
if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
|
|
// Overflow only on one boundary, compare 2 separate type ranges.
|
|
int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
|
|
const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
|
|
const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
|
|
const Type* cmp1 = sub(tr1, t2);
|
|
const Type* cmp2 = sub(tr2, t2);
|
|
if (cmp1 == cmp2) {
|
|
return cmp1; // Hit!
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return sub(t1, t2); // Local flavor of type subtraction
|
|
}
|
|
|
|
bool CmpUNode::is_index_range_check() const {
|
|
// Check for the "(X ModI Y) CmpU Y" shape
|
|
return (in(1)->Opcode() == Op_ModI &&
|
|
in(1)->in(2)->eqv_uncast(in(2)));
|
|
}
|
|
|
|
//------------------------------Idealize---------------------------------------
|
|
Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
|
|
switch (in(1)->Opcode()) {
|
|
case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
|
|
return new CmpLNode(in(1)->in(1),in(1)->in(2));
|
|
case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
|
|
return new CmpFNode(in(1)->in(1),in(1)->in(2));
|
|
case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
|
|
return new CmpDNode(in(1)->in(1),in(1)->in(2));
|
|
//case Op_SubI:
|
|
// If (x - y) cannot overflow, then ((x - y) <?> 0)
|
|
// can be turned into (x <?> y).
|
|
// This is handled (with more general cases) by Ideal_sub_algebra.
|
|
}
|
|
}
|
|
return NULL; // No change
|
|
}
|
|
|
|
Node *CmpLNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
const TypeLong *t2 = phase->type(in(2))->isa_long();
|
|
if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) {
|
|
const jlong con = t2->get_con();
|
|
if (con >= min_jint && con <= max_jint) {
|
|
return new CmpINode(in(1)->in(1), phase->intcon((jint)con));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Simplify a CmpL (compare 2 longs ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeLong *r0 = t1->is_long(); // Handy access
|
|
const TypeLong *r1 = t2->is_long();
|
|
|
|
if( r0->_hi < r1->_lo ) // Range is always low?
|
|
return TypeInt::CC_LT;
|
|
else if( r0->_lo > r1->_hi ) // Range is always high?
|
|
return TypeInt::CC_GT;
|
|
|
|
else if( r0->is_con() && r1->is_con() ) { // comparing constants?
|
|
assert(r0->get_con() == r1->get_con(), "must be equal");
|
|
return TypeInt::CC_EQ; // Equal results.
|
|
} else if( r0->_hi == r1->_lo ) // Range is never high?
|
|
return TypeInt::CC_LE;
|
|
else if( r0->_lo == r1->_hi ) // Range is never low?
|
|
return TypeInt::CC_GE;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
|
|
// Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
|
|
assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
|
|
|
|
// comparing two unsigned longs
|
|
const TypeLong* r0 = t1->is_long(); // Handy access
|
|
const TypeLong* r1 = t2->is_long();
|
|
|
|
// Current installed version
|
|
// Compare ranges for non-overlap
|
|
julong lo0 = r0->_lo;
|
|
julong hi0 = r0->_hi;
|
|
julong lo1 = r1->_lo;
|
|
julong hi1 = r1->_hi;
|
|
|
|
// If either one has both negative and positive values,
|
|
// it therefore contains both 0 and -1, and since [0..-1] is the
|
|
// full unsigned range, the type must act as an unsigned bottom.
|
|
bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
|
|
bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
|
|
|
|
if (bot0 || bot1) {
|
|
// All unsigned values are LE -1 and GE 0.
|
|
if (lo0 == 0 && hi0 == 0) {
|
|
return TypeInt::CC_LE; // 0 <= bot
|
|
} else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
|
|
return TypeInt::CC_GE; // -1 >= bot
|
|
} else if (lo1 == 0 && hi1 == 0) {
|
|
return TypeInt::CC_GE; // bot >= 0
|
|
} else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
|
|
return TypeInt::CC_LE; // bot <= -1
|
|
}
|
|
} else {
|
|
// We can use ranges of the form [lo..hi] if signs are the same.
|
|
assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
|
|
// results are reversed, '-' > '+' for unsigned compare
|
|
if (hi0 < lo1) {
|
|
return TypeInt::CC_LT; // smaller
|
|
} else if (lo0 > hi1) {
|
|
return TypeInt::CC_GT; // greater
|
|
} else if (hi0 == lo1 && lo0 == hi1) {
|
|
return TypeInt::CC_EQ; // Equal results
|
|
} else if (lo0 >= hi1) {
|
|
return TypeInt::CC_GE;
|
|
} else if (hi0 <= lo1) {
|
|
return TypeInt::CC_LE;
|
|
}
|
|
}
|
|
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------sub--------------------------------------------
|
|
// Simplify an CmpP (compare 2 pointers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypePtr *r0 = t1->is_ptr(); // Handy access
|
|
const TypePtr *r1 = t2->is_ptr();
|
|
|
|
// Undefined inputs makes for an undefined result
|
|
if( TypePtr::above_centerline(r0->_ptr) ||
|
|
TypePtr::above_centerline(r1->_ptr) )
|
|
return Type::TOP;
|
|
|
|
if (r0 == r1 && r0->singleton()) {
|
|
// Equal pointer constants (klasses, nulls, etc.)
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
// See if it is 2 unrelated classes.
|
|
const TypeOopPtr* oop_p0 = r0->isa_oopptr();
|
|
const TypeOopPtr* oop_p1 = r1->isa_oopptr();
|
|
bool both_oop_ptr = oop_p0 && oop_p1;
|
|
|
|
if (both_oop_ptr) {
|
|
Node* in1 = in(1)->uncast();
|
|
Node* in2 = in(2)->uncast();
|
|
AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
|
|
AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
|
|
if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
|
|
return TypeInt::CC_GT; // different pointers
|
|
}
|
|
}
|
|
|
|
const TypeKlassPtr* klass_p0 = r0->isa_klassptr();
|
|
const TypeKlassPtr* klass_p1 = r1->isa_klassptr();
|
|
|
|
if (both_oop_ptr || (klass_p0 && klass_p1)) { // both or neither are klass pointers
|
|
ciKlass* klass0 = NULL;
|
|
bool xklass0 = false;
|
|
ciKlass* klass1 = NULL;
|
|
bool xklass1 = false;
|
|
|
|
if (oop_p0) {
|
|
klass0 = oop_p0->klass();
|
|
xklass0 = oop_p0->klass_is_exact();
|
|
} else {
|
|
assert(klass_p0, "must be non-null if oop_p0 is null");
|
|
klass0 = klass_p0->klass();
|
|
xklass0 = klass_p0->klass_is_exact();
|
|
}
|
|
|
|
if (oop_p1) {
|
|
klass1 = oop_p1->klass();
|
|
xklass1 = oop_p1->klass_is_exact();
|
|
} else {
|
|
assert(klass_p1, "must be non-null if oop_p1 is null");
|
|
klass1 = klass_p1->klass();
|
|
xklass1 = klass_p1->klass_is_exact();
|
|
}
|
|
|
|
if (klass0 && klass1 &&
|
|
klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
|
|
klass1->is_loaded() && !klass1->is_interface() &&
|
|
(!klass0->is_obj_array_klass() ||
|
|
!klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
|
|
(!klass1->is_obj_array_klass() ||
|
|
!klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
|
|
bool unrelated_classes = false;
|
|
// See if neither subclasses the other, or if the class on top
|
|
// is precise. In either of these cases, the compare is known
|
|
// to fail if at least one of the pointers is provably not null.
|
|
if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
|
|
// Do nothing; we know nothing for imprecise types
|
|
} else if (klass0->is_subtype_of(klass1)) {
|
|
// If klass1's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass1;
|
|
} else if (klass1->is_subtype_of(klass0)) {
|
|
// If klass0's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass0;
|
|
} else { // Neither subtypes the other
|
|
unrelated_classes = true;
|
|
}
|
|
if (unrelated_classes) {
|
|
// The oops classes are known to be unrelated. If the joined PTRs of
|
|
// two oops is not Null and not Bottom, then we are sure that one
|
|
// of the two oops is non-null, and the comparison will always fail.
|
|
TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
|
|
if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
|
|
return TypeInt::CC_GT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Known constants can be compared exactly
|
|
// Null can be distinguished from any NotNull pointers
|
|
// Unknown inputs makes an unknown result
|
|
if( r0->singleton() ) {
|
|
intptr_t bits0 = r0->get_con();
|
|
if( r1->singleton() )
|
|
return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
|
|
return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else if( r1->singleton() ) {
|
|
intptr_t bits1 = r1->get_con();
|
|
return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else
|
|
return TypeInt::CC;
|
|
}
|
|
|
|
static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
|
|
// Return the klass node for (indirect load from OopHandle)
|
|
// LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
|
|
// or NULL if not matching.
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
n = bs->step_over_gc_barrier(n);
|
|
|
|
if (n->Opcode() != Op_LoadP) return NULL;
|
|
|
|
const TypeInstPtr* tp = phase->type(n)->isa_instptr();
|
|
if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
|
|
|
|
Node* adr = n->in(MemNode::Address);
|
|
// First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
|
|
if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return NULL;
|
|
adr = adr->in(MemNode::Address);
|
|
|
|
intptr_t off = 0;
|
|
Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
|
|
if (k == NULL) return NULL;
|
|
const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
|
|
if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
|
|
|
|
// We've found the klass node of a Java mirror load.
|
|
return k;
|
|
}
|
|
|
|
static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
|
|
// for ConP(Foo.class) return ConP(Foo.klass)
|
|
// otherwise return NULL
|
|
if (!n->is_Con()) return NULL;
|
|
|
|
const TypeInstPtr* tp = phase->type(n)->isa_instptr();
|
|
if (!tp) return NULL;
|
|
|
|
ciType* mirror_type = tp->java_mirror_type();
|
|
// TypeInstPtr::java_mirror_type() returns non-NULL for compile-
|
|
// time Class constants only.
|
|
if (!mirror_type) return NULL;
|
|
|
|
// x.getClass() == int.class can never be true (for all primitive types)
|
|
// Return a ConP(NULL) node for this case.
|
|
if (mirror_type->is_classless()) {
|
|
return phase->makecon(TypePtr::NULL_PTR);
|
|
}
|
|
|
|
// return the ConP(Foo.klass)
|
|
assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
|
|
return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Normalize comparisons between Java mirror loads to compare the klass instead.
|
|
//
|
|
// Also check for the case of comparing an unknown klass loaded from the primary
|
|
// super-type array vs a known klass with no subtypes. This amounts to
|
|
// checking to see an unknown klass subtypes a known klass with no subtypes;
|
|
// this only happens on an exact match. We can shorten this test by 1 load.
|
|
Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
// Normalize comparisons between Java mirrors into comparisons of the low-
|
|
// level klass, where a dependent load could be shortened.
|
|
//
|
|
// The new pattern has a nice effect of matching the same pattern used in the
|
|
// fast path of instanceof/checkcast/Class.isInstance(), which allows
|
|
// redundant exact type check be optimized away by GVN.
|
|
// For example, in
|
|
// if (x.getClass() == Foo.class) {
|
|
// Foo foo = (Foo) x;
|
|
// // ... use a ...
|
|
// }
|
|
// a CmpPNode could be shared between if_acmpne and checkcast
|
|
{
|
|
Node* k1 = isa_java_mirror_load(phase, in(1));
|
|
Node* k2 = isa_java_mirror_load(phase, in(2));
|
|
Node* conk2 = isa_const_java_mirror(phase, in(2));
|
|
|
|
if (k1 && (k2 || conk2)) {
|
|
Node* lhs = k1;
|
|
Node* rhs = (k2 != NULL) ? k2 : conk2;
|
|
PhaseIterGVN* igvn = phase->is_IterGVN();
|
|
if (igvn != NULL) {
|
|
set_req_X(1, lhs, igvn);
|
|
set_req_X(2, rhs, igvn);
|
|
} else {
|
|
set_req(1, lhs);
|
|
set_req(2, rhs);
|
|
}
|
|
return this;
|
|
}
|
|
}
|
|
|
|
// Constant pointer on right?
|
|
const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
|
|
if (t2 == NULL || !t2->klass_is_exact())
|
|
return NULL;
|
|
// Get the constant klass we are comparing to.
|
|
ciKlass* superklass = t2->klass();
|
|
|
|
// Now check for LoadKlass on left.
|
|
Node* ldk1 = in(1);
|
|
if (ldk1->is_DecodeNKlass()) {
|
|
ldk1 = ldk1->in(1);
|
|
if (ldk1->Opcode() != Op_LoadNKlass )
|
|
return NULL;
|
|
} else if (ldk1->Opcode() != Op_LoadKlass )
|
|
return NULL;
|
|
// Take apart the address of the LoadKlass:
|
|
Node* adr1 = ldk1->in(MemNode::Address);
|
|
intptr_t con2 = 0;
|
|
Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
|
|
if (ldk2 == NULL)
|
|
return NULL;
|
|
if (con2 == oopDesc::klass_offset_in_bytes()) {
|
|
// We are inspecting an object's concrete class.
|
|
// Short-circuit the check if the query is abstract.
|
|
if (superklass->is_interface() ||
|
|
superklass->is_abstract()) {
|
|
// Make it come out always false:
|
|
this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
|
|
return this;
|
|
}
|
|
}
|
|
|
|
// Check for a LoadKlass from primary supertype array.
|
|
// Any nested loadklass from loadklass+con must be from the p.s. array.
|
|
if (ldk2->is_DecodeNKlass()) {
|
|
// Keep ldk2 as DecodeN since it could be used in CmpP below.
|
|
if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
|
|
return NULL;
|
|
} else if (ldk2->Opcode() != Op_LoadKlass)
|
|
return NULL;
|
|
|
|
// Verify that we understand the situation
|
|
if (con2 != (intptr_t) superklass->super_check_offset())
|
|
return NULL; // Might be element-klass loading from array klass
|
|
|
|
// If 'superklass' has no subklasses and is not an interface, then we are
|
|
// assured that the only input which will pass the type check is
|
|
// 'superklass' itself.
|
|
//
|
|
// We could be more liberal here, and allow the optimization on interfaces
|
|
// which have a single implementor. This would require us to increase the
|
|
// expressiveness of the add_dependency() mechanism.
|
|
// %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
|
|
|
|
// Object arrays must have their base element have no subtypes
|
|
while (superklass->is_obj_array_klass()) {
|
|
ciType* elem = superklass->as_obj_array_klass()->element_type();
|
|
superklass = elem->as_klass();
|
|
}
|
|
if (superklass->is_instance_klass()) {
|
|
ciInstanceKlass* ik = superklass->as_instance_klass();
|
|
if (ik->has_subklass() || ik->is_interface()) return NULL;
|
|
// Add a dependency if there is a chance that a subclass will be added later.
|
|
if (!ik->is_final()) {
|
|
phase->C->dependencies()->assert_leaf_type(ik);
|
|
}
|
|
}
|
|
|
|
// Bypass the dependent load, and compare directly
|
|
this->set_req(1,ldk2);
|
|
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------sub--------------------------------------------
|
|
// Simplify an CmpN (compare 2 pointers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
|
|
ShouldNotReachHere();
|
|
return bottom_type();
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify an CmpF (compare 2 floats ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type* CmpFNode::Value(PhaseGVN* phase) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not constants? Don't know squat - even if they are the same
|
|
// value! If they are NaN's they compare to LT instead of EQ.
|
|
const TypeF *tf1 = t1->isa_float_constant();
|
|
const TypeF *tf2 = t2->isa_float_constant();
|
|
if( !tf1 || !tf2 ) return TypeInt::CC;
|
|
|
|
// This implements the Java bytecode fcmpl, so unordered returns -1.
|
|
if( tf1->is_nan() || tf2->is_nan() )
|
|
return TypeInt::CC_LT;
|
|
|
|
if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
|
|
if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
|
|
assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify an CmpD (compare 2 doubles ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type* CmpDNode::Value(PhaseGVN* phase) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not constants? Don't know squat - even if they are the same
|
|
// value! If they are NaN's they compare to LT instead of EQ.
|
|
const TypeD *td1 = t1->isa_double_constant();
|
|
const TypeD *td2 = t2->isa_double_constant();
|
|
if( !td1 || !td2 ) return TypeInt::CC;
|
|
|
|
// This implements the Java bytecode dcmpl, so unordered returns -1.
|
|
if( td1->is_nan() || td2->is_nan() )
|
|
return TypeInt::CC_LT;
|
|
|
|
if( td1->_d < td2->_d ) return TypeInt::CC_LT;
|
|
if( td1->_d > td2->_d ) return TypeInt::CC_GT;
|
|
assert( td1->_d == td2->_d, "do not understand FP behavior" );
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
// Check if we can change this to a CmpF and remove a ConvD2F operation.
|
|
// Change (CMPD (F2D (float)) (ConD value))
|
|
// To (CMPF (float) (ConF value))
|
|
// Valid when 'value' does not lose precision as a float.
|
|
// Benefits: eliminates conversion, does not require 24-bit mode
|
|
|
|
// NaNs prevent commuting operands. This transform works regardless of the
|
|
// order of ConD and ConvF2D inputs by preserving the original order.
|
|
int idx_f2d = 1; // ConvF2D on left side?
|
|
if( in(idx_f2d)->Opcode() != Op_ConvF2D )
|
|
idx_f2d = 2; // No, swap to check for reversed args
|
|
int idx_con = 3-idx_f2d; // Check for the constant on other input
|
|
|
|
if( ConvertCmpD2CmpF &&
|
|
in(idx_f2d)->Opcode() == Op_ConvF2D &&
|
|
in(idx_con)->Opcode() == Op_ConD ) {
|
|
const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
|
|
double t2_value_as_double = t2->_d;
|
|
float t2_value_as_float = (float)t2_value_as_double;
|
|
if( t2_value_as_double == (double)t2_value_as_float ) {
|
|
// Test value can be represented as a float
|
|
// Eliminate the conversion to double and create new comparison
|
|
Node *new_in1 = in(idx_f2d)->in(1);
|
|
Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
|
|
if( idx_f2d != 1 ) { // Must flip args to match original order
|
|
Node *tmp = new_in1;
|
|
new_in1 = new_in2;
|
|
new_in2 = tmp;
|
|
}
|
|
CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
|
|
? new CmpF3Node( new_in1, new_in2 )
|
|
: new CmpFNode ( new_in1, new_in2 ) ;
|
|
return new_cmp; // Changed to CmpFNode
|
|
}
|
|
// Testing value required the precision of a double
|
|
}
|
|
return NULL; // No change
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------cc2logical-------------------------------------
|
|
// Convert a condition code type to a logical type
|
|
const Type *BoolTest::cc2logical( const Type *CC ) const {
|
|
if( CC == Type::TOP ) return Type::TOP;
|
|
if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
|
|
const TypeInt *ti = CC->is_int();
|
|
if( ti->is_con() ) { // Only 1 kind of condition codes set?
|
|
// Match low order 2 bits
|
|
int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
|
|
if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
|
|
return TypeInt::make(tmp); // Boolean result
|
|
}
|
|
|
|
if( CC == TypeInt::CC_GE ) {
|
|
if( _test == ge ) return TypeInt::ONE;
|
|
if( _test == lt ) return TypeInt::ZERO;
|
|
}
|
|
if( CC == TypeInt::CC_LE ) {
|
|
if( _test == le ) return TypeInt::ONE;
|
|
if( _test == gt ) return TypeInt::ZERO;
|
|
}
|
|
|
|
return TypeInt::BOOL;
|
|
}
|
|
|
|
//------------------------------dump_spec-------------------------------------
|
|
// Print special per-node info
|
|
void BoolTest::dump_on(outputStream *st) const {
|
|
const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
|
|
st->print("%s", msg[_test]);
|
|
}
|
|
|
|
// Returns the logical AND of two tests (or 'never' if both tests can never be true).
|
|
// For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
|
|
BoolTest::mask BoolTest::merge(BoolTest other) const {
|
|
const mask res[illegal+1][illegal+1] = {
|
|
// eq, gt, of, lt, ne, le, nof, ge, never, illegal
|
|
{eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq
|
|
{never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt
|
|
{illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of
|
|
{never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt
|
|
{never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne
|
|
{eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le
|
|
{illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof
|
|
{eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge
|
|
{never, never, never, never, never, never, never, never, never, illegal}, // never
|
|
{illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
|
|
return res[_test][other._test];
|
|
}
|
|
|
|
//=============================================================================
|
|
uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
|
|
uint BoolNode::size_of() const { return sizeof(BoolNode); }
|
|
|
|
//------------------------------operator==-------------------------------------
|
|
bool BoolNode::cmp( const Node &n ) const {
|
|
const BoolNode *b = (const BoolNode *)&n; // Cast up
|
|
return (_test._test == b->_test._test);
|
|
}
|
|
|
|
//-------------------------------make_predicate--------------------------------
|
|
Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
|
|
if (test_value->is_Con()) return test_value;
|
|
if (test_value->is_Bool()) return test_value;
|
|
if (test_value->is_CMove() &&
|
|
test_value->in(CMoveNode::Condition)->is_Bool()) {
|
|
BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
|
|
const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
|
|
const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
|
|
if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
|
|
return bol;
|
|
} else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
|
|
return phase->transform( bol->negate(phase) );
|
|
}
|
|
// Else fall through. The CMove gets in the way of the test.
|
|
// It should be the case that make_predicate(bol->as_int_value()) == bol.
|
|
}
|
|
Node* cmp = new CmpINode(test_value, phase->intcon(0));
|
|
cmp = phase->transform(cmp);
|
|
Node* bol = new BoolNode(cmp, BoolTest::ne);
|
|
return phase->transform(bol);
|
|
}
|
|
|
|
//--------------------------------as_int_value---------------------------------
|
|
Node* BoolNode::as_int_value(PhaseGVN* phase) {
|
|
// Inverse to make_predicate. The CMove probably boils down to a Conv2B.
|
|
Node* cmov = CMoveNode::make(NULL, this,
|
|
phase->intcon(0), phase->intcon(1),
|
|
TypeInt::BOOL);
|
|
return phase->transform(cmov);
|
|
}
|
|
|
|
//----------------------------------negate-------------------------------------
|
|
BoolNode* BoolNode::negate(PhaseGVN* phase) {
|
|
return new BoolNode(in(1), _test.negate());
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
|
|
// overflows and we can prove that C is not in the two resulting ranges.
|
|
// This optimization is similar to the one performed by CmpUNode::Value().
|
|
Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
|
|
int cmp1_op, const TypeInt* cmp2_type) {
|
|
// Only optimize eq/ne integer comparison of add/sub
|
|
if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
(cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
|
|
// Skip cases were inputs of add/sub are not integers or of bottom type
|
|
const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
|
|
const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
|
|
if ((r0 != NULL) && (r0 != TypeInt::INT) &&
|
|
(r1 != NULL) && (r1 != TypeInt::INT) &&
|
|
(cmp2_type != TypeInt::INT)) {
|
|
// Compute exact (long) type range of add/sub result
|
|
jlong lo_long = r0->_lo;
|
|
jlong hi_long = r0->_hi;
|
|
if (cmp1_op == Op_AddI) {
|
|
lo_long += r1->_lo;
|
|
hi_long += r1->_hi;
|
|
} else {
|
|
lo_long -= r1->_hi;
|
|
hi_long -= r1->_lo;
|
|
}
|
|
// Check for over-/underflow by casting to integer
|
|
int lo_int = (int)lo_long;
|
|
int hi_int = (int)hi_long;
|
|
bool underflow = lo_long != (jlong)lo_int;
|
|
bool overflow = hi_long != (jlong)hi_int;
|
|
if ((underflow != overflow) && (hi_int < lo_int)) {
|
|
// Overflow on one boundary, compute resulting type ranges:
|
|
// tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
|
|
int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
|
|
const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
|
|
const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
|
|
// Compare second input of cmp to both type ranges
|
|
const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
|
|
const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
|
|
if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
|
|
// The result of the add/sub will never equal cmp2. Replace BoolNode
|
|
// by false (0) if it tests for equality and by true (1) otherwise.
|
|
return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool is_counted_loop_cmp(Node *cmp) {
|
|
Node *n = cmp->in(1)->in(1);
|
|
return n != NULL &&
|
|
n->is_Phi() &&
|
|
n->in(0) != NULL &&
|
|
n->in(0)->is_CountedLoop() &&
|
|
n->in(0)->as_CountedLoop()->phi() == n;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
|
|
// This moves the constant to the right. Helps value-numbering.
|
|
Node *cmp = in(1);
|
|
if( !cmp->is_Sub() ) return NULL;
|
|
int cop = cmp->Opcode();
|
|
if( cop == Op_FastLock || cop == Op_FastUnlock || cmp->is_SubTypeCheck()) return NULL;
|
|
Node *cmp1 = cmp->in(1);
|
|
Node *cmp2 = cmp->in(2);
|
|
if( !cmp1 ) return NULL;
|
|
|
|
if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
|
|
return NULL;
|
|
}
|
|
|
|
// Constant on left?
|
|
Node *con = cmp1;
|
|
uint op2 = cmp2->Opcode();
|
|
// Move constants to the right of compare's to canonicalize.
|
|
// Do not muck with Opaque1 nodes, as this indicates a loop
|
|
// guard that cannot change shape.
|
|
if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
|
|
// Because of NaN's, CmpD and CmpF are not commutative
|
|
cop != Op_CmpD && cop != Op_CmpF &&
|
|
// Protect against swapping inputs to a compare when it is used by a
|
|
// counted loop exit, which requires maintaining the loop-limit as in(2)
|
|
!is_counted_loop_exit_test() ) {
|
|
// Ok, commute the constant to the right of the cmp node.
|
|
// Clone the Node, getting a new Node of the same class
|
|
cmp = cmp->clone();
|
|
// Swap inputs to the clone
|
|
cmp->swap_edges(1, 2);
|
|
cmp = phase->transform( cmp );
|
|
return new BoolNode( cmp, _test.commute() );
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
|
|
if (cop == Op_CmpI &&
|
|
(_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
cmp1->Opcode() == Op_AndI && cmp2->Opcode() == Op_ConI &&
|
|
cmp1->in(2)->Opcode() == Op_ConI) {
|
|
const TypeInt *t12 = phase->type(cmp2)->isa_int();
|
|
const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int();
|
|
if (t12 && t12->is_con() && t112 && t112->is_con() &&
|
|
t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
|
|
Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
|
|
return new BoolNode(ncmp, _test.negate());
|
|
}
|
|
}
|
|
|
|
// Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
|
|
if (cop == Op_CmpL &&
|
|
(_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
cmp1->Opcode() == Op_AndL && cmp2->Opcode() == Op_ConL &&
|
|
cmp1->in(2)->Opcode() == Op_ConL) {
|
|
const TypeLong *t12 = phase->type(cmp2)->isa_long();
|
|
const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long();
|
|
if (t12 && t12->is_con() && t112 && t112->is_con() &&
|
|
t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
|
|
Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0)));
|
|
return new BoolNode(ncmp, _test.negate());
|
|
}
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
|
|
// The XOR-1 is an idiom used to flip the sense of a bool. We flip the
|
|
// test instead.
|
|
int cmp1_op = cmp1->Opcode();
|
|
const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
|
|
if (cmp2_type == NULL) return NULL;
|
|
Node* j_xor = cmp1;
|
|
if( cmp2_type == TypeInt::ZERO &&
|
|
cmp1_op == Op_XorI &&
|
|
j_xor->in(1) != j_xor && // An xor of itself is dead
|
|
phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
|
|
phase->type( j_xor->in(2) ) == TypeInt::ONE &&
|
|
(_test._test == BoolTest::eq ||
|
|
_test._test == BoolTest::ne) ) {
|
|
Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
|
|
return new BoolNode( ncmp, _test.negate() );
|
|
}
|
|
|
|
// Change ((x & m) u<= m) or ((m & x) u<= m) to always true
|
|
// Same with ((x & m) u< m+1) and ((m & x) u< m+1)
|
|
if (cop == Op_CmpU &&
|
|
cmp1_op == Op_AndI) {
|
|
Node* bound = NULL;
|
|
if (_test._test == BoolTest::le) {
|
|
bound = cmp2;
|
|
} else if (_test._test == BoolTest::lt &&
|
|
cmp2->Opcode() == Op_AddI &&
|
|
cmp2->in(2)->find_int_con(0) == 1) {
|
|
bound = cmp2->in(1);
|
|
}
|
|
if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
|
|
return ConINode::make(1);
|
|
}
|
|
}
|
|
|
|
// Change ((x & (m - 1)) u< m) into (m > 0)
|
|
// This is the off-by-one variant of the above
|
|
if (cop == Op_CmpU &&
|
|
_test._test == BoolTest::lt &&
|
|
cmp1_op == Op_AndI) {
|
|
Node* l = cmp1->in(1);
|
|
Node* r = cmp1->in(2);
|
|
for (int repeat = 0; repeat < 2; repeat++) {
|
|
bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
|
|
r->in(1) == cmp2;
|
|
if (match) {
|
|
// arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
|
|
// but to be compatible with the array range check pattern, use (arraylength u> 0)
|
|
Node* ncmp = cmp2->Opcode() == Op_LoadRange
|
|
? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
|
|
: phase->transform(new CmpINode(cmp2, phase->intcon(0)));
|
|
return new BoolNode(ncmp, BoolTest::gt);
|
|
} else {
|
|
// commute and try again
|
|
l = cmp1->in(2);
|
|
r = cmp1->in(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Change x u< 1 or x u<= 0 to x == 0
|
|
if (cop == Op_CmpU &&
|
|
cmp1_op != Op_LoadRange &&
|
|
((_test._test == BoolTest::lt &&
|
|
cmp2->find_int_con(-1) == 1) ||
|
|
(_test._test == BoolTest::le &&
|
|
cmp2->find_int_con(-1) == 0))) {
|
|
Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
|
|
return new BoolNode(ncmp, BoolTest::eq);
|
|
}
|
|
|
|
// Change (arraylength <= 0) or (arraylength == 0)
|
|
// into (arraylength u<= 0)
|
|
// Also change (arraylength != 0) into (arraylength u> 0)
|
|
// The latter version matches the code pattern generated for
|
|
// array range checks, which will more likely be optimized later.
|
|
if (cop == Op_CmpI &&
|
|
cmp1_op == Op_LoadRange &&
|
|
cmp2->find_int_con(-1) == 0) {
|
|
if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
|
|
Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
|
|
return new BoolNode(ncmp, BoolTest::le);
|
|
} else if (_test._test == BoolTest::ne) {
|
|
Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
|
|
return new BoolNode(ncmp, BoolTest::gt);
|
|
}
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
|
|
// This is a standard idiom for branching on a boolean value.
|
|
Node *c2b = cmp1;
|
|
if( cmp2_type == TypeInt::ZERO &&
|
|
cmp1_op == Op_Conv2B &&
|
|
(_test._test == BoolTest::eq ||
|
|
_test._test == BoolTest::ne) ) {
|
|
Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
|
|
? (Node*)new CmpINode(c2b->in(1),cmp2)
|
|
: (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
|
|
);
|
|
return new BoolNode( ncmp, _test._test );
|
|
}
|
|
|
|
// Comparing a SubI against a zero is equal to comparing the SubI
|
|
// arguments directly. This only works for eq and ne comparisons
|
|
// due to possible integer overflow.
|
|
if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
(cop == Op_CmpI) &&
|
|
(cmp1_op == Op_SubI) &&
|
|
( cmp2_type == TypeInt::ZERO ) ) {
|
|
Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
|
|
return new BoolNode( ncmp, _test._test );
|
|
}
|
|
|
|
// Same as above but with and AddI of a constant
|
|
if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
cop == Op_CmpI &&
|
|
cmp1_op == Op_AddI &&
|
|
cmp1->in(2) != NULL &&
|
|
phase->type(cmp1->in(2))->isa_int() &&
|
|
phase->type(cmp1->in(2))->is_int()->is_con() &&
|
|
cmp2_type == TypeInt::ZERO &&
|
|
!is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
|
|
) {
|
|
const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
|
|
Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
|
|
return new BoolNode( ncmp, _test._test );
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
|
|
// since zero check of conditional negation of an integer is equal to
|
|
// zero check of the integer directly.
|
|
if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
(cop == Op_CmpI) &&
|
|
(cmp2_type == TypeInt::ZERO) &&
|
|
(cmp1_op == Op_Phi)) {
|
|
// There should be a diamond phi with true path at index 1 or 2
|
|
PhiNode *phi = cmp1->as_Phi();
|
|
int idx_true = phi->is_diamond_phi();
|
|
if (idx_true != 0) {
|
|
// True input is in(idx_true) while false input is in(3 - idx_true)
|
|
Node *tin = phi->in(idx_true);
|
|
Node *fin = phi->in(3 - idx_true);
|
|
if ((tin->Opcode() == Op_SubI) &&
|
|
(phase->type(tin->in(1)) == TypeInt::ZERO) &&
|
|
(tin->in(2) == fin)) {
|
|
// Found conditional negation at true path, create a new CmpINode without that
|
|
Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
|
|
return new BoolNode(ncmp, _test._test);
|
|
}
|
|
if ((fin->Opcode() == Op_SubI) &&
|
|
(phase->type(fin->in(1)) == TypeInt::ZERO) &&
|
|
(fin->in(2) == tin)) {
|
|
// Found conditional negation at false path, create a new CmpINode without that
|
|
Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
|
|
return new BoolNode(ncmp, _test._test);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
|
|
// most general case because negating 0x80000000 does nothing. Needed for
|
|
// the CmpF3/SubI/CmpI idiom.
|
|
if( cop == Op_CmpI &&
|
|
cmp1_op == Op_SubI &&
|
|
cmp2_type == TypeInt::ZERO &&
|
|
phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
|
|
phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
|
|
Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
|
|
return new BoolNode( ncmp, _test.commute() );
|
|
}
|
|
|
|
// Try to optimize signed integer comparison
|
|
return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
|
|
|
|
// The transformation below is not valid for either signed or unsigned
|
|
// comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
|
|
// This transformation can be resurrected when we are able to
|
|
// make inferences about the range of values being subtracted from
|
|
// (or added to) relative to the wraparound point.
|
|
//
|
|
// // Remove +/-1's if possible.
|
|
// // "X <= Y-1" becomes "X < Y"
|
|
// // "X+1 <= Y" becomes "X < Y"
|
|
// // "X < Y+1" becomes "X <= Y"
|
|
// // "X-1 < Y" becomes "X <= Y"
|
|
// // Do not this to compares off of the counted-loop-end. These guys are
|
|
// // checking the trip counter and they want to use the post-incremented
|
|
// // counter. If they use the PRE-incremented counter, then the counter has
|
|
// // to be incremented in a private block on a loop backedge.
|
|
// if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
|
|
// return NULL;
|
|
// #ifndef PRODUCT
|
|
// // Do not do this in a wash GVN pass during verification.
|
|
// // Gets triggered by too many simple optimizations to be bothered with
|
|
// // re-trying it again and again.
|
|
// if( !phase->allow_progress() ) return NULL;
|
|
// #endif
|
|
// // Not valid for unsigned compare because of corner cases in involving zero.
|
|
// // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
|
|
// // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
|
|
// // "0 <=u Y" is always true).
|
|
// if( cmp->Opcode() == Op_CmpU ) return NULL;
|
|
// int cmp2_op = cmp2->Opcode();
|
|
// if( _test._test == BoolTest::le ) {
|
|
// if( cmp1_op == Op_AddI &&
|
|
// phase->type( cmp1->in(2) ) == TypeInt::ONE )
|
|
// return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
|
|
// else if( cmp2_op == Op_AddI &&
|
|
// phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
|
|
// return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
|
|
// } else if( _test._test == BoolTest::lt ) {
|
|
// if( cmp1_op == Op_AddI &&
|
|
// phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
|
|
// return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
|
|
// else if( cmp2_op == Op_AddI &&
|
|
// phase->type( cmp2->in(2) ) == TypeInt::ONE )
|
|
// return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
|
|
// }
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
|
|
// based on local information. If the input is constant, do it.
|
|
const Type* BoolNode::Value(PhaseGVN* phase) const {
|
|
return _test.cc2logical( phase->type( in(1) ) );
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//------------------------------dump_spec--------------------------------------
|
|
// Dump special per-node info
|
|
void BoolNode::dump_spec(outputStream *st) const {
|
|
st->print("[");
|
|
_test.dump_on(st);
|
|
st->print("]");
|
|
}
|
|
|
|
//-------------------------------related---------------------------------------
|
|
// A BoolNode's related nodes are all of its data inputs, and all of its
|
|
// outputs until control nodes are hit, which are included. In compact
|
|
// representation, inputs till level 3 and immediate outputs are included.
|
|
void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
|
|
if (compact) {
|
|
this->collect_nodes(in_rel, 3, false, true);
|
|
this->collect_nodes(out_rel, -1, false, false);
|
|
} else {
|
|
this->collect_nodes_in_all_data(in_rel, false);
|
|
this->collect_nodes_out_all_ctrl_boundary(out_rel);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//----------------------is_counted_loop_exit_test------------------------------
|
|
// Returns true if node is used by a counted loop node.
|
|
bool BoolNode::is_counted_loop_exit_test() {
|
|
for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
|
|
Node* use = fast_out(i);
|
|
if (use->is_CountedLoopEnd()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute sqrt
|
|
const Type* SqrtDNode::Value(PhaseGVN* phase) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
if( d < 0.0 ) return Type::DOUBLE;
|
|
return TypeD::make( sqrt( d ) );
|
|
}
|
|
|
|
const Type* SqrtFNode::Value(PhaseGVN* phase) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::FloatCon ) return Type::FLOAT;
|
|
float f = t1->getf();
|
|
if( f < 0.0f ) return Type::FLOAT;
|
|
return TypeF::make( (float)sqrt( (double)f ) );
|
|
}
|